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Abstract: In this paper, the existence and uniqueness and moment boundedness of solutions

to stochastic functional differential equations with infinite delay are studied. By using the method

of Lyapunov functions and the introduction of probability measures, a new condition which assures

that the equations have a unique solution and at the same time the moment boundedness, the

moment average in time boundedness of this solution is obtained. Relevant results about the

Khasminskii-Mao theorems are generalized.
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1 Introduction

Stochastic differential equations are well known to model problems from many areas
of science and engineering, wherein quite often the future state of such systems depends
not only on the present state but also on its past history (delay) leading to stochastic
functional differential equations with delay. In recent years, there was an increasing interest
in stochastic functional differential equations with infinite delay (ISFDEs in short) under less
restrictive conditions. The existence and uniqueness of solutions to ISFDEs were discussed
(see [1–4]). Some stabilities such as robustness, attraction, pathwise estimation of solutions
to ISFDEs were studied (see [5–13]). It is well known that, in order for a stochastic differential
equation to have a unique global solution for any given initial value, the coefficients of the
equation are generally required to satisfy the linear growth condition and the local Lipschitz
condition or a non-Lipschitz condition and the linear growth condition. In the above two
classes of conditions, the linear growth condition plays an important role to suppress the
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growth of the solution and avoid explosion in a finite time. However, such results are
limited on applications since the coefficients of many important systems which do not satisfy
the linear growth condition. It is therefore important to find conditions to guarantee the
existence of global solutions under the nonlinear growth coefficients.

Motivated by some results such as [3] and [9], this paper considers a class of stochastic
functional differential equations with infinite delay whose coefficients are polynomial or con-
trolled by the polynomial functions. We mainly examine the existence and uniqueness of the
global solutions of such equations, moment boundedness and moment average boundedness
in time.

In this paper, we consider the stochastic functional differential equation with infinite
delay

dx(t) = f(t, x(t), xt)dt + g(t, x(t), xt)dW (t), (1.1)

where

f : R+ × Rn ×BC((−∞, 0];Rn) → Rn, g : R+ × Rn ×BC((−∞, 0];Rn) → Rn×m.

Assumption 1.1 Both f and g are locally Lipschitz continuous.
Denote a solution to eq.(1.1) by x(t). If x(t) is defined on (−∞,+∞), we call it a global

solution. To show the dependence on the initial data ξ, we write x(t) = x(t, ξ). This paper
hopes to find some conditions on the coefficients under which there exists a unique global
solution x(t, ξ) to eq.(1.1) and this solution has properties

lim sup
t→∞

E|x(t, ξ)|p ≤ Kp (1.2)

and

lim sup
t→∞

1
t

∫ t

0

E|x(s, ξ)|α+pds ≤ K∗
α+p, (1.3)

where α ≥ 0 and p > 0 are proper parameters, Kp and K∗
α+p are positive constants inde-

pendent of ξ.
In order to examine the above problems, a general result is given in Section 3. In Section

4 the general result is discussed in details and two classes of conditions assuring a unique
global solution to eq.(1.1) and moment of this solution boundedness are provided in this
paper.

2 Preliminaries

First, we give some concepts, notations and stipulations which will be used in this paper.
Let {Ω,F , P} be a complete probability space with a filtration {Ft}t≥0 satisfying the usual
conditions (i.e., it is right continuous and F0 contains all P -null sets). Let W (t)(t ≥ 0) be an
m-dimensional Brownian motion defined on the probability space. Denote by C((−∞, 0];Rn)
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the family of continuous functions from (−∞, 0] to Rn. Denote by BC((−∞, 0];Rn) the
family of bounded continuous functions from (−∞, 0] to Rn with the norm

‖ϕ‖ = sup
θ≤0

|ϕ(θ)| < +∞,

which forms a Banach space, which forms a Banach space. If A is a vector or matrix,
its transpose is denoted by AT . If A is a matrix, denote its trace norm and operator
norm by |A| and ‖A‖ respectively. Denote the Euclidean norm of x ∈ Rn by |x|. Let
Rn

+ = {(x1, · · · , xn)T : xi ≥ 0 for every i = 1, · · · , n} and Rn
++ = {(x1, · · · , xn)T : xi >

0 for every i = 1, · · · , n}. For any d = (d1, · · · , dn)T ∈ Rn
+, define

d̂ = min{d1, · · · , dn}, ď = max{d1, · · · , dn}, d̄ = diag(d1, · · · , dn), (2.1)

where diag(d1, · · · , dn) represents the n × n matrix with all elements zero except those on
the diagonal which are d1, · · · , dn. For the positive definite matrix Q, let λmin(Q) be the
smallest eigenvalue of Q. Denote h(x) by o(|x|α) if for any α > 0, lim

x→+∞
h(x)/|x|α = 0.

Throughout this paper, when we use the notation o(|x|α), it is always under the condition
|x| → +∞. Let Lp((−∞, 0];Rn) denote all functions l : (−∞, 0] → Rn such that

∫ 0

−∞
|l(s)|pds < +∞.

The sign function sgn(x) will be used several times in this paper, and therefore, we
provide the definition of the function sgn(x) as follows

sgn(x) =





1, x > 0;
−1, x < 0;
0, x = 0.

For the convenience of reference, several elementary results (see [14]) are given as lemmas
in the following which will be used frequently.

Lemma 2.1 For any x, y, α ≥ 0, β, ε > 0,

xαyβ ≤ α(εx)α+β + β(ε−α/βy)α+β

α + β
,

in particular, when ε = 1,

xαyβ ≤ αxα+β + βyα+β

α + β
.

Lemma 2.2 For any x, y ∈ Rn, 0 < δ < 1,

(x + y)2 ≤ x2

δ
+

y2

1− δ
.



772 Journal of Mathematics Vol. 37

Lemma 2.3 For any h(x) ∈ C(Rn;R), α, a > 0, when |x| → ∞, h(x) = o(|x|α), then

sup
x∈Rn

[h(x)− a|x|α] < +∞.

When we use the notation o(|x|α) in this paper, it is always under the condition |x| →
+∞.

In addition, throughout this paper, const represents a positive constant, whose precise
value or expression is not important. I(x) ≤ const always implies that I(x)(x ∈ Rn) has the
bounded above. Hence Lemma 2.3 can be rewritten as

−a|x|α + o(|x|α) ≤ const. (2.2)

Note that the notation o(|x|α) includes the continuity.
Lemma 2.4 (see [9]) Let

ϕ ∈ BC((−∞, 0];Rn) ∩ Lp((−∞, 0];Rn)

for any p > 0. Then for any q > p, ϕ ∈ Lq((−∞, 0];Rn).
Let M0 denote all probability measures µ on (−∞, 0]. For any ε ≥ 0, define

Mε := {µ ∈M0;µε :=
∫ 0

−∞
ψε(−θ)dµ(θ) < +∞}.

Lemma 2.5 (see [9]) Fix ε0 > 0. For any ε ∈ [0, ε0], µε is continuously nondecreasing
and satisfies µε0 ≥ µε ≥ µ0 = 1 and Mε0 ⊆Mε ⊆M0.

Let C1,2(R+×Rn;R+) denote the family of all nonnegative functions V (t, x) on R+×Rn

which are continuously differential in t and twice differential in x, define

Vx(t, x) =
(

∂V (t, x)
∂x1

,
∂V (t, x)

∂x2

, · · · ,
∂V (t, x)

∂xn

)
, Vxx(t, x) =

[
∂2V (t, x)
∂xi∂xj

]

n×n

.

For eq.(1.1), define an operator LV from R+ × Rn
+ ×BC((−∞, 0];Rn) to R by

LV (t, x, ϕ) = Vt(t, x) + Vx(t, x)f(t, x, ϕ) + (1/2)tr[gT (t, x, ϕ)Vxx(t, x)g(t, x, ϕ)]. (2.3)

If x(t) is a solution to eq.(1.1), then by the Itô formula (see [15]), we have

EV (t, x(t)) = EV (0, x(0)) + E

∫ t

0

LV (s, x(s))ds, (2.4)

where LV (t, x(t)) = LV (t, x(t), xt).
In this paper, let

V (t, x) = (xT Qx)p/2 (x ∈ Rn), (2.5)

where Q ∈ Rn×n are positive definite matrices and p > 0. Define

q = λmin(Q), R = ‖Q‖/q. (2.6)
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Clearly, we have

qp/2|x|p ≤ V (t, x) ≤ ‖Q‖p/2|x|p. (2.7)

By (2.3),

LV (t, x, xt) =
p

2
(xT Qx)p/2−1[2xT Qf(t, x, xt) + gT (t, x, xt)Qg(t, x, xt)]

+
p(p− 2)

2
(xT Qx)p/2−2[xT Qg(t, x, xt)]2. (2.8)

3 An Elementary Lemma

The following lemma plays a key role in this paper.
Lemma 3.1 Under Assumption 1.1, if there exist constants α ≥ 0, a, ε, p,K0,Kj , αj >

0, probability measures µj ∈ Mε(1 ≤ j ≤ N, j ∈ N), and a positive definite matrix Q, such
that for the function V defined in (2.5), ϕ ∈ BC((−∞, 0];Rn),

LV (t, x, ϕ) + εV (t, x)

≤ −a|x|α+p + K0 +
N∑

j=1

Kj

[∫ 0

−∞
|ϕ(θ)|αj dµj(θ)− µjε|x|αj

]
, (3.1)

then for any initial data

ξ ∈ BC((−∞, 0];Rn) ∩ Lα̂((−∞, 0];Rn),

where α̂ = min{α1, · · · , αN}, there exists a unique global solution x(t, ξ) to eq.(1.1) and this
solution satisfies (1.2) and (1.3), where Kp and K∗

α+p are positive constants independent of
ξ.

Proof First, note that condition (3.1) includes the following three inequalities

LV (t, x, ϕ) ≤ K0 +
N∑

j=1

Kj

[∫ 0

−∞
|ϕ(θ)|αj dµj(θ)− |x|αj

]
, (3.2)

LV (t, x, ϕ) + εV (t, x) ≤ K0 +
N∑

j=1

Kj

[∫ 0

−∞
|ϕ(θ)|αj dµj(θ)− µjε|x|αj

]
(3.3)

and

a|x|α+p ≤ −LV (t, x, ϕ) + K0 +
N∑

j=1

Kj

[∫ 0

−∞
|ϕ(θ)|αj dµj(θ)− |x|αj

]
. (3.4)

For any given initial data ξ ∈ BC((−∞, 0];Rn) ∩ Lα̂((−∞, 0];Rn), we will divide the whole
proof into three steps.
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Step 1 Let us first show the existence of the global solution x(t, ξ). Under Assumption
1.1, eq.(1.1) admits a unique maximal local solution x(t) for −∞ < t < σ, where σ is the
explosion time. Define the stopping time

σk = inf{−∞ < t < σ : V (t, x(t)) > k} (k ∈ N).

Since ξ is bounded, when k is sufficiently large such that V (θ, x(θ)) ≤ k for −∞ < θ ≤ 0,
thus σk ≥ 0. If σ < +∞, when t → σ, x(t) may explode. Hence

{−∞ < t < σ : V (t, x(t)) > k} 6= ∅ (k ∈ N)

shows that σk ≤ σ. Thus, we may assume 0 ≤ σk ≤ σ (∀k ∈ N). Obviously, σk is increasing
and σk → σ+∞ ≤ σ(k → +∞) a.s.. If we can show σ+∞ = +∞, then σ = +∞ a.s., which
implies that x(t) is a global solution. This is also to prove that, for any t > 0, P (σk ≤ t) → 0
as k → +∞.

Fix t > 0. Now we prove that P (σk ≤ t) → 0(k → +∞). First note that if σk < +∞,
then by the continuity of x(t), V (σk, x(σk)) ≥ k. Hence, by (2.4) and (3.2), Lemmas 2.4 and
2.5, we can compute that

kP (σk ≤ t)

≤ V (σk, x(σk))P (σk ≤ t) ≤ EV (t ∧ σk, x(t ∧ σk))

= EV (0, x(0)) + E

∫ t∧σk

0

LV (s, x(s), xs)ds

≤ EV (0, ξ(0)) + E

∫ t∧σk

0

{
K0 +

N∑
j=1

Kj

[∫ 0

−∞
|x(s + θ)|αj dµj(θ)− |x(s)|αj

]}
ds

≤ EV (0, ξ(0)) + K0t +
N∑

j=1

KjE

[∫ 0

−∞
dµj(θ)

∫ t∧σk

θ

|x(s)|αj ds−
∫ t∧σk

0

|x(s)|αj ds

]

≤ EV (0, ξ(0)) + K0t +
N∑

j=1

KjE

∫ 0

−∞
|ξ(θ)|αj dθ

=: Kt,

where Kt is a positive constant independent of k. Therefore we have

P (σk ≤ t) ≤ k−1Kt → 0, k → +∞,

which shows that x(t) = x(t, ξ) is a global solution to eq.(1.1).

Step 2 Let us now show inequality (1.2). Applying the Itô formula to eεtV (t, x(t)), by
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(2.4) and (3.3), Lemmas 2.4 and 2.5, yields

eεtEV (t, x(t))

= EV (0, x(0)) + E

∫ t

0

L[eεsV (s, x(s))]ds

= EV (0, x(0)) + E

∫ t

0

eεs[LV (s, x(s)) + εV (s, x(s))]ds

≤ EV (0, ξ(0)) + E

∫ t

0

eεs

{
K0 +

N∑
j=1

Kj

[∫ 0

−∞
|x(s + θ)|αj dµj(θ)− µjε|x(s)|αj

]}
ds

≤ EV (0, ξ(0)) + ε−1K0(eεt − 1)

+
N∑

j=1

KjE

[∫ 0

−∞
e−εθdµj(θ)

∫ t

θ

eεs|x(s)|αj ds−
∫ 0

−∞
e−εθdµj(θ)

∫ t

0

eεs|x(s)|αj ds

]

≤ EV (0, ξ(0)) + ε−1K0(eεt − 1) +
N∑

j=1

KjµjεE

∫ 0

−∞
eεθ|ξ(θ)|αj dθ

=: c + Keεt,

where c is a positive constant independent of t and K = ε−1K0 is a positive constant
independent of ξ. Hence, we have lim sup

t→+∞
EV (t, x(t)) ≤ K. Then the required assertion (1.2)

follows from (2.7).
Step 3 Finally, let us show assertion (1.3). Using (3.4), Lemmas 2.4 and 2.5, we obtain

that

a

∫ t

0

E|x(s)|α+pds

≤ E

∫ t

0

{
− LV (s, x(s)) + K0 +

N∑
j=1

Kj

[∫ 0

−∞
|x(s + θ)|αj dµj(θ)− |x(s)|αj

]}
ds

≤ EV (0, x(0)) + K0t +
N∑

j=1

KjE

∫ t

0

[∫ 0

−∞
|x(s + θ)|αj dµj(θ)− |x(s)|αj

]
ds

≤ EV (0, x(0)) + K0t +
N∑

j=1

KjE

[∫ 0

−∞
dµj(θ)

∫ t

θ

|x(s)|αj ds−
∫ t

0

|x(s)|αj ds

]

≤ EV (0, x(0)) + K0t +
N∑

j=1

KjE

∫ 0

−∞
|ξ(θ)|αj dθ

=: c1 + K0t,

where c1 is a positive constant independent of t. Assertion (1.3) follows directly. The proof
is therefore completed.

Denote the left hand of (3.1) by Φ and establish the inequality

Φ ≤
N∑

j=1

Kj

(∫ 0

−∞
|ϕ(θ)|αj dµj(θ)− µjε|ϕ(0)|αj

)
+ I, (3.5)
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where

I = −a|x|α+p + o(|x|α+p), (3.6)

and α ≥ 0,Kj , αj , a, p > 0. By Lemma 2.3,

−a

2
|x|α+p + o(|x|α+p) ≤ const.

This, together with (3.6), yields

I ≤ −a

2
|x|α+p + const.

Substituting this into (3.5) shows that condition (3.1) is satisfied. To get (3.5) and (3.6),
some conditions are imposed on the coefficients f and g. These conditions are considered in
the next section.

4 Main Results

Recall Φ to denote the left hand of (3.1). By (2.8),

Φ = p(xT Qx)p/2−1xT Qf(t, x, ϕ) +
p

2
(xT Qx)p/2−1gT (t, x, ϕ)Qg(t, x, ϕ)

+
p(p− 2)

2
(xT Qx)p/2−2[xT Qg(t, x, ϕ)]2

+ε(xT Qx)p/2 =: I1 + I2 + I3 + I4. (4.1)

We first list the following conditions that we will need
(H1) There exist α, κ, κ̄ > 0, the probability measure µ ∈ Mε on (−∞, 0], a positive-

definite matrix Q, h(x) ∈ C(Rn;R), such that

|x|−2xT Qf(t, x, ϕ) ≤ κ|x|α + κ̄

∫ 0

−∞
|ϕ(θ)|αdµ(θ) + h(x), h(x) = o(|x|α).

(H2) There exist β, λ, λ̄ > 0,the probability measure ν ∈ Mε on (−∞, 0], h(x) ∈
C(Rn;R), such that

|x|−1|g(t, x, ϕ)| ≤ λ|x|β + λ̄

∫ 0

−∞
|ϕ(θ)|βdν(θ) + h(x), h(x) = o(|x|β).

(H3) There exist a, β, σ > 0, the probability measure ν̄ ∈ Mε on (−∞, 0], a positive-
definite matrix Q, h(x) ∈ C(Rn;R), such that

|x|−4[xT Qg(t, x, ϕ)]2 ≥ a|x|2β − σ

∫ 0

−∞
|ϕ(θ)|2βdν̄(θ) + h(x), h(x) = o(|x|2β).

(F1) There exist a, α, σ > 0, the probability measure ν̄ ∈ Mε on [−∞, 0], a positive-
definite matrix Q,h(x) ∈ C(Rn;R), such that

xT Qf(t, x, ϕ) ≤ −a|x|α+2 + σ

∫ 0

−∞
|ϕ(θ)|α+2dν̄(θ) + h(x), h(x) = o(|x|α+2).
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(F2) There exist β, λ, λ̄ > 0, the probability measure ν ∈ Mε on [−∞, 0], h(x) ∈
C(Rn;R), such that

|g(t, x, ϕ)| ≤ λ|x|β + λ̄

∫ 0

−∞
|ϕ(θ)|βdν(θ) + h(x), h(x) = o(|x|β).

The continuity of h(x) is important in all these conditions.
Now we can state one of our main results in this paper.
Theorem 4.1 Under Assumption 1.1, if conditions (H1)–(H3) hold, α ≤ 2β and

2aR−2 > 2σ + q‖Q‖(λ + λ̄)2 + 2q(κ + κ̄)[1− sgn(2β − α)], (4.2)

where q and R are as defined in (2.6), then for any given initial data ξ ∈ BC((−∞, 0];Rn)∩
Lα̂((−∞, 0];Rn), there exists a unique global solution x(t, ξ) to eq.(1.1). If p ∈ (0, 2) satisfies

(2− p)(aRp/2−2 − σ) > q‖Q‖(λ + λ̄)2 + 2q(κ + κ̄)[1− sgn(2β − α)], (4.3)

then the solution x(t, ξ) has properties (1.2) and (1.3), except that α is replaced by 2β.
Proof Let V be as defined in (2.5), p ∈ (0, 2), and ε > 0 be sufficiently small. Now

we estimate I1 − I4, respectively. First, by condition (H1) and Lemma 2.1,

I1 ≤ p(xT Qx)p/2−1|x|2
[
κ|x|α + κ̄

∫ 0

−∞
|ϕ(θ)|αdµ(θ) + o(|x|α)

]

≤ pqp/2−1

[
κ|x|α+p +

κ̄(p|x|α+p + α

∫ 0

−∞
|ϕ(θ)|α+pdµ(θ))

α + p

]

+o(|x|α+p). (4.4)

Next, by condition (H2) and Lemma 2.2, for any u, δ ∈ (0, 1),

I2 ≤ p

2
‖Q‖qp/2−1|x|p−2|g(t, x, ϕ)|2

≤ p

2u
‖Q‖qp/2−1

[
λ2|x|2β+p

δ
+

λ̄2(p|x|2β+p + 2β

∫ 0

−∞
|ϕ(θ)|2β+pdν(θ))

(1− δ)(2β + p)

]

+o(|x|2β+p). (4.5)

Noting that p < 2 and by condition (H3), we have

I3 ≤ p(p− 2)
2

(xT Qx)p/2−2|x|4
[
a|x|2β − σ

∫ 0

−∞
|ϕ(θ)|2βdν̄(θ) + o(|x|2β)

]

≤ p(p− 2)
2

(
a‖Q‖p/2−2|x|2β+p − pσ

2β + p
qp/2−2|x|2β+p

− 2βσ

2β + p
qp/2−2

∫ 0

−∞
|ϕ(θ)|2β+pdν̄(θ)

)
+ o(|x|2β+p). (4.6)
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It is easy to see that I4 = o(|ϕ(0)|2β+p). Then substituting (4.4)–(4.6) into (4.1) yields

Φ ≤ αpκ̄

α + p
qp/2−1

(∫ 0

−∞
|ϕ(θ)|α+pdµ(θ)− µε|x|α+p

)

+
βpλ̄2‖Q‖

u(1− δ)(2β + p)
qp/2−1

(∫ 0

−∞
|ϕ(θ)|2β+pdν(θ)− νε|x|2β+p

)

+
βσp(2− p)

2β + p
qp/2−2

(∫ 0

−∞
|ϕ(θ)|2β+pdν̄(θ)− ν̄ε|x|2β+p

)
+ I, (4.7)

whose form is similar to (3.5), where

I =
p(p− 2)

2
‖Q‖p/2−2|x|2β+p

(
a− σR2−p/2 2βν̄ε + p

2β + p

)

+
p‖Q‖
2u

qp/2−1|x|2β+p

[
λ2

δ
+

λ̄2(2βνε + p)
(1− δ)(2β + p)

]

+pqp/2−1|x|α+p

(
κ + κ̄

αµε + p

α + p

)
+ o(|x|2β+p). (4.8)

Then we consider (4.8) under different cases. First, let condition (4.3) hold. If α < 2β, then
by (4.8),

I = −p(2− p)
2

‖Q‖p/2−2ā|x|2β+p + o(|x|2β+p), (4.9)

where

ā = a− σR2−p/2 2βν̄ε + p

2β + p
− q‖Q‖

u(2− p)
R2−p/2

[
λ2

δ
+

λ̄2(2βνε + p)
(1− δ)(2β + p)

]

=: ā(ε, u).

Therefore

ā(0, 1) = a− σR2−p/2 − q‖Q‖
(2− p)

R2−p/2

(
λ2

δ
+

λ̄2

1− δ

)
.

Let λ, λ̄ > 0 (otherwise, we can compute directly). Choosing δ = λ/(λ + λ̄) ∈ (0, 1),
minimizing the right hand of the above formula and by (4.3), we obtain

ā(0, 1) ≥ a− σR2−p/2 − q‖Q‖(λ + λ̄)2

(2− p)
R2−p/2 > 0.

Since ε is sufficiently small, let u approach to 1 adequately such that ā > 0. Therefore, the
form of (4.9) is similar to (3.6).

If α = 2β, then by (4.8),

I = −p(2− p)
2

‖Q‖p/2−2ã|x|α+p + o(|x|α+p), (4.10)
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where

ã = ā− 2q

(2− p)
R2−p/2

(
κ + κ̄

αµε + p

α + p

)
=: ã(ε, u),

and ā is as defined in (4.9). Also choosing δ = λ/(λ + λ̄) and by (4.3), we get

ã(0, 1) ≥ a− σR2−p/2 − q‖Q‖(λ + λ̄)2

(2− p)
R2−p/2 − 2q(κ + κ̄)

(2− p)
R2−p/2 > 0.

Then we also have ã > 0, and the form of (4.10) is similar to (3.6). Thus, by Lemma 3.1, for
any given initial data ξ ∈ BC((−∞, 0];Rn) ∩ Lα̂((−∞, 0];Rn), there exists a unique global
solution x(t, ξ) to eq.(1.1) and this solution satisfies (1.2) and (1.3) except that α is replaced
by 2β.

If condition (4.2) holds and p > 0 is sufficiently small, then condition (4.3) holds. There-
fore, there exists a unique global solution x(t, ξ) (∀ξ ∈ BC((−∞, 0];Rn) ∩ Lα̂((−∞, 0];Rn)
to eq.(1.1)). The proof is completed.

If we impose condition (F1) on function f , we have
Theorem 4.2 Under Assumption 1.1, if conditions (F1) and (F2) hold, p ≥ 2, α ≥

2β − 2 and

aR1−p/2 > σ +
1
2
m(λ + λ̄)2[1− sgn(α− 2β + 2)], (4.11)

where R is as defined in (2.6), m = ‖Q‖[1 + R(p − 2)], then for any initial data ξ ∈
BC((−∞, 0];Rn) ∩ Lα̂((−∞, 0];Rn), there exists a unique global solution x(t, ξ) to eq.(1.1)
and this solution satisfies (1.2) and (1.3).

Proof The proof is similar to that of Theorem 4.1, so we omit it.
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无限时滞的随机泛函微分方程解的渐近性质

王 琳, 孙 琳, 黄冬生, 温文豪

(广东工业大学应用数学学院, 广东广州 510520)

摘要: 本文研究了无限时滞随机泛函微分方程解的存在唯一性, 矩有界性的问题. 利用Lyapunov函数

法以及概率测度的引入得到了确保方程解在唯一、矩有界、时间平均矩有界同时成立的一个新的条件. 推广

了Khasminskii-Mao定理的相关结果.
关键词: 矩有界; 伊藤公式; Brown运动; 无限时滞
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