FINITE GROUPS WHOSE ALL MAXIMAL SUBGROUPS ARE SMSN－GROUPS

GUO Peng－fei ${ }^{1,2}$
（1．School of Mathematics and Statistics，Hainan Normal University，Haikou 571158，China）
（2．School of Mathematics and Information Engneering，Lianyungang Normal College， Lianyungang 222006，China）

Abstract

A finite group G is called an SMSN－group if its 2－maximal subgroups are sub－ normal in G ．In this paper，the author investigates the structure of finite groups which are not SMSN－groups but all their proper subgroups are SMSN－groups．Using the idea of local analysis，a complete classification of this kind of groups is given，which generalizes some results of the structure of finite groups．

Keywords：power automorphisms；nilpotent groups；minimal non－nilpotent groups；mini－ mal non－SMSN－groups

2010 MR Subject Classification：20D10；20E34
Document code：A Article ID：0255－7797（2017）04－0714－09

1 Introduction

All groups in this paper are finite and our notation is standard（see［1］）．Let Σ be an abstract group theoretical property，for example，nilpotency，supersolvability，solvability， etc．If all proper subgroups of a group G have the property Σ but G does not have the property Σ ，then G is called a minimal non－Σ－group．

One of the hottest topics in group theory is to determinate the structure of minimal non－Σ－groups and many meaningful results about this topic were obtained．The specific papers about this topic can refer to［2－10］．

The aim of this paper is to study the structure of a kind of minimal non－Σ－groups．We call the groups whose 2－maximal subgroups are subnormal SMSN－groups．A group G is a minimal non－SMSN－group if every proper subgroup of G is an SMSN－group but G itself is not，and we classify the minimal non－SMSN－groups completely．

[^0]
2 Preliminaries

In this section, we give some definitions and some lemmas needed in this paper.
Lemma 2.1 (see [5, Lemma 5]) Every 2-maximal subgroup of a group G is subnormal if and only if either G is nilpotent or G is a Schmidt group with abelian Sylow subgroups.

Lemma 2.2 If G is a solvable minimal non-SMSN-group, then $|\pi(G)| \leq 3$.
Proof If $|\pi(G)| \geq 4$, then every maximal subgroup of G has at least three prime divisors since G is solvable. Applying Lemma 2.1, G is minimal non-nilpotent, a contradiction. Hence $|\pi(G)| \leq 3$.

Lemma 2.3 (see [10]) Any minimal simple group (non-abelian simple group all of whose proper subgroups are solvable) is isomorphic to one of the following simple groups
(1) $\operatorname{PSL}(3,3)$;
(2) $\operatorname{PSL}(2, p)$, where p is a prime with $p>3$ and $5 \nmid p^{2}-1$;
(3) $\operatorname{PSL}\left(2,2^{q}\right)$, where q is a prime;
(4) $\operatorname{PSL}\left(2,3^{q}\right)$, where q is an odd prime;
(5) The Suzuki group $\mathrm{Sz}\left(2^{q}\right)$, where q is an odd prime.

Lemma 2.4 (see [11]) Suppose that p^{\prime}-group H acts on a p-group G. Let

$$
\Omega(G)= \begin{cases}\Omega_{1}(G), & p>2 \\ \Omega_{2}(G), & p=2\end{cases}
$$

If H acts trivially on $\Omega(G)$, then H acts trivially on G as well.
Lemma 2.5 (see [7, Lemma 2.9]) If a p-group G of order p^{n+1} has a unique non-cyclic maximal subgroup, then G is isomorphic to one of the following groups
(I) $C_{p^{n}} \times C_{p}=\left\langle a, b \mid a^{p^{n}}=b^{p}=1,[a, b]=1\right\rangle$, where $n \geq 2$;
(II) $M_{p^{n+1}}=\left\langle a, b \mid a^{p^{n}}=b^{p}=1, b^{-1} a b=a^{1+p^{n-1}}\right\rangle$, where $n \geq 2$ and $n \geq 3$ if $p=2$.

Lemma 2.6 (see [12]) Let G be a group and H a nilpotent subnormal subgroup of G. Then G contains a nilpotent normal subgroup of G containing H.

3 Main Results

In this section, we give the specific classification of the minimal non-SMSN-groups.
Theorem 3.1 A non-solvable group G is a minimal non-SMSN-group if and only if G is isomorphic to A_{5}, where A_{5} is the alternating group of degree 5 .

Proof We only prove the necessity part.
Since G is a non-solvable group whose maximal subgroups are all SMSN-groups, then G is a minimal non-solvable group by Lemma 2.1, and so $G / \Phi(G)$ is a minimal simple group.

Case 1 Assume $\Phi(G)=1$. Then G is isomorphic to one of the simple groups mentioned in Lemma 2.3.

Let $G \cong \operatorname{PSL}(3,3)$. Then G has a subgroup which is isomorphic to S_{4} by [13, p.13], but S_{4} is not an SMSN-group, a contradiction. So $G \nsupseteq \operatorname{PSL}(3,3)$.

Let $G \cong \operatorname{PSL}(2, p)$, where p is a prime with $p>3$ and $5 \nmid p^{2}-1$. If $p \geq 13$, then there exists a maximal subgroup of G which is isomorphic to a dihedral group D_{p-1} or D_{p+1} by [14, Corollary 2.2]. Certainly, 4 divides the order of either D_{p-1} or D_{p+1}, say A, and A is not an SMSN-group applying Lemma 2.1, a contradiction. If $p=7$, then $p^{2} \equiv 1(\bmod 16)$. By [14, Corollary 2.2], G has a subgroup which is isomorphic to S_{4}, but S_{4} is not an SMSN-group, a contradiction. Hence $p=5$ and $G \cong A_{5}$.

Let $G \cong \operatorname{PSL}\left(2,2^{q}\right)$. By [14, Corollary 2.2], G has maximal subgroups: the dihedral groups of order $2\left(2^{q} \pm 1\right)$; the Frobenius group H of order $2^{q}\left(2^{q}-1\right)$; the alternating group A_{4} of degree 4 when $q=2$. Clearly, $G \cong A_{5}$ when $q=2$ and it is a minimal non-SMSN-group. If $q>2$, then $3 \mid 2^{q}+1$. It follows from Lemma 2.1 that G is not a minimal non-SMSN-group.

Let $G \cong \operatorname{PSL}\left(2,3^{q}\right)$. Similar arguments as above, G has a dihedral group B whose Sylow 2-subgroups are neither cyclic nor normal, which contradicts the fact that B is an SMSN-group. So $G \not \equiv \operatorname{PSL}\left(2,3^{q}\right)$.

Let $G \cong \mathrm{Sz}\left(2^{q}\right)$. By [15, Theorem 9$], G$ has a Frobenius group K of order $4\left(2^{q} \pm 2^{\frac{q+1}{2}}+1\right)$, but the Sylow 2-subgroups of K are neither cyclic nor normal, a contradiction. So $G \nsupseteq$ $\mathrm{Sz}\left(2^{q}\right)$.

Case 2 Assume $\Phi(G) \neq 1$. It is easy to see that $\Phi(G / \Phi(G))=1$ and $G / \Phi(G)$ is a non-solvable minimal non-SMSN-group. Similar arguments as above and by induction, $G / \Phi(G) \cong A_{5}$. Hence G has two non-nilpotent maximal subgroups M_{1} and M_{2} such that $M_{1} / \Phi(G) \cong A_{4}$ and $M_{2} / \Phi(G) \cong D_{10}$, where A_{4} is the alternating group of degree 4 and D_{10} is the dihedral group of order 10. Since M_{1} and M_{2} are SMSN-groups, they are minimal non-nilpotent by Lemma 2.1. It makes $|G|=2^{a} \cdot 3 \cdot 5$ and $|\Phi(G)|=2^{a-2}$, where $a \geq 3$. By Lemma 2.1 again, the Sylow 2-subgroups of M_{1} are elementary abelian. At the same time, the Sylow 2 -subgroups of M_{2} are cyclic whose orders are more than 2 by Lemma 2.1, a contradiction.

Theorem 3.2 The minimal non-SMSN-group G whose order has exactly two prime divisors p and q is exactly one of the following types (P and Q are Sylow subgroups)
(1) $G=\left\langle x, y \mid x^{p}=y^{q^{n}}=1, y^{-1} x y=x^{i}\right\rangle$, where $i^{q} \not \equiv 1(\bmod p), i^{q^{2}} \equiv 1(\bmod p), p>q$, $n \geq 2$ and $0<i<p$;
(2) $G=\left\langle x, y \mid x^{p q}=y^{q}=1, y^{-1} x y=x^{i}\right\rangle$, where $p \equiv 1(\bmod q), i \equiv 1(\bmod q)$, $i^{q} \equiv 1(\bmod p)$ and $1<i<p ;$
(3) $G=\left\langle x, y \mid x^{4 p}=1, y^{2}=x^{2 p}, y^{-1} x y=x^{-1}\right\rangle$;
(4) $G=\left\langle x, y, z \mid x^{p}=y^{q^{n-1}}=z^{q}=1, y^{-1} x y=x^{i},[x, z]=1,[y, z]=1\right\rangle$ where $p>q$, $i \not \equiv 1(\bmod p), i^{q} \equiv 1(\bmod p)$ and $n \geq 3$;
(5) $G=\left\langle x, y, z \mid x^{p}=y^{q^{n-1}}=z^{q}=1, y^{-1} x y=x^{i},[x, z]=1, z^{-1} y z=y^{1+q^{n-2}}\right\rangle$, where $p>q, i \not \equiv 1(\bmod p), i^{q} \equiv 1(\bmod p), n \geq 3$ and $n \geq 4$ if $q=2$;
(6) $G=P \rtimes Q$, where $P=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times \cdots \times\left\langle a_{r}\right\rangle$ is an elementary abelian p-group with $r \geq 2, Q=\langle y\rangle$ with $|y|=q^{n}$ and $n \geq 2,\left\langle y^{q}\right\rangle$ acts irreducibly on P and $\left\langle y^{q^{2}}\right\rangle$ centralizes P;
(7) $G=P \rtimes Q$, where $P=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times \cdots \times\left\langle a_{r}\right\rangle$ is an elementary abelian p-group and
$r \geq 2, Q=\langle y\rangle$ with $|y|=q^{n}$ and $n \geq 1,\left[a_{1}, Q\right]=1, Q$ acts irreducibly on $\left\langle a_{2}\right\rangle \times \cdots \times\left\langle a_{r}\right\rangle$ and $\Phi(Q)$ centralizes P;
(8) $G=P \rtimes Q$, where $P=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times \cdots \times\left\langle a_{r}\right\rangle$ is an elementary abelian p-group with $r \geq 2, Q=\langle y\rangle$ with $|y|=q^{n}$ and $n \geq 1, Q$ acts irreducibly on $\left\langle a_{1}\right\rangle \times \cdots \times\left\langle a_{l-1}\right\rangle$ and $\left\langle a_{l}\right\rangle \times \cdots \times\left\langle a_{r}\right\rangle$ with $l \geq 2$, and $\Phi(Q)$ centralizes P;
(9) $G=P \rtimes Q$, where $P=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times \cdots \times\left\langle a_{r}\right\rangle(r \geq 2)$ is a p-group with $\left|a_{1}\right|=$ $\left|a_{2}\right|=\cdots=\left|a_{r}\right|=p^{2}, Q=\langle y\rangle$ with $|y|=q^{n}$ and $n \geq 1, Q$ acts irreducibly on $\Phi(P), \Phi(Q)$ centralizes P, and $G / \Phi(P)$ is a minimal non-abelian group;
(10) $G=P \rtimes Q$, where P is a non-abelian special p-group of rank $2 m$, the order of p modulo q being $2 m, Q=\langle y\rangle$ is cyclic of order $q^{r}>1, y$ induces an automorphism in P such that $P / \Phi(P)$ is a faithful and irreducible Q-module, and y centralizes $\Phi(P)$. Furthermore, $|P / \Phi(P)|=p^{2 m}$ and $\left|P^{\prime}\right| \leq p^{m} ;$
(11) $G=P \rtimes Q$, where P is a non-abelian special p-group with $\exp (P) \leq p^{2}$ and $|\Phi(P)| \geq p^{2}, Q=\langle y\rangle$ with $|y|=q^{n}$ and $n \geq 1, Q$ acts irreducibly on $\Phi(P), \Phi(Q)$ centralizes P, and $G / \Phi(P)$ is a minimal non-abelian group;
(12) $G=P \rtimes Q$, where $P=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times \cdots \times\left\langle a_{r}\right\rangle$ is an elementary abelian p-group with $r \geq 2, Q=\left\langle a, b \mid a^{q}=b^{q}=1,[a, b]=1\right\rangle,[P, b]=1,\langle a\rangle$ acts irreducibly on P;
(13) $G=P \rtimes Q$, where $P=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times \cdots \times\left\langle a_{r}\right\rangle$ is an elementary abelian p-group with $r \geq 2, Q=\left\langle a, b \mid a^{q}=b^{q}=1,[a, b]=1\right\rangle,\langle a\rangle$ and $\langle b\rangle$ act irreducibly on P;
(14) $G=P \rtimes Q$, where $P=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times \cdots \times\left\langle a_{r}\right\rangle$ is an elementary abelian p-group with $r \geq 2, Q=\left\langle a, b \mid a^{4}=1, b^{2}=a^{2}, b^{-1} a b=a^{-1}\right\rangle,[P, b]=1$ and $\langle a\rangle$ acts irreducibly on P;
(15) $G=P \rtimes Q$, where $P=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times \cdots \times\left\langle a_{r}\right\rangle$ is an elementary abelian p-group with $r \geq 2, Q=\left\langle a, b \mid a^{4}=1, b^{2}=a^{2}, b^{-1} a b=a^{-1}\right\rangle,\left[P, a^{2}\right]=1,\langle a\rangle$ and $\langle b\rangle$ act irreducibly on P;
(16) $G=P \rtimes Q$, where $P=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times \cdots \times\left\langle a_{r}\right\rangle$ is an elementary abelian p-group with $r \geq 2, Q=\left\langle y, z \mid y^{q^{n-1}}=z^{q}=1,[y, z]=1\right\rangle$ with $n \geq 3, z \in Z(G),\langle y\rangle$ acts irreducibly on P and $\left\langle y^{q}\right\rangle$ centralizes P;
(17) $G=P \rtimes Q$, where $P=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times \cdots \times\left\langle a_{r}\right\rangle$ is an elementary abelian p-group with $r \geq 2, Q=\left\langle y, z \mid y^{q^{n-1}}=z^{q}=1, z^{-1} y z=y^{1+q^{n-2}}\right\rangle$ with $n \geq 3$ and $n \geq 4$ if $q=2$, $\langle z\rangle \leq C_{G}(P),\langle y\rangle$ acts irreducibly on P and $\left\langle y^{q}\right\rangle$ centralizes P;
(18) $G=P Q$, where $P=\langle x\rangle \nsubseteq G$ with $|P|=p, Q=\left(\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times \cdots \times\left\langle a_{r-1}\right\rangle\right) \rtimes\left\langle a_{r}\right\rangle$ is a non-normal q-group with $r \geq 3, F(G)=O_{q}(G)=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times \cdots \times\left\langle a_{r-1}\right\rangle, P$ acts irreducibly on $O_{q}(G), a_{r}^{-1} x a_{r}=x^{i}$ and $p>q$, where i is a primitive q-th root of unity modulo $p, F(G)$ is the Fitting subgroup of G.

Proof If G is a solvable minimal non-SMSN-group whose order has exactly two prime divisors, then we assume $G=P Q$, where $P \in \operatorname{Syl}_{p}(G)$ and $Q \in \operatorname{Syl}_{q}(G)$.

Assume that P and Q are neither cyclic nor normal in G. The solvability of G implies that G has a normal subgroup M of prime index, say q. Let M_{p} be a Sylow p-subgroup of M. Since M is an SMSN-group, we have that M_{p} is either cyclic or normal in M by Lemma
2.1. Clearly M_{p} must be normal in M since it is also a Sylow p-group of G. Now it follows from M_{p} char $M \unlhd G$ that $M_{p} \unlhd G$, a contradiction. So G has a Sylow subgroup which is either cyclic or normal.
(1) Assume that P and Q are cyclic and let $P=\langle x\rangle$ and $Q=\langle y\rangle$ with $|x|=p^{m},|y|=q^{n}$ and $p>q$. In this case, $y^{-1} x y=x^{i}$ with $i^{q^{n}} \equiv 1\left(\bmod p^{m}\right), 0<i<p^{m}$ and $\left(p^{m}, q^{n}(i-1)\right)=1$. Considering the maximal subgroups $P\left\langle y^{q}\right\rangle$ and $\left\langle x^{p}\right\rangle Q$ of G, if $\left\langle x^{p}\right\rangle Q=\left\langle x^{p}\right\rangle \times Q$, then by Lemma 2.4, G is nilpotent, a contradiction. This implies $\left\langle x^{p}\right\rangle Q=\left\langle x^{p}\right\rangle \rtimes Q$. By Lemma 2.1, $x^{p}=1,\left\langle y^{q}\right\rangle$ is not normal in G, but $\left\langle y^{q^{2}}\right\rangle$ is normal in G. So $i^{q} \not \equiv 1(\bmod p), i^{q^{2}} \equiv 1(\bmod p)$ and G is of type (1).
(2) Assume that P is a cyclic normal subgroup of G and Q is neither cyclic nor normal in G. If $q>p$, then by Burnside's theorem [1, 10.1.8], $Q \unlhd G$, a contradiction. So $q<p$. If Q has two non-cyclic maximal subgroups Q_{1} and Q_{2}, then by Lemma 2.1, $P Q_{1}=P \times Q_{1}$, $P Q_{2}=P \times Q_{2}$ and so $Q=Q_{1} Q_{2}$ is normal in G, a contradiction. Therefore, every maximal subgroup of Q is cyclic or Q has a unique non-cyclic maximal subgroup, and so Q is an elementary abelian q-group of order q^{2}, the quaternion group Q_{8} or one of the types in Lemma 2.5.

Case 1 Assume $P=\langle z\rangle$ and $Q=\left\langle a, b \mid a^{q}=b^{q}=1,[a, b]=1\right\rangle$. If $\langle a\rangle$ and $\langle b\rangle$ acting on P by conjugation are both trivial, then G is nilpotent, a contradiction. Therefore, we may assume that $\langle a\rangle$ acting on P by conjugation is non-trivial. By Lemma 2.1, $z^{p}=1$. If $C_{G}(P)=P$, then $G / C_{G}(P)$ is an elementary abelian q-group of order q^{2}. However, $G / C_{G}(P) \lesssim \operatorname{Aut}(P)$, and $\operatorname{Aut}(P)$ is cyclic, a contradiction. Hence b is contained in $C_{G}(P)$. Clearly, $C_{G}(P)=\langle x\rangle, y^{-1} x y=x^{i},|x|=p q, y=a, q \mid p-1, i \equiv 1(\bmod q)$ and $i^{q} \equiv 1(\bmod p)$, where $x=z b$ is a generator of $C_{G}(P)$. So G is of type (2).

Case 2 Assume $P=\langle z\rangle$ and $Q=Q_{8}=\left\langle a, b \mid a^{4}=1, b^{2}=a^{2}, b^{-1} a b=a^{-1}\right\rangle$. Similar arguments as Case 1, we have that $z^{p}=1, b$ is contained in $C_{G}(P)$ and $|Z(G)|=2$. So $C_{G}(P)=\langle x\rangle$ with $|x|=4 p, y=a, y^{-1} x y=x^{i}$ and $i^{2} \equiv 1(\bmod 4 p)$, where $x=z b$ is a generator of $C_{G}(P)$. By computations, G is of type (3).

Case 3 Assume that $P=\langle x\rangle$ and Q is the type of Lemma 2.5 (I) with $|Q|=q^{n}$. Namely, $Q=\left\langle y, z \mid y^{q^{n-1}}=z^{q}=1,[y, z]=1\right\rangle$, where $n \geq 3$. Then Q has maximal subgroups $H=\langle y\rangle$, $K_{0}=\left\langle y^{q}, z\right\rangle$ and $K_{s}=\left\langle y^{q}, z y^{s}\right\rangle=\left\langle z y^{s}\right\rangle$ with $s=1, \cdots, q-1$, where K_{0} is the unique noncyclic maximal subgroup of Q. By hypothesis and Lemma 2.1, $P H \neq P \times H, P K_{0}=P \times K_{0}$ and $x^{p}=1$. Hence $G=\left\langle x, y, z \mid x^{p}=y^{q^{n-1}}=z^{q}=1, y^{-1} x y=x^{i},[x, z]=1,[y, z]=1\right\rangle$, where $i \not \equiv 1(\bmod p), i^{q} \equiv 1(\bmod p)$. So G is of type (4).

Case 4 Assume that $P=\langle x\rangle$ and Q is the type of Lemma 2.5 (II) with $|Q|=q^{n}$. Namely, $Q=\left\langle y, z \mid y^{q^{n-1}}=z^{q}=1, z^{-1} y z=y^{1+q^{n-2}}\right\rangle$, where $n \geq 3$ and $n \geq 4$ if $q=2$. In the similar way as above, we have that $x^{p}=1,\langle z\rangle \leq C_{G}(P)$ and $y^{-1} x y=x^{i}$, where $i \not \equiv 1(\bmod p)$ and $i^{q} \equiv 1(\bmod p)$. So G is of type (5).
(3) Assume that P is a non-cyclic normal subgroup of G and $Q=\langle y\rangle$ is non-normal cyclic subgroup of G with $|y|=q^{n}$. If there exists a subgroup P^{*} of P with $1<\Phi(P)<P^{*}<$ P such that $P^{*} Q=Q P^{*}$, then $P^{*} \unlhd G$ since P^{*} is subnormal in G. By Maschke's theorem
[1, 8.1.2], P has a subgroup K with $1<K<P$ such that $P / \Phi(P)=P^{*} / \Phi(P) \times K / \Phi(P)$, $K \unlhd G, K \neq P^{*}$, and at least one of $P^{*} Q$ and $K Q$ is a non-nilpotent SMSN-group. By Lemma 2.1, it is easy to see that $P^{*} \cap K=\Phi(P)=1$, a contradiction. Hence $\Phi(P)=1$ or $P / \Phi(P)$ is the minimal normal subgroup of $G / \Phi(P)$ when $\Phi(P) \neq 1$.

Case 1 Assume $\Phi(P)=1$. If P is a minimal normal subgroup of G, then by hypothesis, the maximal subgroup $P \Phi(Q)$ of G is non-nilpotent. By Lemma 2.1, $\left\langle y^{q}\right\rangle$ acts irreducibly on P and $\left[P, y^{q^{2}}\right]=1$. So G is of type (6). If P has a non-trivial proper subgroup P_{1} which is normal in G, then there exists a subgroup P_{2} of P such that $P=P_{1} \times P_{2}$ and $P_{2} \unlhd G$ by Maschke's theorem [1, 8.1.2]. Clearly, at least one action that $\langle y\rangle$ acts on P_{1} and P_{2} by conjugation is non-trivial. If $P_{1} Q=P_{1} \times Q$ and $P_{2} Q=P_{2} \rtimes Q$, then by Maschke's theorem [1, 8.1.2] and Lemma 2.1, it is easy to see that $\left|P_{1}\right|=p,\left[P, y^{q}\right]=1$ and G is of type (7). If $P_{1} Q=P_{1} \rtimes Q$ and $P_{2} Q=P_{2} \rtimes Q$, then by Lemma 2.1, $\langle y\rangle$ acts irreducibly on P_{1} and P_{2}, and $\left[P, y^{q}\right]=1$. So G is of type (8).

Case 2 Assume $\Phi(P)>1$ and $Z(P)=P$. By the same arguments as the beginning of (3), it is easy to see that $\Phi(P)$ is the unique normal subgroup of G which is contained in P, and so P is a homocyclic p-group (a product of some cyclic subgroups of the same order). By Lemma 2.1 and Lemma 2.4, we have easily that the exponent of P is p^{2}, one maximal subgroup $P \Phi(Q)$ of G is nilpotent. Hence another maximal subgroup $\Phi(P) Q$ is non-nilpotent, and $\langle y\rangle$ acts irreducibly on $\Phi(P)$. Clearly the quotient group $G / \Phi(P)$ is a minimal non-abelian group. So G is of type (9).

Case 3 Assume $\Phi(P)>1$ and $Z(P)<P$. Similarly, $\Phi(P)=Z(P)=P^{\prime}$ is the unique non-trivial characteristic subgroup of P, that is, P is a special p-group with $\exp (P) \leq p^{2}$ and $P \Phi(Q)$ is nilpotent. If $\Phi(P) Q$ is nilpotent also, then by a result in [4, Theorem 2], G is of type (10). If $|\Phi(P)|=p$ and $p<q$, then G belongs to type (10). If $\Phi(P) Q$ is non-nilpotent with $|\Phi(P)|=p$ and $p>q$, then G is minimal non-supersolvable. Examining a result in [4, Theorem 10], G is not isomorphic to anyone of them. If $\Phi(P) Q$ is non-nilpotent with $|\Phi(P)| \geq p^{2}$, then the quotient group $G / \Phi(P)$ is a minimal non-abelian group. So G is of type (11).
(4) Assume that P is a non-cyclic normal subgroup of G and Q is neither cyclic nor normal in G. If $\Phi(P)>1$, then by Lemma 2.1, $P Q_{1}$ and $P Q_{2}$ are both nilpotent and so G is nilpotent, a contradiction, where Q_{1} and Q_{2} are two distinct maximal subgroups of Q. Hence P is an elementary abelian p-group of order p^{r} with $r \geq 2$. Similar arguments as in (2), Q is an elementary abelian q-group of order q^{2}, the quaternion group Q_{8} or one of the types in Lemma 2.5.

Case 1 Let $Q=\left\langle a, b \mid a^{q}=b^{q}=1,[a, b]=1\right\rangle$. Clearly, there exists a non-trivial automorphism that $\langle a\rangle$ or $\langle b\rangle$ acts on P by conjugation. We may assume that $\langle a\rangle$ acting on P by conjugation is non-trivial and $\langle b\rangle$ acting on P by conjugation is trivial. So G is of type (12). If $\langle a\rangle$ and $\langle b\rangle$ acting on P by conjugation are both non-trivial, then G is of type (13).

Case 2 Let $Q=Q_{8}=\left\langle a, b \mid a^{4}=1, b^{2}=a^{2}, b^{-1} a b=a^{-1}\right\rangle$. Similar arguments as above, G is of either type (14) or type (15).

Case 3 Let Q be as in Lemma 2.5 (I) with $|Q|=q^{n}$. Namely, $Q=\langle y, z| y^{q^{n-1}}=z^{q}=$ $1,[y, z]=1\rangle$, where $n \geq 3$. Similar arguments as Case 3 in $(2),\langle y\rangle$ acts irreducibly on P, $\left[P, y^{q}\right]=1$ and $z \in Z(G)$. So G is of type (16).

Case 4 Let Q be as in Lemma 2.5 (II) with $|Q|=q^{n}$. Namely, $Q=\langle y, z| y^{q^{n-1}}=$ $\left.z^{q}=1, z^{-1} y z=y^{1+p^{n-2}}\right\rangle$, where $n \geq 3$ and $n \geq 4$ if $p=2$. Similar arguments as Case 4 in (2), $\langle y\rangle$ acts irreducibly on $P,\left[P, y^{q}\right]=1$ and $\langle z\rangle \leq C_{G}(P)$. So G is of type (17).
(5) Assume that $P=\langle x\rangle$ is a non-normal cyclic subgroup of G and Q is neither cyclic nor normal in G. Clearly $p>q$. The solvability of G implies that G has a normal subgroup M of prime index. If $|G: M|=p$, then it is easy to see that G has a normal Sylow q-group since M is an SMSN-group and applying Lemma 2.1, a contradiction. Therefore, $|G: M|=q$. If there exists a cyclic Sylow q-subgroup M_{q} of M, then M has a normal Sylow p-subgroup M_{p}, and so M_{p} is a normal Sylow p-subgroup of G, a contradiction. Hence M_{q} is non-cyclic and $|Q| \geq q^{3}$. By Lemma 2.1, M_{q} is normal in M and M_{p} has a maximal subgroup P_{1} such that P_{1} is normal in M, where M_{p} is a Sylow p-subgroup of M. Hence M_{q} and P_{1} are both subnormal in G. By Lemma 2.6, $F(G)=P_{1} \times M_{q}=O_{p}(G) \times O_{q}(G)$. Clearly, $O_{p}(G)=\left\langle x^{p}\right\rangle$ and $O_{q}(G)=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times \cdots \times\left\langle a_{r-1}\right\rangle$ is an elementary abelian q group with $\left|O_{q}(G)\right| \geq q^{2}$. If $N_{G}(P)$ is nilpotent, then $N_{G}(P)=C_{G}(P)$ since P is cyclic. By Burnside Theorem [1, 10.1.8], G is p-nilpotent, a contradiction. Hence $N_{G}(P)=P\left\langle a_{r}\right\rangle$ is a Schmidt subgroup of G, and so $P\left\langle a_{r}^{q}\right\rangle$ is nilpotent with $|P|=p$ by Lemma 2.1, where a_{r} is a q-element. Since M is a Schmidt subgroup of G also, $O_{q}(G)$ is a minimal normal subgroup of G and $G=M N_{G}(P)$. Hence $O_{q}(G)\left\langle a_{r}\right\rangle$ is a Sylow q-subgroup of G and $O_{q}(G) \cap\left\langle a_{r}\right\rangle=\left\langle a_{r}^{q}\right\rangle$. Furthermore, $\left|a_{r}\right|=q$ since $O_{q}(G) P$ is a Schmidt subgroup of G. If $\Phi(Q)=1$, then Q is abelian. Hence $N_{G}(Q)=C_{G}(Q)=Q \lessdot G$. So G is q-nilpotent, a contradiction. If $\Phi(Q) \neq 1$, then $Q=\left(\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times \cdots \times\left\langle a_{r-1}\right\rangle\right) \rtimes\left\langle a_{r}\right\rangle$. So G is of type (18).

Conversely, it is clear that the groups of types (1)-(18) are minimal non-SMSN-groups.
Theorem 3.3 The solvable minimal non-SMSN-group G whose order has exactly three prime divisors p, q and r is exactly one of the following types (P, Q and R are Sylow subgroups)
(1) $G=(P \times Q) \rtimes R$, where $[P, R]=1,|P|=p, Q$ is an elementary abelian q-group, $R=\langle a\rangle$ is cyclic, R acts irreducibly on Q and $\left\langle a^{r}\right\rangle$ centralizes Q;
(2) $G=(P \times Q) \rtimes R$, where P and Q are both elementary abelian, $R=\langle a\rangle$ is cyclic, R acts irreducibly on P and $Q,\left\langle a^{r}\right\rangle$ centralizes $P Q$;
(3) $G=P \rtimes(Q \times R)$, where P is an elementary abelian p-group, Q is a group of order q, R is a group of order r, Q and R act irreducibly on P, respectively.

Proof It is easy to see that G has at least one normal Sylow subgroup and we assume that $G=P Q R$, where $P \in \operatorname{Syl}_{p}(G), Q \in \operatorname{Syl}_{q}(G), R \in \operatorname{Syl}_{r}(G)$, and $P \unlhd G, R \nexists G$. Clearly, we only need consider the following cases.

Case 1 If $Q \unlhd G, P R=P \times R$ and $Q R=Q \rtimes R$, then $Q R$ is an SMSN-group. By Lemma 2.1, Q is an elementary abelian q-group and $R=\langle a\rangle$ is cyclic. If $|P| \neq p$, then $P_{1} Q R$ is nilpotent by Lemma 2.1 again, a contradiction, where $1<P_{1}<P$. Hence $|P|=p$ and G
is of type (1).
Similarly, if $Q \unlhd G, P R=P \rtimes R$ and $Q R=Q \times R$, then G is isomorphic to type (1) also. If $Q \unlhd G, P R=P \rtimes R$ and $Q R=Q \rtimes R$, it is easy to see that G is of type (2).

Case 2 If $Q \nsubseteq G, P Q=P \rtimes Q, P R=P \times R, Q R=Q \rtimes R$, then by Lemma 2.1, P is an elementary abelian p-group, $Q=\langle a\rangle$ is a cyclic group of order $q, q>r$ and $R=\langle b\rangle$ is cyclic. Since $C_{G}(P)=P \times R \unlhd N_{G}(P)=G, R \unlhd G$, a contradiction.

If $Q \nsubseteq G, P Q=P \rtimes Q, P R=P \rtimes R, Q R=Q \times R$, and $\Phi(R) \neq 1$, then $P Q \Phi(R)$ is nilpotent by Lemma 2.1, a contradiction. Hence $\Phi(R)=1$, then G is of type (3).

Similarly, if $Q \nexists G, P Q=P \rtimes Q, P R=P \rtimes R, Q R=Q \rtimes R$, then P is elementary abelian, $Q=\langle a\rangle$ is a group of order $q, R=\langle b\rangle$ is a group of order r and $r \mid q-1$. Let $|P|=p^{\alpha}, \alpha \geq 1$. Then by [16, Theorem 1.5], $p^{\alpha} \equiv 1(\bmod q), p^{\alpha} \equiv 1(\bmod r)$. Hence $p^{\alpha}-1=q m=r n$, where m and n are integers. So $q=r n m^{-1}$, a contradiction.

Conversely, it is clear that the groups of types (1)-(3) are minimal non-SMSN-groups.
By Lemma 2.1, combining Theorem 3.1, Theorem 3.2 and Theorem 3.3, the complete classification of the minimal non-SMSN-groups is as follows.

Corollary 3.4 The minimal non-SMSN-groups are exactly the groups of A_{5}, types (1) to (18) of Theorem 3.2 and types (1) to (3) of Theorem 3.3 , where A_{5} is the alternating group of degree 5 .

References

[1] Robinson D J S. A course in the theory of groups[M]. New York, Heidelberg, Berlin: Springer-Verlag, 1980.
[2] Schmidt O J. Über Gruppen, deren sämtliche Teiler spezielle Gruppen sind[J]. Mat. Sbornik, 1924, 31: 366-372.
[3] Doerk K. Minimal nicht überauflösbare, endliche Gruppen[J]. Math. Z., 1966, 91: 198-205.
[4] Ballester-Bolinches A, Esteban-Romero R. On minimal non-supersoluble groups[J]. Rev. Mat. Iberoamericana, 2007, 23(1): 127-142.
[5] Lutsenko1 Y V, Skiba A N. Finite groups with subnormal second or third maximal subgroups[J]. Math. Notes., 2012, 91(5): 680-688.
[6] Guo Wenbin, Legchekova E V, Skiba A N. Finite groups in which every 3-maximal subgroup commutes with all maximal subgroups[J]. Math. Notes, 2009, 86(3): 325-332.
[7] Guo Pengfei, Guo Xiuyun. On minimal non-MSN-groups[J]. Front. Math. China, 2011, 6(5): 847854.
[8] Ma Lijie, Huang Benwen. Structure of a kind of groups of order $p^{n} m[J]$. J. Math., 2010, 30(4): 671-674 (in Chinese).
[9] Qian Guohua. Finite groups to be able written as the union of four proper subgroups[J]. J. Math., 2011, 31(5): 891-892 (in Chinese).
[10] Thompson J G. Nonsolvable finite groups all of whose local subgroups are solvable[J]. Bull. Amer. Math. Soc., 1968, 74: 383-437.
[11] Laffey T J. A Lemma on finite p-group and some consequences[J]. Math. Proc. Cambridge Phil. Soc., 1974, 75(2): 133-137.
［12］Itô N．Über die Frattini－Gruppe einer endlichen Gruppe［J］．Proc．Japan Acad．，1955，31（6）：327－328．
［13］Conway J H，Curtis R T，Norton S P，Parker R A，Wilson R A．Atlas of finite groups［M］．Oxford： Oxford University Press， 1985.
［14］King O H．The subgroup structure of finite classical groups in terms of geometric configurations［C］． Surveys in Combinatorics，London Math．Soc．，Lecture Note，2005，327：29－56．
［15］Suzuki M．On a class of doubly transitive groups［J］．Ann．Math．，1962，75（1）：105－145．
［16］Chen Zhongmu．Inner and outer－\sum groups and mininmal non－\sum groups $[M]$ ．Chongqing：Southwest Normal University Press， 1988 （in Chinese）．

所有极大子群都为SMSN－群的有限群

郭鹏飞 ${ }^{1,2}$
（1．海南师范大学数学与统计学院，海南海口 571158）
（2．连云港师范高等专科学校数学与信息工程学院，江苏连云港 222006）

摘要：若有限群 G 的每个 2 －极大子群在 G 中次正规，则称 G 为SMSN－群．本文研究了有限群 G 的每个真子群是SMSN－群但G本身不是SMSN－群的结构，利用局部分析的方法，获得了这类群的完整分类，推广了有限群结构理论的一些成果。

关键词：幂自同构；幂零群；内幂零群；极小非SMSN－群
MR（2010）主题分类号：20D10；20E34 中图分类号：O152．1

[^0]: ＊Received date：2015－09－06 Accepted date：2015－12－03
 Foundation item：Supported by National Natural Science Foundation of China（11661031）； Jiangsu Overseas Research \＆Training Program for University Prominent Young \＆Middle－Aged Teachers and Presidents；＂333＂Project of Jiangsu Province（BRA2015137）；＂521＂Project of Lianyungang City．

 Biography：Guo Pengfei（1972－），male，born at Wuxiang，Shanxi，professor，major in finite group theory．

