
Vol. 37 ( 2017 )
No. 4

数 学 杂 志
J. of Math. (PRC)

GLOBAL BOUNDEDNESS OF SOLUTIONS IN A

BEDDINGTON-DEANGELIS PREDATOR-PREY

DIFFUSION MODEL WITH PREY-TAXIS

MA Wen-jun1, SUN Liang-liang2

(1.Longqiao College, Lanzhou University of Finance and Economics, Lanzhou 730101, China)
(2.School of Mathematics and Statistics, Lanzhou University, Lanzhou 730030, China)

Abstract: In this paper, we study a Beddington-DeAngelis predator-prey diffusion model

with prey taxis, where the prey-taxis describes a direct movement of the predator in response to

a variation of the prey. We prove that the global classical solutions are globally bounded by the

Lp − Lq estimates for the Neumann heat semigroup and Lp estimates with Moser’s iteration of

parabolic equations.
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1 Introduction

In recent years, more and more attention were given to the reaction-diffusion system
of a predator-prey model with prey-taxis. For example, for the existence and uniqueness of
weak solutions [1, 11], the global existence and uniqueness of classical solutions [2, 17, 18],
pattern formation induced by the prey-taxis [12], global bifurcation for the predator-prey
model with prey-taxis [13], boundedness or blow up in a chemotaxis system [14–16].

In this paper, we study the following reaction-diffusion system of a predator-prey model
with Beddington-DeAngelis functional response and prey-taxis





ut − d1∆u +∇(uχ(u)∇v) = −nu− hu2 + e muv
au+bv+c

, x ∈ Ω, t > 0,

vt − d2∆v = rv(1− v
K

)− muv
au+bv+c

, x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1.1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, initial data u0(x), v0(x) ∈
C2+α(Ω̄) compatible on ∂Ω, and ν is the normal outer vector on ∂Ω, u and v represent
the densities of the predator and prey, respectively, d1, d2, n, h, e,m, a, b, c, r,K are positive
constants that stand for diffusion coefficients, death rate of u, intra-specific competition of u,
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conversion rate, consumption rate, predator interference, prey saturation constant, another
saturation constant, intrinsic growth and carrying capacity of v, respectively.

The Beddington-DeAngelis model (1.1) is similar to the well known Holling type II
model with an extra term au in the denominator which models the mutual interference
among predators. In 2008, Ainseba et al. [1] proposed a Holling type II model with prey-
taxis and established the existence of weak solution by Schauder fixed point theorem and the
uniqueness via duality technique. In 2010, Tao [2] gave the global existence and uniqueness
of classical solution to Ainseba’s model by contraction mapping principle together with Lp

estimates and Schauder estimates of parabolic equations. In 2015, He and Zheng [3] proved
further more that the global classical solution is globally bounded.

There were also many works published for model (1.1). For the ODE system corre-
sponding to (1.1), Cantrell and Cosner [4] presented some qualitative analysis of solutions
from the view point of permanence and the existence of a global asymptotic stable positive
equilibrium; Hwang [5] demonstrated that the local asymptotic stability of the positive equi-
librium implies its global asymptotic stability. Chen and Wang [6] presented the qualitative
analysis of system (1.1) from the view point of local asymptotic stability of the positive
constant steady state and the existence and nonexistence of a nonconstant positive steady
state. Haque [7] investigated the the influence of intra-specific competition among predators
in the original Beddington-DeAngelis predator-prey model and offered a detailed mathemat-
ical analysis of the model. Yan and Zhang [8] studied model (1.1) without prey-taxis and
obtained that the diffusion can destabilize the positive constant steady state of the system.

However, the emergency of the prey-taxis makes it more difficult to deal with the original
problems. It is known that the global existence and bounedeness of solutions in (1.1) without
prey-taxis can be easily obtained by using energy estimates and bootstrap arguments. In
this paper, however, we will prove that the global classical solutions of (1.1) are moreover
globally bounded by using the Lp − Lq estimates for the Neumann heat semigroup and Lp

estimates with Moser’s iteration of parabolic equations.
Throughout this paper, we assume that χ(u) ∈ C1([0,+∞)), χ(u) ≡ 0 for u > um, and

χ′(u) is Lipschitz continuous, i.e., |χ′(u1) − χ′(u2)| ≤ L|u1 − u2| for any u1, u2 ∈ [0,+∞),
where um and L are two positive constants. The assumption of χ is a regularity requirement
for our qualitative analysis, and the assumption that χ(u) ≡ 0 for u > um has a clear
biological interpretation [1]. Our main result is stated as follows.

Theorem 1 Under the assumptions for χ and initial data described above, the unique
nonnegative classical solution of (1.1) is globally bounded.

The paper is organized as follows. We introduce some known results as preliminaries in
Section 2. In Section 3, we give the proof of Theorem 1.

2 Preliminaries

First we introduce the well-known classical Lp − Lq estimates for the Neumann heat
semigroup on bounded domains.
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Lemma 1 (see Lemma 1.3 in [9]) Suppose (et∆)t>0 is the Neumann heat semigroup in
Ω, and let λ1 denote the first nonzero eigenvalue of −∆ in Ω under Neumann boundary
conditions. Then there exist C1, C2 > 0 only depending on Ω such that the following
estimates hold

(i) If 1 ≤ q ≤ p ≤ +∞, then

‖∇et∆ω‖Lp(Ω) ≤ C1(1 + t−
1
2−N

2 ( 1
q− 1

p ))e−λ1t‖ω‖Lq(Ω), t > 0

for all ω ∈ Lq(Ω);
(ii) If 2 ≤ q ≤ p ≤ +∞, then

‖∇et∆ω‖Lp(Ω) ≤ C2(1 + t−
N
2 ( 1

q− 1
p ))e−λ1t‖∇ω‖Lq(Ω), t > 0

for all ω ∈ W 1,q(Ω).
One can obtain the boundedness of v based on the comparison principle of ODEs.
Lemma 2 Let (u, v) be a solution of (1.1). Then u ≥ 0 and 0 ≤ v ≤ K1 =

max{K, maxΩ̄ v0(x)}.

3 Proof of Theorem 1

In this section, we give proof of Theorem 1, which is motivated by Tao and Winkler
[10].

Proof of Theorem 1
Step 1 Boundedness of ‖u‖L1(Ω).
Integrating the sum of the first equation and e times of the second equation in (1.1) on

Ω by parts, we have

d

dt

∫

Ω

u +
d

dt

∫

Ω

ev = −n

∫

Ω

u− h

∫

Ω

u2 + re

∫

Ω

v − re

K

∫

Ω

v2

≤ −(n + h)
∫

Ω

u− r

∫

Ω

ev +
(

reK +
h

4

)
|Ω|,

(3.1)

where we use that
∫

Ω

v ≤ 1
2K

∫

Ω

v2 +
K

2
|Ω| and −

∫

Ω

u2 ≤ −
∫

Ω

u +
|Ω|
4

. Define y(t) =
∫

Ω

u+
∫

Ω

ev for t > 0. Then y′(t)+C3y(t) ≤ C4 for all t > 0 by (3.1) with C3 = min{n+h, r}
and C4 = (reK + h

4
)|Ω|. This yields y(t) ≤ C5 = y(0) + C4

C3
for all t > 0 by the Gronwall

inequality.
Step 2 Boundedness of ‖u‖Lp(Ω) with p ≥ 2.
Multiplying the first equation of (1.1) by up−1 and integrate on Ω by parts, combining

Lemma 2.2, we have

1
p

d

dt

∫

Ω

up + d1(p− 1)
∫

Ω

up−2|∇u|2

= −n

∫

Ω

up + em

∫

Ω

upv

au + bv + c
− h

∫

Ω

up+1 + (p− 1)
∫

Ω

χ(u)up−1∇u · ∇v

≤
(

emK1

bK1 + c
− n

)∫

Ω

up +
d1(p− 1)

2

∫

Ω

up−2|∇u|2 +
p− 1
2d1

∫

Ω

χ(u)2up|∇v|2.
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Together with χ(u) ≤ M due to χ ∈ C1 and χ ≡ 0 for u ≥ um. This yields

1
p

d

dt

∫

Ω

up +
d1(p− 1)

2

∫

Ω

up−2|∇u|2 ≤ (
emK1

bK1 + c
− n)

∫

Ω

up +
(p− 1)M2up

m

2d1

∫

Ω

|∇v|2. (3.2)

Multiply the second equation of (1.1) by −∆v, and integrate on Ω by parts to get

d

dt

∫

Ω

|∇v|2 + 2d2

∫

Ω

|∆v|2 = 2r

∫

Ω

|∇v|2 − 4r

K

∫

Ω

v|∇v|2 + 2m

∫

Ω

uv

au + bv + c
∆v

≤ 2r

∫

Ω

|∇v|2 +
2mK1

bK1 + c

∫

Ω

u|∆v|

≤ 2r

∫

Ω

|∇v|2 +
ε

2

∫

Ω

|∆v|2 +
2m2K2

1

ε(bK1 + c)2

∫

Ω

u2

by the Young inequality. Choosing ε = 2d2, we have

d

dt

∫

Ω

|∇v|2 + d2

∫

Ω

|∆v|2 ≤ 2r

∫

Ω

|∇v|2 +
m2K2

1

d2(bK1 + c)2

∫

Ω

u2. (3.3)

Noting d1(p−1)
2

∫

Ω

up−2|∇u|2 =
2d1(p− 1)

p2

∫

Ω

|∇u
p
2 |2, p > 2. From (3.2) and (3.3), combining

Young’s inequality, we obtain

1
p

d

dt

∫

Ω

up +
d

dt

∫

Ω

|∇v|2 +
2d1(p− 1)

p2

∫

Ω

|∇u
p
2 |2 + d2

∫

Ω

|∆v|2

≤
(

emK1

bK1 + c
+ ε1 − n

)∫

Ω

up +
(

2r +
(p− 1)M2up

m

2d1

)∫

Ω

|∇v|2 + C6 (3.4)

with C6 > 0 depending on ε1. By the Sobolev interpolation inequality and Lemma 2.2, we
have for any ε2 > 0 that

∫

Ω

|∇v|2 ≤ ε2

∫

Ω

|∆v|2 + C7

∫

Ω

|v|2 ≤ ε2

∫

Ω

|∆v|2 + C8, (3.5)

where C7, C8 > 0 depending on ε2. Applying the Gagliardo-Nirenberg inequality yields
∫

Ω

up =
∫

Ω

|u p
2 |2 ≤ C9‖∇u

p
2 ‖2θ

2 ‖u
p
2 ‖2(1−θ)

2
p

+ C9‖u
p
2 ‖2

2
p

with 0 < θ = Np−N
Np−N+2

< 1 and C9 > 0. By Young’s inequality,

∫

Ω

up ≤ ε3‖∇u
p
2 ‖2

2 + C10‖u
p
2 ‖2

2
p

= ε3‖∇u
p
2 ‖2

2 + C10‖u‖p
1

for any ε3 > 0, with C10 > 0 depending on ε3. By Step 1, we know ‖u‖1 ≤ C5. So

∫

Ω

up ≤ ε3‖∇u
p
2 ‖2

2 + C11 (3.6)
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with C11 > 0. Now fix ε2, ε3 such that (2r+ (p−1)M2up
m

2d1
)ε2 = d2

2
and ( emK1

bK1+c
+ε1)ε3 = 2d1(p−1)

p2 .
From (3.4)–(3.6), we have

1
p

d

dt

∫

Ω

up +
d

dt

∫

Ω

|∇v|2 ≤ −n

∫

Ω

up −
(

2r +
(p− 1)M2up

m

2d1

)∫

Ω

|∇v|2 + C12

with C12 > 0. Define z(t) = 1
p

∫

Ω

up +
∫

Ω

|∇v|2, t > 0. Then z′(t) ≤ −C13z(t) + C12

for all t > 0 with C13 = min{pn, 2r + (p−1)M2up
m

2d1
}. By the Gronwall inequality, we have

z(t) ≤ C14 = z(0) + C12
C13

for all t > 0.
Step 3 Boundedness of ‖∇v‖Lp(Ω) with p ≥ 2.
Define f(u, v) = rv(1 − v

K
) − muv

au+bv+c
. From Lemma 2.2 and Step 2, there exists a

constant C15 such that sup
t>0

‖f‖Lp(Ω) ≤ C15 < +∞. The variation of constants formula for v

yields

v(·, t) = ed2t∆v0 +
∫ t

0

ed2(t−s)∆f(u(s), v(s))ds, t > 0.

By Lemma 2.1, we conclude that

‖∇v‖Lp(Ω) ≤ ‖∇ed2t∆v0‖Lp(Ω) +
∫ t

0

‖∇ed2(t−s)∆f(u(s), v(s))‖Lp(Ω)ds

≤ 2C2e
−λ1t‖∇v0‖Lp(Ω) + C1

∫ t

0

(1 + d
− 1

2
2 (t− s)−

1
2 )e−λ1d2(t−s)‖f(s)‖Lp(Ω)ds

≤ 2C2e
−λ1t‖∇v0‖Lp(Ω) + C1C15

∫ t

0

(1 + d
− 1

2
2 s−

1
2 )e−λ1d2sds

≤ 2C2‖∇v0‖Lp(Ω) + C1C15

(
1

λ1d2

+ d
− 1

2
2 (2 +

1
λ1d2

)
)

for all t > 0.

Step 4 Global boundedness.
On the basis of Steps 2 and 3, using Lemma A.1 in [10], we can obtain the global

boundedness of solutions to (1.1) by the standard Moser iterative technique.
Remark we used the assumption that χ′(u) is Lipschitz continuous, which is a neces-

sary condition for existence of the global solutions (see [2]).
On the other hand, the intra-specific competition term hu2 makes our estimates easier,

which is a “good” term. This also coincides with Haque’s [7] result that competition among
the predator population is beneficial for both populations co-existence.
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一类带食饵趋向的 Beddington-DeAngelis 捕食者-食饵扩散模型

整体解的有界性

马文君1,孙亮亮2

(1.兰州财经大学陇桥学院, 甘肃兰州 730101)

(2.兰州大学数学与统计学院, 甘肃兰州 730030)

摘要: 本文研究一类带食饵趋向的 Beddington-DeAngelis捕食者-食饵扩散模型, 其中食饵趋向性描

述的是捕食者对食饵数量变化而产生的一种正向迁移. 利用 Neumann热半群的 Lp − Lq 估计和带抛物型方

程Moser迭代的 Lp 估计, 获得了该模型经典解的整体有界性.
关键词: 捕食者-食饵; 扩散; 食饵趋向; 经典解; 整体有界性
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