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Abstract: In this paper, we study the truncated variables and k-normal distribution. By

using the theory of logarithmic concave function, we obtain the inequality chains involving variances

of truncated variables and the function of truncated variables, which is the generalization of some

classical results involving normal distribution and the hierarchical teaching model. Some simulation

results and a real data analysis are shown.
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1 Introduction

With the expansion of university enrollment, various work to improve students’ ability
all round was continued to be carried out. How to increasingly improve teaching quality
in the courses with large number of students (such as advanced mathematics) are discussed
repeatedly. Since the examination scores of the large number of students obey normal
distribution, statistical theory is a natural research tool for study of a large scale teaching
(see [1, 2]).

The math score of the students of some grades in a university is a random variable
ξI , where ξI ∈ I = [0, 100). Assume that the students are taught by divided into n classes
according to their math scores, written as: Class[a1, a2), Class[a2, a3), · · · , Class[an, an+1),
where n ≥ 3, 0 = a1 < a2 < · · · < an+1 = 100, and ai, ai+1 are the lowest and the highest
math scores of the students of the Class[ai, ai+1), respectively. This model of teaching is
called hierarchical teaching model (see [1–4, 7]). This teaching model is often used in college
English and college mathematics teaching. In teaching practice, the previously mentioned
score maybe the math score of national college entrance examination or entrance exams
which represent the mathematical basis of the students, or in mathematical language, the
initial value of the teaching.
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No doubt that this teaching model is better than traditional teaching model. However,
the real reason for it’s high efficiency and the further improvement are not found. As far
as we know, not many papers were published to deal these since the difficulty of computing
the indefinite integrals involving the normal distribution density function. In [3], by means
of numerical simulation, the authors proved the variance of the hierarchical class is smaller.
In [4], the authors established some general properties of the variance of the hierarchical
teaching, and established a linear model of teaching efficiency of hierarchical teaching model.
If the students are divided into Superior-Middle-Poor three classes, the authors believe that
the three classes, especially the third one will benefit most from the hierarchical teaching.

In order to study the hierarchical teaching model, we need to give the definition of
truncated variables.

Definition 1.1 Let ξI ∈ I be a continuous random variable, and let its probability
density function (p.d.f.) be f : I → (0,∞) . If ξI∗ ∈ I∗ ⊆ I is also a continuous random
variable and its probability density function is

fξI∗ : I∗ → (0,∞) , fξI∗ (t) , f (t)∫

I∗
f

,

then we call the random variable ξI∗ a truncated variable of the random variable ξI , denoted
by ξI∗ ⊆ ξI ; if ξI∗ ⊆ ξI , and I∗ ⊂ I, then we call the random variable ξI∗ a proper Truncated
Variable of the random variable ξI , denoted by ξI∗ ⊂ ξI , here I, I∗ ⊆ (−∞,∞), I and I∗ are
intervals.

In the hierarchical teaching model, the math score of Class[ai, ai+1) is also a random
variable ξ[ai,ai+1) ∈ [ai, ai+1). Since [ai, ai+1) ⊂ I, we say it is a proper truncated variables of
the random variable ξI , written as ξ[ai,ai+1) ⊂ ξI , i = 1, 2, · · · , n. Assume that Class[ai, ai+1)
and Class[ai+1, ai+2) are merged into one, i.e.,

Class[ai, ai+2), 1 ≤ i ≤ n− 1.

Since [ai, ai+1) ⊂ [ai, ai+2) and [ai+1, ai+2) ⊂ [ai, ai+2), we know that ξ[ai,ai+1) and ξ[ai+1,ai+2)

are the proper truncated variables of the random variable ξ[ai,ai+2).

We remark here if ξI ∈ I is a continuous random variable, and its p.d.f. is f : I →
(0,∞) , then the integration

∫

I

f converges , and it satisfies the following two conditions
∫

I

f = 1; P
(
ξI ∈ I

)
=

∫

I

f,

where P
(
ξI ∈ I

)
is the probability of the random event ξI ∈ I, and I ⊆ I is an interval.

According to the definitions of the mathematical expectation EξI∗ and the variance
DξI∗ (see [8, 9]) with Definition 1.1, we are easy to get

EξI∗ ,
∫

I∗
tfξI∗ =

∫

I∗
tf

∫

I∗
f

(1.1)
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and

DξI∗ , E(ξI∗ − EξI∗)
2 =

∫

I∗
t2f

∫

I∗
f

−




∫

I∗
tf

∫

I∗
f




2

, (1.2)

where ξI∗ is a truncated variable of the random variable ξI .

In the hierarchical teaching model, what we concerned about is the relationship between
the variance of ξ[ai,ai+1) and the variance of ξI , where i = 1, 2, · · · , n. Its purpose is to deter-
mine the superiority and inferiority of the hierarchical teaching model and the traditional
mode of teaching. If

Dξ[ai,ai+1) < DξI ,∀i ∈ {1, 2, · · · , n} , (1.3)

then we believe that the hierarchical teaching model is better than the traditional mode of
teaching. Otherwise, we believe that the hierarchical teaching model is not worth promoting.

2 k-Normal Distribution

The normal distribution (see [3, 4, 8, 9]) is considered as the most prominent probability
distribution in statistics. Besides the important central limit theorem that says the mean of a
large number of random variables drawn from a common distribution, under mild conditions,
is distributed approximately normally, the normal distribution is also tractable in the sense
that a large number of related results can be derived explicitly and that many qualitative
properties may be stated in terms of various inequalities.

One of the main practical uses of the normal distribution is to model empirical dis-
tributions of many different random variables encountered in practice. For fit the actual
data more accurately, many research for generalizing this distribution are carried out. Some
representative examples are the following. In 2001, Armando and other authors extended
the p.d.f. to the normal-exponential-gamma form which contains four parameters (see [5]).
In 2005, Saralees generalized it into the form K exp

{−∣∣x−µ
σ

∣∣s} (see [6]). In 2014, Wen Jiajin
rewrote the p.d.f as k-Normal Distribution as follows (see [7]).

Definition 2.1 If ξ is a continuous random variable and its p.d.f. is

fµ,σ
k : (−∞,∞) → (0,∞) , fµ,σ

k (t) , k1−k−1

2Γ (k−1) σ
exp

(
−|t− µ|k

kσk

)
,

then we call the random variable ξ follows the k-normal distribution, denoted by ξ ∼
Nk (µ, σ) , where µ ∈ (−∞,∞) , σ ∈ (0,∞) , k ∈ (1,∞) , and Γ (s) ,

∫ ∞

0

xs−1e−xdx is

the gamma function.

For the p.d.f. fµ,σ
k (t) of k-normal distribution, the graphs of the functions f0,1

3/2(t), f
0,1
2 (t)

and f0,1
5/2(t) are depicted in Figure 1 and f0,1

k (t) is depicted in Figure 2.
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Figure 1: The graphs of the functions f0,1
3/2(t), f

0,1
2 (t) and f0,1

5/2(t),−4 6 t 6 4

Figure 2: The graph of the function f0,1
k (t),−4 6 t 6 4, 1 < k 6 3

Integrate the fµ,σ
k (t) on (−∞,+∞) by substitutions, we obtain that for all µ ∈ (−∞,∞) ,

σ ∈ (0,∞) and k ∈ (0,∞), we have

fµ,σ
k (t) > 0,∀t ∈ (−∞,∞) and

∫ ∞

−∞
fµ,σ

k (t) dt = 1. (2.1)

If ξ ∼ Nk (µ, σ) , then we have

Eξ ,
∫ ∞

−∞
tfµ,σ

k (t) dt = µ. (2.2)

Formula (2.2) still holds for all k > 0.
Lemma 2.1 If ξ ∼ Nk (µ, σ) , then we have

Dξ , E(ξ − Eξ)2 =
k2k−1

Γ (3k−1)
Γ (k−1)

σ2





> σ2, 1 < k < 2,

= σ2, k = 2,

< σ2, 2 < k < ∞.

(2.3)

Proof It’s easy to obtain that

Dξ =
k2k−1

Γ (3k−1)
Γ (k−1)

σ2. (2.4)
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By the graph of the function ω(k) (depicted in Figure 3), we know that the func-
tion ω(k) = k−2kΓ(3k)

Γ(k)
is monotonically increasing. Hence the functionω∗(k) = ω

(
1
k

)
=

k2k−1
Γ(3k−1)

Γ(k−1)
is monotonically decreasing. Note that ω∗(2) = 1, we get

k2k−1
Γ (3k−1)

Γ (k−1)





> 1, 1 < k < 2,

= 1, k = 2,

< 1, 2 < k < ∞.

(2.5)

Using (2.4) and (2.5), we get our desired result (2.3).

Figure 3: The graph of the function ω(k), 0 < k < 1

According to the previous results, we find that k-normal distribution is a new distri-
bution similar to but different from the normal distribution and the generalized normal
distribution (see [5, 6]), it is also a natural generalization of the normal distribution, and it
can be used to fit a number of empirical distributions with different skewness and kurtosis
as well.

We remark here that k-normal distribution has similar but distinct form to the gener-
alized normal distribution in [6]. By Definition 2.1, we know that fµ,σ

2 (t) is the p.d.f. of
normal distribution N (µ, σ). But the p.d.f. for s = 2 (in [6]) is

1√
πσ

exp
{
−

(x− µ

σ

)2
}

,

which does not match with normal distribution. So, to a certain extent, k-normal distribution
is a better form of the generalized normal distribution.

3 Main Results

In this section, we will study the relationship among the variances of truncated variables.
The main result of the paper is as follows.

Theorem 3.1 Let the p.d.f. f : I → (0,∞) of the random variable ξI be differentiable,
and let DξI∗ , DξI∗ , DξI be the variances of the truncated variables ξI∗ , ξI∗ , ξI , respectively.
If

(i) f : I → (0,∞) is a logarithmic concave function;
(ii) ξI∗ ⊂ ξI , ξI∗ ⊂ ξ, I∗ ⊂ I∗,
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then we have the inequalities
DξI∗ < DξI∗ < DξI . (3.1)

Before prove Theorem 3.1, we first establish the following three lemmas.
Lemma 3.1 Let ξI ∈ I be a continuous random variable, and let its p.d.f. be f : I →

(0,∞) . If ξI∗ ⊆ ξI , ξI∗ ⊆ ξI , I∗ ⊆ I∗, then we have

ξI∗ ⊆ ξI∗ ; (3.2)

if ξI∗ ⊆ ξI , ξI∗ ⊆ ξI , I∗ ⊂ I∗, then we have

ξI∗ ⊂ ξI∗ . (3.3)

Proof By virtue of the hypotheses, we get

fξI∗ : I∗ → (0,∞) , fξI∗ (t) , f (t)∫

I∗

f

and fξI∗ : I∗ → (0,∞) , fξI∗ (t) , f (t)∫

I∗
f

,

thus

fξI∗ (t) =
f (t)

/∫

I∗
f

∫

I∗

(
f

/∫

I∗
f

) =
fξ

I* (t)∫

I∗

fξ
I*

.

It follows therefore from the above facts and Definition 1.1 that we have

I∗ ⊆ I∗ ⇒ ξI∗ ⊆ ξI∗ and I∗ ⊂ I∗ ⇒ ξI∗ ⊂ ξI∗ .

Lemma 3.2 Let the function f : I → (0,∞) be differentiable. If f is a logarithmic
concave function, then we have

f (v)− f ′ (v)
f (v)

∫ v

u

f (t) dt > 0,∀ (u, v) ∈ I2. (3.4)

Proof We define an auxiliary function F of the variables u and v as

F : I2 → (−∞,∞) by F (u, v) , f (v)− [log f (v)]′
∫ v

u

f (t) dt.

If v = u, then we have F (u, v) = f (u)− [log f (u)]′
∫ u

u

f (t) dt = f (u) > 0.

By Cauchy mean value theorem, there exists a real number θ ∈ (0, 1) for u 6= v such
that

f (v)− f (u)∫ v

u

f (t) dt

=
f ′ [u + θ (v − u)]
f [u + θ (v − u)]

= {log f [u + θ (v − u)]}′. (3.5)

If u < v, then we have
u < u + θ (v − u) < v. (3.6)
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Combining (3.5) and (3.6), we obtain

F (u, v)− f (u)∫ v

u

f (t) dt

= {log f [u + θ (v − u)]}′ − [log f (v)]′ > 0.

So F (u, v) > f (u) > 0. This proves inequality (3.4) for u < v.
If u > v, then we have

v < u + θ (v − u) < u. (3.7)

Combining (3.5) and (3.7), we obtain

F (u, v)− f (u)∫ v

u

f (t) dt

= {log f [u + θ (v − u)]}′ − [log f (v)]′ 6 0.

Since
∫ v

u

f (t) dt < 0, we have F (u, v) > f (u) > 0. So inequality (3.4) is also holds for the

last case.
Lemma 3.3 Let the function f : I → (0,∞) be differentiable. If f is a logarithmic

concave function, then the function

G : I2 → [0,∞) , G (u, v) ,





∫ v

u

t2f
∫ v

u

f

−




∫ v

u

tf
∫ v

u

f




2

, u 6= v,

0, u = v

satisfies the following inequalities

∂G (u, v)
∂v

{
> 0, ∀ (u, v) ∈ I2, u < v,

< 0, ∀ (u, v) ∈ I2, u > v.
(3.8)

Proof For the convenience of notation, two real numbers with same sign α and β will
be written as α ∼ β.

By the definition, we know that

c > 0, α ∈ (−∞,∞) ⇒ cα ∼ α. (3.9)

The power mean inequality asserts (see [10]) that




∫ v

u

|g|γf

∫ v

u

f




1
γ

>

∫ v

u

|g| f
∫ v

u

f

>

∣∣∣∣∣∣∣∣

∫ v

u

gf

∫ v

u

f

∣∣∣∣∣∣∣∣
, ∀γ > 1,

then we are easy to get

G (u, v) = G (v, u) > 0,∀ (u, v) ∈ I2. (3.10)
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We first prove the case of u < v,

∂G

∂v
=

f (v)(∫ v

u

f

)2


v2

∫ v

u

f −
∫ v

u

t2f − 2
∫ v

u

tf


v −

∫ v

u

tf

∫ v

u

f







∼ v2

∫ v

u

f −
∫ v

u

t2f − 2
∫ v

u

tf


v −

∫ v

u

tf

∫ v

u

f


 ,

i.e.,
∂G

∂v
∼H (u, v) , (3.11)

where

H (u, v) , v2

∫ v

u

f −
∫ v

u

t2f − 2
∫ v

u

tf


v −

∫ v

u

tf

∫ v

u

f


 . (3.12)

It follows from (3.9) and (3.12) that

∂H

∂v
∼ v

∫ v

u

f−v2f (v)−
[∫ v

u

f − 2vf (v)
]

∫ v

u

tf

∫ v

u

f

− f (v)




∫ v

u

tf

∫ v

u

f




2

,

i.e.,

∂H

∂v
∼ H∗ (u, v, w) , v

∫ v

u

f−v2f (v)−
[∫ v

u

f − 2vf (v)
]

w − f (v)w2, (3.13)

where

u =

∫ v

u

uf

∫ v

u

f

< w =

∫ v

u

tf

∫ v

u

f

<

∫ v

u

vf

∫ v

u

f

= v. (3.14)

Since

H∗ (u, v, v) = v

∫ v

u

f−v2f (v)−
[∫ v

u

f − 2vf (v)
]

v − f (v) v2 = 0, (3.15)

so by (3.9) and (3.15), we have

H∗ (u, v, w) ∼
∫ v

u

f − 2vf (v) + f (v) (v + w) .

Hence
∂H

∂v
∼ H∗ (u, v, w) ∼ H∗ (u, v) , (3.16)
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where

H∗ (u, v) ,
∫ v

u

f − vf (v) + f (v)

∫ v

u

tf

∫ v

u

f

. (3.17)

Combining (3.9), (3.14), (3.17), v > u with Lemma 3.2, we can do the straight calculation
as follows

∂H∗

∂v
=

f (v)∫ v

u

f


v −

∫ v

u

tf

∫ v

u

f




[
f (v)− f ′ (v)

f (v)

∫ v

u

f

]

∼ f (v)− f ′ (v)
f (v)

∫ v

u

f > 0.

By (3.17) and v > u, we get

H∗ (u, v) > H∗ (u, u) = lim
v→u




∫ v

u

f − vf (v) + f (v)

∫ v

u

tf

∫ v

u

f


 = 0. (3.18)

By (3.16) and (3.18), we get
∂H

∂v
> 0. (3.19)

By (3.19) and v > u, we get

H (u, v) = v2

∫ v

u

f −
∫ v

u

t2f − 2
∫ v

u

tf


v −

∫ v

u

tf

∫ v

u

f


 > H (u, u) = 0. (3.20)

From (3.11) and (3.20), for the case of v > u, result (3.8) of Lemma 3.3 follows immediately.
Next, we prove the case of u > v. Based on the above analysis, we obtain the following

relations

∂G

∂v
∼H (u, v) ;

v < w < u ⇒ ∂H

∂v
∼ H∗ (u, v, w) ∼ −H∗ (u, v) ;

v < w < u ⇒ ∂H∗

∂v
∼ f (v)− f ′ (v)

f (v)

∫ v

u

f > 0 ⇒ H∗ (u, v) < 0;

H∗ (u, v) < 0 ⇒ ∂H

∂v
> 0 ⇒ H (u, v) < 0;

∂G

∂v
∼H (u, v) < 0 ⇒ ∂G

∂v
< 0.

Thus inequalities (3.8) still hold for u > v. This completes our proof.
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Now we turn our attention to the proof of Theorem 3.1.
Proof Without loss of generality, we can assume that

I∗ = [a, b] , I = [α, β] ,−∞ 6 α 6 a < b 6 β 6 ∞.

Note that
I∗ ⊂ I ⇒ α 6 a < b < β or α < a < b 6 β.

If α 6 a < b < β, so according to (1.2), (3.10) and Lemma 3.3, we get

DξI∗ = G (a, b) < G (a, β) = G (β, a) 6 G (β, α) = G (α, β) = DξI ,

hence
DξI∗ < DξI . (3.21)

If α < a < b 6 β, so, according to (1.2), (3.10) and Lemma 3.3, we get

DξI∗ = G (a, b) 6 G (a, β) = G (β, a) < G (β, α) = G (α, β) = DξI .

That is to say, inequality (3.21) still holds.
By Lemma 3.1, we have ξI∗ ⊂ ξI , ξI∗ ⊂ ξI , I∗ ⊂ I∗ ⇒ ξI∗ ⊂ ξI∗ . Using inequality (3.21)

for ξI∗ , ξI∗ , we can obtain
DξI∗ < DξI∗ . (3.22)

Combining inequalities (3.21) and (3.22), we get inequalities (3.1).
This completes the proof of Theorem 3.1.
From Theorem 3.1 we know that if the probability density function of the random

variable ξI is differentiable and log concave, and ξI∗ is the proper truncated variables of the
random variable ξI∗ , the variance of ξI∗ is less than the variance of ξI∗ . This result is of
great significance in the hierarchical teaching model, see the next theorem.

For the convenience of use, Theorem 3.1 can be slightly generalized as follows.
Theorem 3.2 Let ϕ : I → (−∞,∞) and f : I → (0,∞) be differentiable functions,

where f be the p.d.f. of the random variable ξI , and let Dϕ (ξI∗) , Dϕ (ξI∗) with Dϕ (ξI) be
the variances of the truncated variables ϕ (ξI∗) , ϕ (ξI∗) with ϕ (ξI) , respectively. If

(i) ϕ′ (t) > 0,∀t ∈ I;
(ii) the function (f ◦ ϕ−1) (ϕ−1)′ : ϕ (I) → (0,∞) is log concave;
(iii) ξI∗ ⊂ ξI , ξI∗ ⊂ ξI , I∗ ⊂ I∗,

then we have the following inequalities

Dϕ (ξI∗) < Dϕ (ξI∗) < Dϕ (ξI) . (3.23)

Proof Set ξ = ϕ (ξ) , f = (f ◦ ϕ−1) (ϕ−1)′. By condition (i), we can see that ξ =
ϕ−1

(
ξ
)
, f = (f ◦ ϕ−1) (ϕ−1)′ > 0 and

∫

ϕ(I)

f =
∫

ϕ(I)

(
f ◦ ϕ−1

)
(t)

[
ϕ−1 (t)

]′
dt =

∫

ϕ(I)

f
[
ϕ−1 (t)

]
dϕ−1 (t) =

∫

I

f = 1.
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Thus f : ϕ (I) → (0,∞) is a p.d.f. of the random variable ξ.
By condition (ii), we can see that f is a logarithmic concave function. Combining

conditions (i) and (iii) with Lemma 3.1, we have

I∗ ⊂ I∗ ⊂ I ⇒ ϕ (I∗) ⊂ ϕ (I∗) ⊂ ϕ (I) ⇒ ξϕ(I∗) ⊂ ξϕ(I∗) ⊂ ξϕ(I).

We can deduce from Theorem 3.1 that the following is true

Dξϕ(I∗) = Dϕ (ξI∗) < Dξϕ(I∗) = Dϕ (ξI∗) < Dξϕ(I) = Dϕ (ξI) .

Thus inequalities (3.23) is valid.

4 Applications

In the hierarchical teaching model, the math score of the students of some grade in
a university is a random variable ξI , where I = [0, 100), ξI ⊂ ξ, ξ ∈ (−∞,∞). By using
the central limit theorem (see [8]), we know that ξ follows a normal distribution, that is,
ξ ∼ N2 (µ, σ) . If, in the grade, the top students and poor students are few, that is to say,
the variance Dξ of the random variable ξ is small, according to Figure 1 and Figure 2 with
Lemma 2.1, we believe that there is a real number k ∈ [2,∞) such that ξ ∼ Nk (µ, σ) .

Otherwise, there is a real number k ∈ (1, 2) such that ξ ∼ Nk (µ, σ) . Then the k，σ of
Nk(µ, σ) can be determined according to [5].

We have collected three real data sets X1, X2 and X3, which are all math test score
of the students from the unhierarchical, the first level (superior) and the second level (poor)
classes, containing 263, 149 and 145 records, respectively. For further analyzing the data,
we first estimate parameters k，µ，σ of Nk(µ, σ), then draw probability density function
of Nk(µ, σ) and frequency histogram of the corresponding data set in the same coordinate
system, which also contains the probability density function curve graph of normal distri-
bution. After that, we obtain three graphs for X1, X2 and X3, respectively (see Figure 4,
Figure 5 and Figure 6 in Appendix B). These three figures show that k-normal distribution
is superior to normal distribution since kurtosis is bigger and variance is smaller.

Further more, as shown in the histograms, the variance of X1, X2 and X3 is decreasing.
By observing the proportion of scores less than 60 of X1, X2 and X3, we find that the
hierarchical teaching model bring better results, and that the second category (represented
by X3) classes receive more significant benefits from this teaching model.

According to Theorem 3.1 and Lemma 2.1, we have

Theorem 4.1 In the hierarchical teaching model, if ξ ∼ Nk (µ, σ) , where k > 1,

then for all i, n : 1 6 i 6 n− 1, n > 3, we have

DξI∗ < DξI∗ < DξI < Dξ =
k2k−1

Γ (3k−1)
Γ (k−1)

σ2, (4.1)

where
I∗ = [ai, ai+1) or [ai+1, ai+2) , I∗ = [ai, ai+2) , I = [0, 100).
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We accomplish simulation analysis about Theorem 3.1. The procedure of simulation
design is shown in Appendix A. The results of the simulation are listed in the tables (see
Tables 1–4 in Appendix A). By comparing the data in these tables, we find that, no matter
how to change the parameters k，µ or σ, the variance of truncated variable is strictly less
than that of untruncated variable. For example, for any k, µ or σ as shown in Tables 1–4,

Dξ[0,60) < Dξ[0,80) < Dξ(−∞,∞), Dξ[60,80) < Dξ[60,100) < Dξ(−∞,∞),

this does verify the truth of Theorem 3.
From Tables 1 and 3, we see that for each σ and I ⊂ (−∞,∞), if

ξ1 ∼ N3(µ, σ), ξ2 ∼ N2(µ, σ), ξ3 ∼ N1.5(µ, σ),

then Dξ1I < Dξ2I < Dξ3I . From Tables 2 and 4, for each µ and I ⊂ (−∞,∞), if

η1 ∼ N3(µ, σ), η2 ∼ N2(µ, σ), η3 ∼ N1.5(µ, σ),

then Dη1I < Dη2I < Dη3I . The truth of Theorem 3.1 is verified.
Actually in appendix, the data set X1 is the math test score of unhierarchical students,

X2 and X3 are math test score of hierarchical students. We have figured out their variances

D(X1) = 254.2813, D(X2) = 172.8042, D(X3) = 161.0640.

The facts D(X3) < D(X1) and D(X2) < D(X1), just show that the hierarchical teaching
is more efficiency than unhierarchical teaching.
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摘要: 近本文研究了截断随机变量和k-正态分布. 利用对数凹函数理论, 获得了涉及截断随机变量和

截断随机变量的函数的方差的不等式链, 推广了涉及正态分布和分层教学模型的一些经典结论. 同时在附录

部分给出了仿真结果.
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Appendix

A The Simulation and Comparison of Variances of Truncated k-Normal Variable

The procedure of simulation design is as follows
Step 1 Choose the appropriate parameter k, µ and σ in the distribution Nk(µ, σ);
Step 2 Generate 200 random numbers obeying the distribution ξ ∼ Nk(µ, σ);
Step 3 Use the 200 numbers to calculate the variance for six truncated k-normal

variables ξ(−∞,∞), ξ[0,60), ξ[60,80), ξ[80,100), ξ[0,80) and ξ[60,100);
Step 4 Repeat Step 1 and Step 2 for 50 times;
Step 5 Calculate the mean of 50 variances for each truncated k-normal variable，denoted

by Dξ(−∞,∞), Dξ[0,60), Dξ[60,80), Dξ[80,100), Dξ[0,80) and Dξ[60,100) respectively ;
Step 6 Change the value of k, µ and σ, and repeat Step 1, Step 2, Step 3, Step 4. All the

results are listed in Tables 1–4 (NaN indicates there is no random number for corresponding
truncated variable).

Table 1: k = 3, σ=10
HHHHHHµ

var
Dξ(−∞,+∞) Dξ[0,60) Dξ[60,80) Dξ[80,100) Dξ[0,80) Dξ[60,100)

70 76.5217 9.5024 27.1810 8.6149 50.9796 50.5629
75 76.9029 5.0242 26.6868 16.2052 38.6029 63.2846
80 77.2020 NaN 23.6349 24.2553 26.4003 71.7841
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Table 2: k = 3, µ=75
HHHHHHσ

var
Dξ(−∞,+∞) Dξ[0,60) Dξ[60,80) Dξ[80,100) Dξ[0,80) Dξ[60,100)

6 27.2043 NaN 16.9083 4.1962 17.0017 27.1108
8 49.64 NaN 24.20 9.14 27.05 46.5981
13 130.55 13.16 29.18 27.78 60.37 87.9405

Table 3: k = 1.5, σ=10
HHHHHHµ

var
Dξ(−∞,+∞) Dξ[0,60) Dξ[60,80) Dξ[80,100) Dξ[0,80) Dξ[60,100)

70 127.6834 38.651 27.5998 23.7547 75.811 68.07633
75 126.641 32.5665 27.0468 24.73 63.3965 74.69793
80 125.2832 24.7078 26.1625 25.9007 50.8872 77.04843

Table 4: k = 1.5, µ=75
HHHHHHσ

var
Dξ(−∞,+∞) Dξ[0,60) Dξ[60,80) Dξ[80,100) Dξ[0,80) Dξ[60,100)

6 44.7223 NaN 20.4474 12.8553 25.2661 39.75123
8 83.019 20.067 24.9876 20.8246 42.5282 59.61493
13 209.1055 61.4701 28.6449 27.5559 101.9277 89.09083

B Curve Fitting for Three Real Data Sets X1, X2 and X3

The results of curve fitting for three real data sets are as follows (see Figure 4–6)

Figure 4: Fitting X1 Figure 5: Fitting X2

Figure 6: Fitting X3


