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Abstract: This paper is devoted to consider the entire solutions on Fermat type g-difference
differential equations. Using the classical and difference Nevanlinna theory and functional equations
theory, we obtain some results on the growth of the Fermat type g-difference differential equations.
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1 Introduction

Let f(z) be a meromorphic function in the complex plane. We assume that the reader
is familiar with standard symbols and fundamental results of Nevanlinna theory [5, 16]. As
we all know that Nevanlinna theory was extensively applied to considering the growth, value
distribution, and solvability of meromorphic solutions of differential equations [6]. Recently,
difference analogues of Nevanlinna theory were established, which also be used to consider
the corresponding properties of meromorphic solutions on difference equations or ¢-difference
equations, such as [2, 4, 7-12, 14, 17].

Let us recall the classical Fermat type equation

) +g(z) = L. (L1)

Equation (1.1) has the entire solutions f(z) = sin(h(z)) and g(z) = cos(h(z)), where h(z)
is any entire function, no other solutions exist. However, the above result fails to give more
precise informations when g(z) has a special relationship with f(z). Yang and Li [15] first

considered the entire solutions of the Fermat type differential equation

f)?+ f(2)" =1, (1.2)

and they proved the following result.
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Theorem A [15, Theorem 1] The transcendental meromorphic solutions of (1.2) must
satisfy f(z) = 1 (Pe™** + $€'*) = sin(z + B), where P is non-zero constant and e'# = £.
Tang and Liao [13] further investigated the entire solutions of a generalization of (1.2)

as follows
F(2)? 4+ P(2)*fP(2)* = Q(2), (1.3)

where P(z),Q(z) are non-zero polynomials and obtained the next result.

Theorem B [13, Theorem 1] If the differential equation (1.3) has a transcendental
meromorphic solution f, then P(z) = A, Q(z) = B, k is an odd and f(z) = bsin(az + d),
where a, b, d are constants such that Aa* = £1, b?> = B.

Recently, the difference analogues of Nevanlinna theory were used to consider the solu-
tions properties of Fermat type difference equations. Liu, Cao and Cao [8] investigated the

finite order entire solutions of the difference equation
P+ fz+e)? =1, (1.4)

here and in the following, ¢ is a non-zero constant and P(z),Q(z) are non-zero polynomial,
unless otherwise specified. The result can be stated as follows.
Theorem C [8, Theorem 1.1] The transcendental entire solutions with finite order of
. s . _ (4k+D)m .
(1.4) must satisfy f(z) = sin(Az 4+ B), where B is a constant and A = “=5—=, k is an
integer.

Furthermore, Liu and Yang [10] considered a generalization of (1.4) as follows
F(2)* + P(2) f(z + 0)* = Q(2), (1.5)

and obtained the following result.

Theorem D Let P(z), Q(z) be non-zero polynomials. If the difference equation (1.5)
admits a transcendental entire solution of finite order, then P(z) = +1 and Q(z) reduces to
a constant q.

If an equation includes the g-difference f(gz) and the derivatives of f(z) or f(z+c), then
this equation can be called g-difference differential equation. Liu and Cao [11] considered

the entire solutions on Fermat type ¢-difference differential equation
f(2)? + f(gz)? =1, (1.6)

and obtained the following result.

Theorem E [11, Theorem 3.1] The transcendental entire solutions with finite order
of (1.6) must satisfy f(z) = sin(z + B) when ¢ = 1, and f(z) = sin(z + km) or f(z) =
—sin(z + k7 + §) when ¢ = —1. There are no transcendental entire solutions with finite
order when ¢ # +1.

By comparing with the above five theorems, we state the following questions which will

be considered in this paper.
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Question 1 From Theorem A to Theorem E, we remark that the order of all tran-
scendental entire solutions with finite order of different equations are equal to one. Hence,

considering a generalization of equation (1.6), such as

f'(2)? + P(2)f(a2)* = Q(2), (1.7)

it is natural to ask if the finite order of the entire solutions of (1.7) is equal to one or not?
Question 2 From Theorem B to Theorem E, the existence of finite order entire
solutions of (1.3) and (1.5) forces the polynomial P(z) reduce to a constant. Is it also
remain valid for equation (1.7)?
However, Examples 1 and 2 below show that Questions 1 and 2 are false in generally.

Example 1 Entire function f(z) = sin 2" solves
f/(z)2 + n222(n71)f(qz)2 — n2z2(n71)’

where ¢ satisfies ¢" = 1. It implies that the solutions order of (1.7) may take arbitrary
numbers and P(z)? = n?22("~Y is not a constant.
Example 2 We can construct a general solution from Example 1. Entire function
f(z) = sin(h(z)) solves
f2)? + W () fg2)? = [ ()],

where ¢ satisfies ¢" = 1 and h(z) is a non-constant polynomial.

Example 3 Function f(z) = sinh z is also an entire solution of f/(2)? — f(gz)?> = 1 and
f(z) = cosh z is an entire solution of f'(2)? — f(gz)? = —1, where ¢ = —1.

From Example 1 to Example 3, we also remark that if P(2)? = +1, the transcendental
entire solutions f(z) are of order one, if P(z) = nz("~Y the transcendental entire solutions
f(2) are of order n. Hence, it is reasonable to conjecture that the order of entire solutions
of (1.7) is equal to p(f) = 1+ deg P(z). In this paper, we will answer the above conjecture
and obtain the following result.

Theorem 1.1 If |¢| > 1, then the entire solution of (1.7) should be a polynomial. If
there exists a finite order transcendental entire solution f of (1.7), then p(f) =1+ deg P(z)
and |¢| = 1.

In the following, we will consider another g-difference differential equation

f'(z+¢)* + P(2)* f(g2)" = Q(2), (1.8)

and obtain the following result.

Theorem 1.2 If |¢| > 1, then the entire solution of (1.8) should be a polynomial. If
there exist a finite order transcendental entire solution f of (1.8), then p(f) =1+ deg P(z)
and |g| = 1.

Example 4 Function f(z) = sin z is an entire solution of f’(z+c¢)?+ f(gz)* = 1, where
c=mand g = —1.
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Finally, we consider other g-difference equation
flz+0)* + P(2)*f(g2)* = Q(2). (1.9)

Theorem 1.3 If |g| > 1, then the entire solution f(z) of (1.9) should be a polynomial.

If P(2)> =1 1in (1.9) , the following example shows that we can not give the precise
expression of finite order entire solution and the order of f(z) does not satisfy p(f) =
1+ deg P(z) and |q| = 1.

Example 5 [11] If ¢ = —1, ¢ = Z, thus f(z) = sin z satisfies f(z + 5)*+ f(—2)* = 1.
If g = 1*;\/5, c= 1*;"/5, and p(z) = 32° 4+ 2% + z 4 3w + 5 + kim, thus

%
p(z + g) +plgz) = 2777 + 2kim

and k is an integer. Thus

eP(z=555) _ —p(z— 15003
satisfies
1—-14v3 14+14v3
fer By p L ey

Remark 1 The proofs of Theorem 1.2 and Theorem 1.3 are similar as the proof of

Theorem 1.1. Hence we will not give the details here.

2 Some Lemmas

For the proofs of Theorems 1.1, 1.2 and 1.3, we need the following results.

Lemma 2.1 [3, Lemma 3.1] Let ® : (1,00) — (0, 00) be a monotone increasing function,
and let f be a nonconstant meromorphic function. If for some real constant o € (0,1), there
exist real constants K; > 0 and K5 > 1 such that

T(r,f) < K1®(ar) + KxT'(ar, f) + S(ar, f),

then low K R
< 9682 + lim sup o8 (T)

~ —loga r—oo lOgT

p(f)

Lemma 2.2 [11, Lemma 2.15] Let p(z) be a non-zero polynomial with degree n. If
p(qz) — p(2) is a constant, then ¢" = 1 and p(qz) = p(z). If p(¢z) + p(2) is a constant, then
q" = —1 and p(qz) + p(2) = 2ag, where a is the constant term of p(z).

Lemma 2.3 [2, Theorem 2.1] Let f(z) be transcendental meromorphic function of
finite order p. Then for any € > 0, we have

T(r,f(z+¢) =T(r, f) + O ") + O(logr) = T(r, f) + S(r, f). (2.1)
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Lemma 2.4 [16, Theorem 1.62] Let f;(2) be meromorphic functions, fi(z) (k =
1,2,---,n — 1) be not constants, satisfying > f; =1 and n > 3. If f,(z) # 0 and

Jj=1

SN £) + (1= D) YN ) < (A olD)TC o),

where A < 1land k=1,2,---,n—1, then f,(2) = 1.

3 Proof of Theorem 1.1

If |g| > 1 and f(2) is an entire solution of (1.7), we use the observation (see [1]) that

T(r, f(gz)) = T(lglr, f(2)) + O(1)

holds for any meromorphic function f and any constant ¢. If f(z) is a transcendental entire

function, then from (1.7) and Valiron-Mohon’ko theorem, we have

T(lglr, f(2)) = T(r, f(qz)) + O(1) < T(r, f'(2)) + S(r, [) < T(r, f(2)) + S(r, f).

Let a = ﬁ' and |g| > 1. Then we have

T(lglar, f(2)) < T(ar, f(2)) + S(ar, f(2)).

Hence, we have T'(r, f(2)) < T'(ar, f(2)) + S(ar, f(2)). From Lemma 2.1, we have p(f) =
0. Combining Hadamard factorization theorem, we have f'(z) 4+ iP(z)f(qz) = Q1(z) and
f(z)—iP(2)f(qz) = Q2(2), thus f'(z) = w is a polynomial, which is a contradiction
with f(z) is a transcendental entire function. Thus f(z) should be a polynomial.

Assume that f(z) is a transcendental entire solution of (1.7) with finite order, then

[f'(2) +iP(2) f(q2)|[f"(2) —iP(2) f(g2)] = Q(2)- 3.1)

Thus both f'(z) +iP(2)f(gz) and f'(z) — iP(z)f(qz) have finitely many zeros. Combining

(3.1) with the Hadamard factorization theorem, we assume that

f'(2) +iP(2)f(g2) = Qi (2)e"?

and
f'(2) = iP(2) f(qg2) = Q2(2)e"?),
where h(z) is a non-constant polynomial provided that f(z) is of finite order transcendental

and Q1(2)Q2(z) = Q(z), where Q1(z), Q2(z) are non-zero polynomials. Thus we have

_ Qi(2)e"? + Qo(2)e "

e > (32)

and

Q1(2)e") — Qy(2)e "

flaz) = 2P(2) (3.3)
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From (3.2), we have
h(gqz —h(qz)
f’(QZ) _ Ql(qz)e (a2) —;QQ(qz)e ) (34>
Taking first derivative of (3.3), we have
, B A(2)eM?) — B(z)e ")
where
A(z) = P(2)Q1(2) + Qu(2)[P () (z) — P'(2)] (3.6)
and
B(2) = P(2)Q3(2) — Q2(2)[P(2)(2) + P'(2)]. (3.7)
From (3.4) and (3.5), we have
A(z)eMathz) - B(z)eh@2) M= Q) (gz) e2h(a2) = 1. (3.8)

iqP(2)2Q2(qz)  iqP(2)?Qa(q2)  Qa(qz)

Obviously, if h(gz) is a constant, then h(z) is a constant, thus f(z) should be a polyno-

mial. If ~A(gz) is a non-constant entire function, then h(gz) — h(z) and h(gz) + h(z) are not

constants simultaneously. The following, we will discuss two cases.

Case 1 If h(gz) — h(z) is not a constant, from Lemma 2.4, we know that

A(Z)eh(qz)+h(z)

iqP(2)%2Q2(qz) =L

(3.9)

Since f(z) is a finite order entire solution, then h(z) should satisfies h(z) = a, 2"+ - +ag is

a non-constant polynomial, thus |¢| = 1 follows for avoiding a contradiction. From Lemma

2.2, we have h(gz) + h(z) = 2ay. Hence, we have
A(z) = igP(2)*Q2(qz)e 2.
In addition, from (3.8), we also get

B(Z)eh(qz)—h(z) N Q1(q2)
iqP(2)?Q2(q2)  Qa(q2)

e2h(a?) = 0,

which implies that

B(z) = —iqQ1(qz) P(2)%e™*.
Thus

A(2)B(2) = ¢*P(2)"'Q(q2)-
Substitute (3.6) and (3.7) into (3.13), we have

(3.10)

(3.11)

(3.12)

(3.13)

{P(2)Q1(2) + Qi(2)[P(2)l'(2) = P'(2)]H{P(2)Q3(2) — Q2(2)[P(2)(2) + P'(2)]}

= ¢"P(2)'Q(q2).

(3.14)
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Since f(z) is a finite order entire solution, by comparing with the degree of both hand side
of (3.14), we have
deg(h(z)) =1+ deg P(z).
It implies that p(f) = 1 + deg P(2).
Case 2 If h(gz) + h(z) is not a constant, from Lemma 2.4, we know that
B(z)eh(qz)fh(z)
iqP(2)?Q2(qz)

Hence |g| = 1 follows for avoiding a contradiction. Assume that h(z) = a,z" + - - -+ ag, thus

=1.

h(qz) = h(z). Hence we have

—B(2) = igP(2)Q2(q2)- (3.15)
In addition, from (3.8), we also get

A(2) = iqQ1(q2)P(2). (3.16)

Thus, similar as the above, we also get p(f) =1+ deg P(z).

References

[1] Bergweiler W, Ishizaki K, Yanagihara N. Meromorphic solutions of some functional equations [J].
Meth. Appl. Anal, 1998, 5: 248-258.
[2] Chiang Y M, Feng S J. On the Nevanlinna characteristic of f(z+7) and difference equations in the
complex plane [J]. Ramanujan. J., 2008, 16: 105-129.
[3] Gundensen G, Heittokangas J, Laine I, Rieppo J, Yang D G. Meromorphic solutions of generalized
Schroder equations [J]. Aequations Math., 2002, 63: 110-135.
[4] Halburd R G, Korhonen R J. Difference analogue of the lemma on the logarithmic derivative with
applications to difference equations [J]. J. Math. Anal. Appl., 2006, 314: 477-487.
[5] Hayman W K. Meromorphic functions [M]. Oxford: Clarendon Press, 1964.
[6] Laine I. Nevanlinna theory and complex differential equations [M]. Berlin, New York: Walter de
Gruyter, 1993.
[7] Liu K. Meromorphic functions sharing a set with applications to difference equations [J]. J. Math.
Anal. Appl., 2009, 359: 384-393.
[8] Liu K, Cao T B, Cao H Z. Entire solutions of Fermat type differential-difference equations [J]. Arch.
Math., 2012, 99: 147-155.
[9] Liu K, Yang L Z, Liu X L. Existence of entire solutions of nonlinear difference equations [J]. Czech.
Math. J., 2011, 61(2): 565-576.
[10] Liu K, Yang L Z. On entire solutions of some differential-difference equations [J]. Comput. Meth.
Funct. Theory, 2013, 13: 433-447.
[11] Liu K, Cao T B. Entire solutions of Fermat type difference differential equations [J]. Electron. J.
Diff. Equ., 2013, 2013: 1-10.
[12] Liu K, Yang L Z. Some results on complex differential-difference theory [J]. J. Math., 2013, 33(5):
830-836.



768 Journal of Mathematics Vol. 37

[13] Tang J F, Liao L. W. The transcendental meromorphic solutions of a certain type of nonlinear
differential equations [J]. J. Math. Anal. Appl., 2007, 334: 517-527.

[14] Yang C C, Laine I. On analogies between nonlinear difference and differential equations [J]. Proc.
Japan Acad., Ser. A, 2010, 86: 10-14.

[15] Yang C C, Li P. On the transcendental solutions of a certain type of nonlinear differential equations
[J]. Arch. Math., 2004, 82: 442-448.

[16] Yang C C, Yi H X. Uniqueness theory of meromorphic functions [M]. Nederland: Kluwer Academic
Publishers, 2003.

[17] Zhang J L, Korhonen R J. On the Nevanlinna characteristic of f(gz) and its applications [J]. J.
Math. Anal. Appl., 2010, 369: 537-544.

BT - EHWHTRERMMBAE K R

XHF, Xl
(P B R &, TLF M A 330031)

FE: AT T 9 g-22 0003 T R R R B AR DG 1) L. ) 8 SR 22 43 (R Nevanlinna 2 16 71
BT REER BT TR, G T ¢- 22000000 T AR B R U KR K LA &

XBIR: - E W TR BEREUR; A%

MR(2010)E #1 4> £ 5:  30D35; 39B32; 34M05 FESES: 01745



