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Abstract: In this paper, we study the problem of the change of Rossby parameter and the

topography in a two-layer fluid. Based on the traveling wave method and the perturbation method,

the Rossby wave amplitude is obtained to satisfy the homogeneous KdV equation and the homo-

geneous mKdV equation, which describe the evolution of the amplitude of solitary Rossby waves.

The effects of Rossby parameters and topography on Rossby wave are generalized.
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1 Introduction

The solitary Rossby waves was applied to the planetary-scale wave phenomenon. Since
Long [1] derived the Korteweg-de Vries (KdV)equation on a baratropic atmosphere, theories
of solitary Rossby waves were developed by Larse [2], Benney [3–7], Clarke [8] and Redekopp
[9, 10] primarily in the context of the atmospheric models. The basic theory demonstrates
that the amplitude of long Rossby waves propagating in a zonal shear flow is governed by
either the KdV or modified Korteweg-de Vries (mKdV) equation depending on the vertical
density distribution in the atmospheric model. Hukuda [11] studied the effect of vertical
shear in an analysis restricted to neutral modes propagating in a weak horizontal shear flow
without critical layers. Pedlosky [12, 13] presented theory that is the finite-amplitude behav-
ior of unstable baroclinic waves in a quasi-geostrophic two-layer model, it was shown that in
the absence of dissipation the equilibrated finite-amplitude state exhibits an oscillation, both
of the mean flow and the baroclinic waves. Mitsudera and Grimshaw [14] also presented a
weakly nonlinear, long-waves theory to describe a complicated system, they described the
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generation and evolution of mesoscale phenomena in a baroclinic current when it is interact-
ing with a localized longshore topographic feature. Gottwald and Grimshaw [15] gave that
the influence of topography on the interaction of long, weakly nonlinear, quasigeostrophic
baroclinic waves can be described by a pair of linearly coupled KdV equations, with a forc-
ing term in one of the equations. Patoine and Warn [16] showed the interaction of long,
quasi-stationary baroclinc waves with topography can be described by an inhomogeneous
KdV equation. Liu and Tan [17] discussed the change of the Rossby parameter beta with
latitude and extended the beta-plane approximation. Liu and Tan [18] used a barotropic
semi-geostrophic model with topogrphic forcing the stability and solution of the nonlinear
Rossby waves were discussed. They found that the effect of the W-E oriented topography
and the N-S oriented topography on the stability and phase speed of the waves are quite dif-
ferent, the Rossby waves forced by the topography can been described by the KdV equation.
Luo [19] studied a kind of the solitary Rossby waves excited by the change of β excluding
effects of shear basic flow and topography, showed the β parameter with the change of lat-
itude may be one reason of producing dipole blocking in the mid-high latitudes. Luo [20]
investigated the planetary-scale baroclinic envelope Rossby solitons for zonal wavenumber
2 in a two-layer, it is found that when the shear of basic state westerly winds between the
upper and lower layers is weak, both the upper-and lower-layer envelope Rossby solitons are
almost in phase and exhibit vortex pair block structure which have a weak baroclinicity.
But he did not discussed the topography effect on the Rossby waves. Charney and Straus
[21] showed that the forced flow of a barotropic fluid over wary topography in a periodic
beta-plane channel may possess a multiplicity of stationary equilibrium states of which more
than one may be stable. Lv [22] showed the solitary Rossby waves caused by the shearing
basic flow and orography with small variable slope were mainly of meridional wave number
one and two, different shears of flow can excite different stream line patterns of solitary
waves, and the orography with variable slope is also important factors of formation of soli-
tary Rossby waves. Solutions of solitary waves play such an important role in soliton theory
that many mathematicians and physicists were interested in this topic, such as Hirota’s bi-
linear method, the Jacobi elliptic function expansion method et al. [23, 24] were proposed
and used widely.

2 The Governing Equation

The non-dimensional quasi-geostrophic with topography potential vorticity equation in
each fluid layer on a β-plane can be written in the form [11]

∂

∂t
[∇2ψ1 − F (ψ1 − ψ2)] + J [ψ1,∇2ψ1 − F (ψ1 − ψ2) + βy] = 0, (2.1)

∂

∂t
[∇2ψ2 + F (ψ1 − ψ2)] + J [ψ2,∇2ψ2 − F (ψ1 − ψ2) + βy + Mh(x, y)] = 0. (2.2)

In equations (2.1), (2.2), the variables with subscripts 1, 2 refer to the quantities defined in
the upper and lower-layers, respectively. The ψn(x, y, t) represents the geostrophic stream
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function in the nth layer, where n = 1, 2. ∇2 is the horizontal Laplace operator, h(x, y) is
the function of topography. The internal rotational Froude number and the dimensionless
gradient of planetary vorticity β, defined as

F =
f2
0 L2

4ρgD
2ρ

, β = β′
L2

U
,

M =
gf0

c2
0

DL

U
is the effect parameter of topography, c2

0 = gH, where f0 is a constant Coriolis

parameter in moderate position, L is the north-south extent of the zonal field,
4ρ

ρ
the density

difference anomaly between the upper and lower layers, g the gravitational acceleration, D

is the total fluid depth and U is a characteristic zonal velocity, H is the scale height. The
boundary conditions is wall at the northern and southern [12]

∂ψn

∂x
= 0, y = 0, 1. (2.3)

Introducing a scaled coordinate in the form [9, 10]

ξ = ε(x− ct), (2.4)

To consider effects of topography, assuming [22],

h(x, y) = h(y), (2.5)

here c is the phase speed of a long Rossby wave and ε the dimensionless Rossby number
assumed to be smaller than unity, it is a measure of the Rossby wave amplitude. Inserting
(2.4) and (2.5) into (2.1), (2.2) and (2.3) gives an set of equations

[
∂ψ1

∂ξ

∂

∂y
− (c +

∂ψ1

∂y
)

∂

∂ξ
][ε2 ∂2ψ1

∂ξ2
+

∂2ψ1

∂y2
− F (ψ1 − ψ2)] + β

∂ψ1

∂ξ
= 0, (2.6)

[
∂ψ2

∂ξ

∂

∂y
− (c +

∂ψ2

∂y
)

∂

∂ξ
][ε2 ∂2ψ2

∂ξ2
+

∂2ψ2

∂y2
+ F (ψ1 − ψ2)] + β

∂ψ2

∂ξ
+ M

∂ψ2

∂ξ

dh

dy
= 0,(2.7)

∂ψn

∂ξ
= 0, y = 0, 1. (2.8)

The total flow ψ(ξ, y) is composed of the basic shear flow plus the long wave disturbance.
The disturbance turn out to be solitary waves described by nonlinear equation depending
on the balance between the effects of nonlinear and dispersion.

3 Expansion of Solution

3.1 The Even Order of ε Expansion

First, we seek a solution in the form [25]

ψn(ξ, y) = −
∫ y

0

Undy + ε2ψn1(ξ, y) + ε4ψn1(ξ, y) + · · · , (3.1)

c = c∗0 + ε2c1 + · · · , (3.2)
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where Un(y) represents a zonal in the nth layer, c∗0 is the phase speed of an infinitely long
Rossby wave. Inserting (3.1), (3.2) into (2.6), (2.7) gives

(Un − c∗0)
∂

∂ξ
[
∂2ψn1

∂y2
+ (−1)nF (ψ11 − ψ21)] + [β + M

(−1)n + 1
2

dh

dy
− d2Un

dy2

+(−1)n−1F (U1 − U2)]∂ψn1
∂ξ

+ ε2{(Un − c∗0)
∂

∂ξ
[
∂2ψn2

∂y2
+ (−1)nF (ψ12 − ψ22]

+[β + M (−1)n+1
2

dh
dy
− d2Un

dy2 + (−1)n−1F (U1 − U2)]
∂ψn2

∂ξ
+ (Un − c∗0)

∂

∂ξ
(
∂2ψn1

∂ξ2
)

+(∂ψn1
∂ξ

∂
∂y
− ∂ψn1

∂y
∂
∂ξ
− c1

∂
∂y

)(∂2ψn1
∂y2 + (−1)nF (ψ11 − ψ21)}+ O(ε4) = 0,

(3.3)

here n = 1, 2, from equation (3.3) the problem of the lowest order are written as O(ε0):





(Un − c∗0)
∂

∂ξ
[
∂2ψn1

∂y2
+ (−1)nF (ψ11 − ψ21)]

+[β + M
(−1)n + 1

2
dh

dy
− d2Un

dy2
+ (−1)n−1F (U1 − U2)]

∂ψn1

∂ξ
= 0,

∂ψn1

∂ξ
= 0, y = 0, 1.

(3.4)

Separating variables in the form [9]

ψn1(ξ, y) = A(ξ)φn(y), (3.5)

where φn(y) satisfies





(Un − c∗0)[
d2φn

dy2
+ (−1)nF (φ1 − φ2)] + [β + M

(−1)n + 1
2

dh

dy
− d2Un

dy2

+(−1)n−1F (U1 − U2)]φn = 0,

φn(y) = 0, y = 0, 1.

(3.6)

Equation (3.6) determines the model structure of a long Rossby wave while the wave ampli-
tude A(ξ) is as yet undetermined to this order. Proceeding to the next order O(ε2), obtaining
O(ε2):





(Un − c∗0)
∂

∂ξ
[
∂2ψn2

∂y2
+ (−1)nF (ψ12 − ψ22)] + [β + M

(−1)n + 1
2

dh

dy
− d2Un

dy2

+(−1)n−1F (U1 − U2)]∂ψn2
∂ξ

= −(Un − c∗0)φn
d3A

dξ3
− [φn

d3φn

dy3
+ (−1)nFφn

d

dy
(φ1 − φ2) + (−1)n+1F (φ1 − φ2)

dφn

dy

−dφn

dy

d2φn

dy2
]A

dA

dξ
+ [c1

d2φn

dy2
+ (−1)nF (φ1 − φ2)]

dA

dξ
,

∂ψn2

∂ξ
= 0, y = 0, 1,

(3.7)
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Using equation (3.6) gives

(Un − c∗0)
∂

∂ξ
[
∂2ψn2

∂y2
+ (−1)nF (ψ12 − ψ22)] + [β + M

(−1)n + 1
2

dh

dy
− d2Un

dy2

+(−1)n+1F (U1 − U2)]∂ψn2
∂ξ

= (Un − c∗0)φn
d3A

dξ3
+ φ2

n

d

dy
{
β + M

(−1)n + 1
2

dh

dy
− d2Un

dy2
+ (−1)n+1F (U1 − U2)

Un − c0

}AdA

dξ

−φn

β + M
(−1)n + 1

2
dh

dy
− d2Un

dy2
+ (−1)n+1F (U1 − U2)

Un − c0

c1
dA

dξ
.

(3.8)
By application of the solvability condition having

e1
d3A

dξ3
+ e2A

dA

dξ
+ e3c1

dA

dξ
= 0, (3.9)

where

e1 =
∫ 1

0

2∑
n=1

φ2
ndy,

e2 = −
∫ 1

0

2∑
n=1

[
φ3

n

Un − c∗0

d

dy
(
β + M

(−1)n + 1
2

dh

dy
− d2Un

dy2
+ (−1)n−1F (U1 − U2)

Un − c∗0
)]dy,

e3 =
∫ 1

0

2∑
n=1

[
φ2

n

(Un − c∗0)2
(
β + M

(−1)n + 1
2

dh

dy
− d2Un

dy2
+ (−1)n−1F (U1 − U2)

Un − c∗0
)dy.

(3.10)
In the above derivation, assuming that any critical level does not exist, i.e., Un−c∗0 6= 0.

Equation (3.9) is an KdV equation including topography forcing term M
dh

dy
. Pursuing

another possible expansion.

3.2 The Order of ε Expansion

Another solution to equations (2.6)–(2.8) may be sought in the form

ψn(ξ, y) = −
∫ y

0

Un(y)dy + εψn1(ξ, y) + ε2ψn2(ξ, y) + ε3ψn3(ξ, y) + · · · ,

c = c∗0 + ε2c∗1 + · · · .
(3.11)

Substitution of (3.11) into equations (2.6), (2.7) yields

(Un − c∗0)
∂

∂ξ
[
∂2ψn1

∂y2
+ (−1)nF (ψ11 − ψ21)] + [β + M

(−1)n + 1
2

dh

dy
− d2Un

dy2

+(−1)n−1F (U1 − U2)]∂ψn1
∂ξ

+ ε{(Un − c∗0)[
∂2ψn2

∂y2
+ (−1)nF (ψ12 − ψ22]

+[β + M
(−1)n + 1

2
dh

dy
− d2Un

dy2
+ (−1)n−1F (U1 − U2)]

∂ψn2

∂ξ

+(
∂ψn1

∂ξ

∂

∂y
− ∂ψn1

∂y
)(

∂2ψn1

∂y2
+ (−1)n+1F (ψ11 − ψ21))}
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+ε2{(Un − c∗0)
∂
∂ξ

[∂2ψn3
∂y2 + (−1)nF (ψ13 − ψ23)]

+[β + M
(−1)n + 1

2
dh

dy
− d2Un

dy2
+ (−1)n−1F (U1 − U2)]

∂ψn3

∂ξ
+ (Un − c∗0)

∂3ψn1

∂ξ3

+(
∂ψn1

∂ξ

∂

∂y
− ∂ψn1

∂y

∂

∂ξ
)(

∂2ψn2

∂y2
+ (−1)n+1F (ψ12 − ψ22))

+(
∂ψn2

∂ξ

∂

∂y
− ∂ψn2

∂y

∂

∂ξ
− c∗1

∂

∂ξ
)(

∂2ψn1

∂y2
+ (−1)n+1F (ψ11 − ψ21))}+ O(ε3) = 0.

(3.12)

From equation (3.12), the problem of the lowest order are written as O(ε0):




(Un − c∗0)
∂

∂ξ
[
∂2ψn1

∂y2
+ (−1)nF (ψ11 − ψ21)]

+[β + M
(−1)n + 1

2
dh

dy
− d2Un

dy2
+ (−1)n−1F (U1 − U2)]

∂ψn1

∂ξ
= 0,

∂ψn1

∂ξ
= 0, y = 0, 1.

(3.13)

Separating variables in the form

ψn1(ξ, y) = A(ξ)φn(y) (n = 1, 2), (3.14)

here φn(y) satisfies




(Un − c∗0)[
d2φn

dy2
+ (−1)nF (φ1 − φ2)] + [β + M

(−1)n + 1
2

dh

dy
− d2Un

dy2

+(−1)n−1F (U1 − U2)]φn = 0,

φn(y) = 0, y = 0, 1.

(3.15)

That the lowest order problem agrees with that of the KdV equation case. From the next
order problem, we obtain O(ε1):





(Un − c∗0)
∂

∂ξ
[
∂2ψn2

∂y2
+ (−1)nF (ψ12 − ψ22)] + [β + M

(−1)n + 1
2

dh

dy
− d2Un

dy2

+(−1)n−1F (U1 − U2)]∂ψn2
∂ξ

−(
∂ψn1

∂ξ

∂

∂y
− ∂ψn1

∂y

∂

∂ξ
)(

∂2ψn1

∂y2
+ (−1)nF (ψ11 − ψ21)) = 0,

∂ψn2

∂ξ
= 0, y = 0, 1.

(3.16)

The solution of equation (3.16) is [11]

ψn2(ξ, y) =
1
2
A2(ξ)χn(y) (n = 1, 2), (3.17)

where χn(y) satisfies




(Un − c∗0)(
d2χn

dy2
+ (−1)nF (χ1 − χ2)) + (β + M

(−1)n + 1
2

dh

dy
− d2Un

dy2

+(−1)n−1F (U1 − U2))χn

=
d

dy
(
β + M

(−1)n + 1
2

dh

dy
− d2Un

dy2
+ (−1)n−1F (U1 − U2)

Un − c∗0
)φ2

n,

χn(0) = χn(1) = 0.

(3.18)
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The last problem yields O(ε2):

(Un − c∗0)
∂

∂ξ
[
∂2ψn3

∂y2
+ (−1)nF (ψ13 − ψ23)] + [β + M

(−1)n + 1
2

dh

dy
− d2Un

dy2

+(−1)n−1F (U1 − U2)]
∂ψn3

∂ξ

= −(Un − c∗0)φn
d3A

dξ3
+ [

3
2
φnχn

d

dy
(
β + M

(−1)n + 1
2

dh

dy
− d2Un

dy2
+ (−1)n−1F (U1 − U2)

Un − c∗0
)

−1
2
φ3

n

d

dy
(

1
Un − c∗0

d

dy
(
β + M

(−1)n + 1
2

dh

dy
− d2Un

dy2
+ (−1)n−1F (U1 − U2)

Un − c∗0
))]A2 dA

dξ

−[φn

β + M
(−1)n + 1

2
dh

dy
− d2Un

dy2
+ (−1)n−1F (U1 − U2)

Un − c∗0
]c∗1

dA

dξ
. (3.19)

As in equation (3.8), application of the solvability condition yields, the mKdV equation

e∗1
d3A

dξ3
+ e∗2A

2 dA

dξ
+ e∗3c

∗
1

dA

dξ
= 0, (3.20)

where

e∗1 =
∫ 1

0

2∑
n=1

φ2
ndy = e1,

e∗2 = −
∫ 1

0

2∑
n=1

[
3
2

φ2
nχn

Un − c∗0

d

dy
{
β + M

(−1)n + 1
2

dh

dy
− d2Un

dy2
+ (−1)n−1F (U1 − U2)

Un − c∗0
}

−1
2

φ4
n

Un − c∗0

d

dy
(

1
Un − c∗0

d

dy
(
β + M

(−1)n + 1
2

dh

dy
− d2Un

dy2
+ (−1)n−1F (U1 − U2)

Un − c∗0
))]dy,

e∗3 =
∫ 1

0

2∑
n=1

[
φ2

n

(Un − c∗0)2

β + M
(−1)n + 1

2
dh

dy
− d2Un

dy2
+ (−1)n−1F (U1 − U2)

Un − c0

]dy = e3.(3.21)

4 The Coefficient of KdV and mKdV Equation under the Change of β

In the section, discuss the change of β and the topography. The β and the topographic
basic field chosen here is [17, 22]

β = β0 − δ0y,
dh

dy
= hy0 + by, (4.1)

where β0 =
2Ωcos ϕ0

a
, δ0 =

2Ω sin ϕ0

a2
, hy0 =constant, it is a slow change of the orographic

slope, b ¿ 1, it is a measure of the shear basic flow and topography that are weakly change.
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The KdV equation has the solitary waves solution [11]

A(ξ) = sgn(e1, e2)sech
2(λξ), c1 = −|e2|

3e3

sgn(e1). (4.2)

The wave steepness λ is

λ = | e2

12e1

| 12 .

The solitary wave solution of the mKdV equation [11]

A(ξ) = ±sech2(λ∗ξ), c∗1 = −|e
∗
2|

6e∗3
, (4.3)

where
λ∗ = | e2

6e1

| 12 .

In order to determine these coefficients of the inhomogeneous KdV and mKdV equation,
substitution of (4.1) into (3.10), (3.21), are approximate evaluated to yield

e1 = e∗1 =

∫ 1

0

2∑
n=1

φ2
ndy,

e2 = −
∫ 1

0

2∑
n=1

[
φ3

n

Un − c∗0

d

dy
(

β0 − δ0y + M
(−1)n + 1

2
(hyo + by)− d2Un

dy2
+ (−1)n−1F (U1 − U2)

Un − c∗0
)]dy,

e∗2 == −
∫ 1

0

2∑
n=1

[
3

2

φ2
nχn

Un − c∗0

d

dy
{
β0 − δ0y + M

(−1)n + 1

2
(hy0 + by)− d2Un

dy2
+ (−1)n−1F (U1 − U2)

Un − c∗0
}

−1

2

φ4
n

Un − c∗0

d

dy
(

1

Un − c∗0

d

dy
(

β0 − δ0y + M
(−1)n + 1

2
(hyo + by)− d2Un

dy2
+ (−1)n−1F (U1 − U2)

Un − c∗0
))]dy,

e3 = e∗3 =

∫ 1

0

2∑
n=1

[
φ2

n

(Un − c∗0)2

β0 − δ0y + M
(−1)n + 1

2
(hy0 + by)− d2Un

dy2
+ (−1)n−1F (U1 − U2)

Un − c∗0
]dy.

(4.4)

For the baroclinic mode e2, e
∗
2 tell us that δ0 6= 0, b 6= 0 in spite of the absence of the basic

flow Un =constant, the KdV (mKdV) solition can exist. The change of β and topography is
the important factors that induce Rossby solitary waves.

5 Concluding Remarks

These solitary Rossby waves of the two layer fluid are described by the homogeneous
KdV or mKdV equation depending on the baroclinicity fluid, when the change of β and the
fluid with the topography. In the general case where the basic flow has the shear, Rossby
solitary waves are described by the KdV (mKdV) equation, but, if considering the change
of β, the Rossby solitary can exit in the absence of horizontal shear in the basic flow. The
inhomogeneous terms of the KdV and mKdV equation are induce by the bottom topography
effect. The internal rotational Froude number F has a certain effect on the Rossby solitary



No. 4 Rossby waves with the change of β and the influence of topography in a two-layer fluid 759

waves steepness, with the decrease of F , the solitary waves steepness is increase. There is
no effect on the basic flow pattern of solitary waves. The horizontal shear and the vertical
shear of the basic flow are also the factor causing solitary waves steepness increase. Finally,
the further modifications the Rossby waves will be considered; the instability of the Rossby
solitary with the change β; the Rossby waves in the n-level model.
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两层流体中具有β变化和地形影响的Rossby波

宋 健1,刘全生2, 岑瑞婷1, 杨联贵2

(1. 内蒙古工业大学理学院,内蒙古呼和浩特 010051)

(2. 内蒙古大学数学科学院, 内蒙古呼和浩特 010021)

摘要: 本文研究了两层流体中具有变化的Rossby参数和地形 Rossby波的问题. 利用行波法和摄动的

方法, 获得了 Rossby波振幅满足齐次 KdV方程和齐次 mKdV方程, 推广了 Rossby参数和地形对 Rossby

孤立波的影响.
关键词: 变化的β; 齐次 KdV方程; 齐次 mKdV方程; 地形
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