
Vol. 37 ( 2017 )
No. 4

数 学 杂 志
J. of Math. (PRC)

THE GROWTH ON ENTIRE SOLUTIONS OF FERMAT

TYPE Q-DIFFERENCE DIFFERENTIAL EQUATIONS

LIU Xin-ling, LIU Kai
(Department of Mathematics, Nanchang University, Nanchang 330031, China)

Abstract: This paper is devoted to consider the entire solutions on Fermat type q-difference

differential equations. Using the classical and difference Nevanlinna theory and functional equations

theory, we obtain some results on the growth of the Fermat type q-difference differential equations.
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1 Introduction

Let f(z) be a meromorphic function in the complex plane. We assume that the reader
is familiar with standard symbols and fundamental results of Nevanlinna theory [5, 16]. As
we all know that Nevanlinna theory was extensively applied to considering the growth, value
distribution, and solvability of meromorphic solutions of differential equations [6]. Recently,
difference analogues of Nevanlinna theory were established, which also be used to consider
the corresponding properties of meromorphic solutions on difference equations or q-difference
equations, such as [2, 4, 7–12, 14, 17].

Let us recall the classical Fermat type equation

f(z)2 + g(z)2 = 1. (1.1)

Equation (1.1) has the entire solutions f(z) = sin(h(z)) and g(z) = cos(h(z)), where h(z)
is any entire function, no other solutions exist. However, the above result fails to give more
precise informations when g(z) has a special relationship with f(z). Yang and Li [15] first
considered the entire solutions of the Fermat type differential equation

f(z)2 + f ′(z)2 = 1, (1.2)

and they proved the following result.
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Theorem A [15, Theorem 1] The transcendental meromorphic solutions of (1.2) must
satisfy f(z) = 1

2

(
Pe−iz + 1

P
eiz

)
= sin(z + B), where P is non-zero constant and eiB = i

P
.

Tang and Liao [13] further investigated the entire solutions of a generalization of (1.2)
as follows

f(z)2 + P (z)2f (k)(z)2 = Q(z), (1.3)

where P (z), Q(z) are non-zero polynomials and obtained the next result.
Theorem B [13, Theorem 1] If the differential equation (1.3) has a transcendental

meromorphic solution f , then P (z) ≡ A, Q(z) ≡ B, k is an odd and f(z) = b sin(az + d),
where a, b, d are constants such that Aak = ±1, b2 = B.

Recently, the difference analogues of Nevanlinna theory were used to consider the solu-
tions properties of Fermat type difference equations. Liu, Cao and Cao [8] investigated the
finite order entire solutions of the difference equation

f(z)2 + f(z + c)2 = 1, (1.4)

here and in the following, c is a non-zero constant and P (z), Q(z) are non-zero polynomial,
unless otherwise specified. The result can be stated as follows.

Theorem C [8, Theorem 1.1] The transcendental entire solutions with finite order of
(1.4) must satisfy f(z) = sin(Az + B), where B is a constant and A = (4k+1)π

2c
, k is an

integer.
Furthermore, Liu and Yang [10] considered a generalization of (1.4) as follows

f(z)2 + P (z)2f(z + c)2 = Q(z), (1.5)

and obtained the following result.
Theorem D Let P (z), Q(z) be non-zero polynomials. If the difference equation (1.5)

admits a transcendental entire solution of finite order, then P (z) ≡ ±1 and Q(z) reduces to
a constant q.

If an equation includes the q-difference f(qz) and the derivatives of f(z) or f(z+c), then
this equation can be called q-difference differential equation. Liu and Cao [11] considered
the entire solutions on Fermat type q-difference differential equation

f ′(z)2 + f(qz)2 = 1, (1.6)

and obtained the following result.
Theorem E [11, Theorem 3.1] The transcendental entire solutions with finite order

of (1.6) must satisfy f(z) = sin(z + B) when q = 1, and f(z) = sin(z + kπ) or f(z) =
− sin(z + kπ + π

2
) when q = −1. There are no transcendental entire solutions with finite

order when q 6= ±1.
By comparing with the above five theorems, we state the following questions which will

be considered in this paper.
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Question 1 From Theorem A to Theorem E, we remark that the order of all tran-
scendental entire solutions with finite order of different equations are equal to one. Hence,
considering a generalization of equation (1.6), such as

f ′(z)2 + P (z)2f(qz)2 = Q(z), (1.7)

it is natural to ask if the finite order of the entire solutions of (1.7) is equal to one or not?
Question 2 From Theorem B to Theorem E, the existence of finite order entire

solutions of (1.3) and (1.5) forces the polynomial P (z) reduce to a constant. Is it also
remain valid for equation (1.7)?

However, Examples 1 and 2 below show that Questions 1 and 2 are false in generally.
Example 1 Entire function f(z) = sin zn solves

f ′(z)2 + n2z2(n−1)f(qz)2 = n2z2(n−1),

where q satisfies qn = 1. It implies that the solutions order of (1.7) may take arbitrary
numbers and P (z)2 = n2z2(n−1) is not a constant.

Example 2 We can construct a general solution from Example 1. Entire function
f(z) = sin(h(z)) solves

f ′(z)2 + [h′(z)]2f(qz)2 = [h′(z)]2,

where q satisfies qn = 1 and h(z) is a non-constant polynomial.
Example 3 Function f(z) = sinh z is also an entire solution of f ′(z)2− f(qz)2 = 1 and

f(z) = cosh z is an entire solution of f ′(z)2 − f(qz)2 = −1, where q = −1.
From Example 1 to Example 3, we also remark that if P (z)2 = ±1, the transcendental

entire solutions f(z) are of order one, if P (z) = nz(n−1), the transcendental entire solutions
f(z) are of order n. Hence, it is reasonable to conjecture that the order of entire solutions
of (1.7) is equal to ρ(f) = 1 + deg P (z). In this paper, we will answer the above conjecture
and obtain the following result.

Theorem 1.1 If |q| > 1, then the entire solution of (1.7) should be a polynomial. If
there exists a finite order transcendental entire solution f of (1.7), then ρ(f) = 1 + deg P (z)
and |q| = 1.

In the following, we will consider another q-difference differential equation

f ′(z + c)2 + P (z)2f(qz)2 = Q(z), (1.8)

and obtain the following result.
Theorem 1.2 If |q| > 1, then the entire solution of (1.8) should be a polynomial. If

there exist a finite order transcendental entire solution f of (1.8), then ρ(f) = 1 + deg P (z)
and |q| = 1.

Example 4 Function f(z) = sin z is an entire solution of f ′(z +c)2 +f(qz)2 = 1, where
c = π and q = −1.
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Finally, we consider other q-difference equation

f(z + c)2 + P (z)2f(qz)2 = Q(z). (1.9)

Theorem 1.3 If |q| > 1, then the entire solution f(z) of (1.9) should be a polynomial.
If P (z)2 = 1 in (1.9) , the following example shows that we can not give the precise

expression of finite order entire solution and the order of f(z) does not satisfy ρ(f) =
1 + deg P (z) and |q| = 1.

Example 5 [11] If q = −1, c = π
2
, thus f(z) = sin z satisfies f(z + π

2
)2 + f(−z)2 = 1.

If q = 1+i
√

3
2

, c = 1−i
√

3
2

, and p(z) = 1
3
z3 + z2 + z + 3i

4
π + 1

3
+ kiπ, thus

p(z +
c

q
) + p(qz) =

3iπ

2
+ 2kiπ

and k is an integer. Thus

f(z) =
ep(z− 1−i

√
3

2 ) − e−p(z− 1−i
√

3
2 )

2

satisfies

f(z +
1− i

√
3

2
)2 + f(

1 + i
√

3
2

z)2 = 1.

Remark 1 The proofs of Theorem 1.2 and Theorem 1.3 are similar as the proof of
Theorem 1.1. Hence we will not give the details here.

2 Some Lemmas

For the proofs of Theorems 1.1, 1.2 and 1.3, we need the following results.
Lemma 2.1 [3, Lemma 3.1] Let Φ : (1,∞) → (0,∞) be a monotone increasing function,

and let f be a nonconstant meromorphic function. If for some real constant α ∈ (0, 1), there
exist real constants K1 > 0 and K2 ≥ 1 such that

T (r, f) ≤ K1Φ(αr) + K2T (αr, f) + S(αr, f),

then

ρ(f) ≤ log K2

− log α
+ lim sup

r→∞

log Φ(r)
log r

.

Lemma 2.2 [11, Lemma 2.15] Let p(z) be a non-zero polynomial with degree n. If
p(qz)− p(z) is a constant, then qn = 1 and p(qz) ≡ p(z). If p(qz) + p(z) is a constant, then
qn = −1 and p(qz) + p(z) ≡ 2a0, where a0 is the constant term of p(z).

Lemma 2.3 [2, Theorem 2.1] Let f(z) be transcendental meromorphic function of
finite order ρ. Then for any ε > 0, we have

T (r, f(z + c)) = T (r, f) + O(rρ−1+ε) + O(log r) = T (r, f) + S(r, f). (2.1)
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Lemma 2.4 [16, Theorem 1.62] Let fj(z) be meromorphic functions, fk(z) (k =

1, 2, · · · , n− 1) be not constants, satisfying
n∑

j=1

fj = 1 and n ≥ 3. If fn(z) 6≡ 0 and

n∑
j=1

N(r,
1
fj

) + (n− 1)
n∑

j=1

N(r, fj) < (λ + o(1))T (r, fk),

where λ < 1 and k = 1, 2, · · · , n− 1, then fn(z) ≡ 1.

3 Proof of Theorem 1.1

If |q| > 1 and f(z) is an entire solution of (1.7), we use the observation (see [1]) that

T (r, f(qz)) = T (|q|r, f(z)) + O(1)

holds for any meromorphic function f and any constant q. If f(z) is a transcendental entire
function, then from (1.7) and Valiron-Mohon’ko theorem, we have

T (|q|r, f(z)) = T (r, f(qz)) + O(1) ≤ T (r, f ′(z)) + S(r, f) ≤ T (r, f(z)) + S(r, f).

Let α = 1
|q| and |q| > 1. Then we have

T (|q|αr, f(z)) ≤ T (αr, f(z)) + S(αr, f(z)).

Hence, we have T (r, f(z)) ≤ T (αr, f(z)) + S(αr, f(z)). From Lemma 2.1, we have ρ(f) =
0. Combining Hadamard factorization theorem, we have f ′(z) + iP (z)f(qz) = Q1(z) and
f ′(z)−iP (z)f(qz) = Q2(z), thus f ′(z) = Q1(z)+Q2(z)

2
is a polynomial, which is a contradiction

with f(z) is a transcendental entire function. Thus f(z) should be a polynomial.
Assume that f(z) is a transcendental entire solution of (1.7) with finite order, then

[f ′(z) + iP (z)f(qz)][f ′(z)− iP (z)f(qz)] = Q(z). (3.1)

Thus both f ′(z) + iP (z)f(qz) and f ′(z)− iP (z)f(qz) have finitely many zeros. Combining
(3.1) with the Hadamard factorization theorem, we assume that

f ′(z) + iP (z)f(qz) = Q1(z)eh(z)

and
f ′(z)− iP (z)f(qz) = Q2(z)e−h(z),

where h(z) is a non-constant polynomial provided that f(z) is of finite order transcendental
and Q1(z)Q2(z) = Q(z), where Q1(z), Q2(z) are non-zero polynomials. Thus we have

f ′(z) =
Q1(z)eh(z) + Q2(z)e−h(z)

2
(3.2)

and

f(qz) =
Q1(z)eh(z) −Q2(z)e−h(z)

2iP (z)
. (3.3)
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From (3.2), we have

f ′(qz) =
Q1(qz)eh(qz) + Q2(qz)e−h(qz)

2
. (3.4)

Taking first derivative of (3.3), we have

f ′(qz) =
A(z)eh(z) −B(z)e−h(z)

2iqP (z)2
, (3.5)

where
A(z) = P (z)Q′

1(z) + Q1(z)[P (z)h′(z)− P ′(z)] (3.6)

and
B(z) = P (z)Q′

2(z)−Q2(z)[P (z)h′(z) + P ′(z)]. (3.7)

From (3.4) and (3.5), we have

A(z)eh(qz)+h(z)

iqP (z)2Q2(qz)
− B(z)eh(qz)−h(z)

iqP (z)2Q2(qz)
− Q1(qz)

Q2(qz)
e2h(qz) ≡ 1. (3.8)

Obviously, if h(qz) is a constant, then h(z) is a constant, thus f(z) should be a polyno-
mial. If h(qz) is a non-constant entire function, then h(qz)− h(z) and h(qz) + h(z) are not
constants simultaneously. The following, we will discuss two cases.

Case 1 If h(qz)− h(z) is not a constant, from Lemma 2.4, we know that

A(z)eh(qz)+h(z)

iqP (z)2Q2(qz)
≡ 1. (3.9)

Since f(z) is a finite order entire solution, then h(z) should satisfies h(z) = anzn + · · ·+a0 is
a non-constant polynomial, thus |q| = 1 follows for avoiding a contradiction. From Lemma
2.2, we have h(qz) + h(z) = 2a0. Hence, we have

A(z) = iqP (z)2Q2(qz)e−2a0 . (3.10)

In addition, from (3.8), we also get

B(z)eh(qz)−h(z)

iqP (z)2Q2(qz)
+

Q1(qz)
Q2(qz)

e2h(qz) ≡ 0, (3.11)

which implies that
B(z) = −iqQ1(qz)P (z)2e2a0 . (3.12)

Thus
A(z)B(z) = q2P (z)4Q(qz). (3.13)

Substitute (3.6) and (3.7) into (3.13), we have

{P (z)Q′
1(z) + Q1(z)[P (z)h′(z)− P ′(z)]}{P (z)Q′

2(z)−Q2(z)[P (z)h′(z) + P ′(z)]}
= q2P (z)4Q(qz). (3.14)
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Since f(z) is a finite order entire solution, by comparing with the degree of both hand side
of (3.14), we have

deg(h(z)) = 1 + deg P (z).

It implies that ρ(f) = 1 + deg P (z).
Case 2 If h(qz) + h(z) is not a constant, from Lemma 2.4, we know that

−B(z)eh(qz)−h(z)

iqP (z)2Q2(qz)
≡ 1.

Hence |q| = 1 follows for avoiding a contradiction. Assume that h(z) = anzn + · · ·+ a0, thus
h(qz) = h(z). Hence we have

−B(z) = iqP (z)2Q2(qz). (3.15)

In addition, from (3.8), we also get

A(z) = iqQ1(qz)P (z)2. (3.16)

Thus, similar as the above, we also get ρ(f) = 1 + deg P (z).
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费马 q-差分微分方程整函数解的增长性研究

刘新玲,刘 凯

(南昌大学数学系, 江西南昌 330031)

摘要: 本文研究了费马 q-差分微分方程的整函数解的相关问题. 利用经典和差分的Nevanlinna理论和

函数方程理论的研究方法, 获得了 q-差分微分方程整函数解增长性的几个结果.
关键词: q-差分微分方程; 整函数解; 有穷级
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