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Abstract: A finite group G is called an SMSN-group if its 2-maximal subgroups are sub-
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1 Introduction

All groups in this paper are finite and our notation is standard (see [1]). Let Σ be
an abstract group theoretical property, for example, nilpotency, supersolvability, solvability,
etc. If all proper subgroups of a group G have the property Σ but G does not have the
property Σ, then G is called a minimal non-Σ-group.

One of the hottest topics in group theory is to determinate the structure of minimal
non-Σ-groups and many meaningful results about this topic were obtained. The specific
papers about this topic can refer to [2–10].

The aim of this paper is to study the structure of a kind of minimal non-Σ-groups. We
call the groups whose 2-maximal subgroups are subnormal SMSN-groups. A group G is a
minimal non-SMSN-group if every proper subgroup of G is an SMSN-group but G itself is
not, and we classify the minimal non-SMSN-groups completely.
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2 Preliminaries

In this section, we give some definitions and some lemmas needed in this paper.
Lemma 2.1 (see [5, Lemma 5]) Every 2-maximal subgroup of a group G is subnormal

if and only if either G is nilpotent or G is a Schmidt group with abelian Sylow subgroups.
Lemma 2.2 If G is a solvable minimal non-SMSN-group, then |π(G)| ≤ 3.
Proof If |π(G)| ≥ 4, then every maximal subgroup of G has at least three prime divi-

sors since G is solvable. Applying Lemma 2.1, G is minimal non-nilpotent, a contradiction.
Hence |π(G)| ≤ 3.

Lemma 2.3 (see [10]) Any minimal simple group (non-abelian simple group all of
whose proper subgroups are solvable) is isomorphic to one of the following simple groups

(1) PSL(3, 3);
(2) PSL(2, p), where p is a prime with p > 3 and 5 - p2 − 1;
(3) PSL(2, 2q), where q is a prime;
(4) PSL(2, 3q), where q is an odd prime;
(5) The Suzuki group Sz(2q), where q is an odd prime.
Lemma 2.4 (see [11]) Suppose that p′-group H acts on a p-group G. Let

Ω(G) =

{
Ω1(G), p > 2,

Ω2(G), p = 2.

If H acts trivially on Ω(G), then H acts trivially on G as well.
Lemma 2.5 (see [7, Lemma 2.9]) If a p-group G of order pn+1 has a unique non-cyclic

maximal subgroup, then G is isomorphic to one of the following groups
(I) Cpn × Cp = 〈a, b | apn

= bp = 1, [a, b] = 1〉, where n ≥ 2;
(II) Mpn+1 = 〈a, b | apn

= bp = 1, b−1ab = a1+pn−1〉, where n ≥ 2 and n ≥ 3 if p = 2.
Lemma 2.6 (see [12]) Let G be a group and H a nilpotent subnormal subgroup of G.

Then G contains a nilpotent normal subgroup of G containing H.

3 Main Results

In this section, we give the specific classification of the minimal non-SMSN-groups.
Theorem 3.1 A non-solvable group G is a minimal non-SMSN-group if and only if G

is isomorphic to A5, where A5 is the alternating group of degree 5.
Proof We only prove the necessity part.
Since G is a non-solvable group whose maximal subgroups are all SMSN-groups, then G

is a minimal non-solvable group by Lemma 2.1, and so G/Φ(G) is a minimal simple group.
Case 1 Assume Φ(G) = 1. Then G is isomorphic to one of the simple groups mentioned

in Lemma 2.3.
Let G ∼= PSL(3, 3). Then G has a subgroup which is isomorphic to S4 by [13, p.13], but

S4 is not an SMSN-group, a contradiction. So G � PSL(3, 3).
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Let G ∼= PSL(2, p), where p is a prime with p > 3 and 5 - p2 − 1. If p ≥ 13, then there
exists a maximal subgroup of G which is isomorphic to a dihedral group Dp−1 or Dp+1 by [14,
Corollary 2.2]. Certainly, 4 divides the order of either Dp−1 or Dp+1, say A, and A is not an
SMSN-group applying Lemma 2.1, a contradiction. If p = 7, then p2 ≡ 1(mod 16). By [14,
Corollary 2.2], G has a subgroup which is isomorphic to S4, but S4 is not an SMSN-group,
a contradiction. Hence p = 5 and G ∼= A5.

Let G ∼= PSL(2, 2q). By [14, Corollary 2.2], G has maximal subgroups: the dihedral
groups of order 2(2q±1); the Frobenius group H of order 2q(2q−1); the alternating group A4

of degree 4 when q = 2. Clearly, G ∼= A5 when q = 2 and it is a minimal non-SMSN-group. If
q > 2, then 3 | 2q +1. It follows from Lemma 2.1 that G is not a minimal non-SMSN-group.

Let G ∼= PSL (2, 3q). Similar arguments as above, G has a dihedral group B whose
Sylow 2-subgroups are neither cyclic nor normal, which contradicts the fact that B is an
SMSN-group. So G � PSL(2, 3q).

Let G ∼= Sz(2q). By [15, Theorem 9], G has a Frobenius group K of order 4(2q±2
q+1
2 +1),

but the Sylow 2-subgroups of K are neither cyclic nor normal, a contradiction. So G �
Sz(2q).

Case 2 Assume Φ(G) 6= 1. It is easy to see that Φ(G/Φ(G)) = 1 and G/Φ(G) is
a non-solvable minimal non-SMSN-group. Similar arguments as above and by induction,
G/Φ(G) ∼= A5. Hence G has two non-nilpotent maximal subgroups M1 and M2 such that
M1/Φ(G) ∼= A4 and M2/Φ(G) ∼= D10, where A4 is the alternating group of degree 4 and D10

is the dihedral group of order 10. Since M1 and M2 are SMSN-groups, they are minimal
non-nilpotent by Lemma 2.1. It makes |G| = 2a · 3 · 5 and |Φ(G)| = 2a−2, where a ≥ 3.
By Lemma 2.1 again, the Sylow 2-subgroups of M1 are elementary abelian. At the same
time, the Sylow 2-subgroups of M2 are cyclic whose orders are more than 2 by Lemma 2.1,
a contradiction.

Theorem 3.2 The minimal non-SMSN-group G whose order has exactly two prime
divisors p and q is exactly one of the following types (P and Q are Sylow subgroups)

(1) G = 〈x, y | xp = yqn

= 1, y−1xy = xi〉, where iq 6≡ 1(mod p), iq
2 ≡ 1(mod p), p > q,

n ≥ 2 and 0 < i < p;
(2) G = 〈x, y | xpq = yq = 1, y−1xy = xi〉, where p ≡ 1(mod q), i ≡ 1(mod q),

iq ≡ 1(mod p) and 1 < i < p;
(3) G = 〈x, y | x4p = 1, y2 = x2p, y−1xy = x−1〉;
(4) G = 〈x, y, z | xp = yqn−1

= zq = 1, y−1xy = xi, [x, z] = 1, [y, z] = 1〉 where p > q,
i 6≡ 1(mod p), iq ≡ 1(mod p) and n ≥ 3;

(5) G = 〈x, y, z | xp = yqn−1
= zq = 1, y−1xy = xi, [x, z] = 1, z−1yz = y1+qn−2〉, where

p > q, i 6≡ 1(mod p), iq ≡ 1(mod p), n ≥ 3 and n ≥ 4 if q = 2;
(6) G = P o Q, where P = 〈a1〉 × 〈a2〉 × · · · × 〈ar〉 is an elementary abelian p-group

with r ≥ 2, Q = 〈y〉 with |y| = qn and n ≥ 2, 〈yq〉 acts irreducibly on P and 〈yq2〉 centralizes
P ;

(7) G = P oQ, where P = 〈a1〉×〈a2〉× · · ·× 〈ar〉 is an elementary abelian p-group and
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r ≥ 2, Q = 〈y〉 with |y| = qn and n ≥ 1, [a1, Q] = 1, Q acts irreducibly on 〈a2〉 × · · · × 〈ar〉
and Φ(Q) centralizes P ;

(8) G = P o Q, where P = 〈a1〉 × 〈a2〉 × · · · × 〈ar〉 is an elementary abelian p-group
with r ≥ 2, Q = 〈y〉 with |y| = qn and n ≥ 1, Q acts irreducibly on 〈a1〉 × · · · × 〈al−1〉 and
〈al〉 × · · · × 〈ar〉 with l ≥ 2, and Φ(Q) centralizes P ;

(9) G = P o Q, where P = 〈a1〉 × 〈a2〉 × · · · × 〈ar〉 (r ≥ 2) is a p-group with |a1| =
|a2| = · · · = |ar| = p2, Q = 〈y〉 with |y| = qn and n ≥ 1, Q acts irreducibly on Φ(P ), Φ(Q)
centralizes P , and G/Φ(P ) is a minimal non-abelian group;

(10) G = P o Q, where P is a non-abelian special p-group of rank 2m, the order of p

modulo q being 2m, Q = 〈y〉 is cyclic of order qr > 1, y induces an automorphism in P such
that P/Φ(P ) is a faithful and irreducible Q-module, and y centralizes Φ(P ). Furthermore,
|P/Φ(P )| = p2m and |P ′| ≤ pm;

(11) G = P o Q, where P is a non-abelian special p-group with exp(P ) ≤ p2 and
|Φ(P )| ≥ p2, Q = 〈y〉 with |y| = qn and n ≥ 1, Q acts irreducibly on Φ(P ), Φ(Q) centralizes
P , and G/Φ(P ) is a minimal non-abelian group;

(12) G = P oQ, where P = 〈a1〉 × 〈a2〉 × · · · × 〈ar〉 is an elementary abelian p-group
with r ≥ 2, Q = 〈a, b | aq = bq = 1, [a, b] = 1〉, [P, b] = 1, 〈a〉 acts irreducibly on P ;

(13) G = P oQ, where P = 〈a1〉 × 〈a2〉 × · · · × 〈ar〉 is an elementary abelian p-group
with r ≥ 2, Q = 〈a, b | aq = bq = 1, [a, b] = 1〉, 〈a〉 and 〈b〉 act irreducibly on P ;

(14) G = P oQ, where P = 〈a1〉 × 〈a2〉 × · · · × 〈ar〉 is an elementary abelian p-group
with r ≥ 2, Q = 〈a, b | a4 = 1, b2 = a2, b−1ab = a−1〉, [P, b] = 1 and 〈a〉 acts irreducibly on
P ;

(15) G = P oQ, where P = 〈a1〉 × 〈a2〉 × · · · × 〈ar〉 is an elementary abelian p-group
with r ≥ 2, Q = 〈a, b | a4 = 1, b2 = a2, b−1ab = a−1〉, [P, a2] = 1, 〈a〉 and 〈b〉 act irreducibly
on P ;

(16) G = P oQ, where P = 〈a1〉 × 〈a2〉 × · · · × 〈ar〉 is an elementary abelian p-group
with r ≥ 2, Q = 〈y, z | yqn−1

= zq = 1, [y, z] = 1〉 with n ≥ 3, z ∈ Z(G), 〈y〉 acts irreducibly
on P and 〈yq〉 centralizes P ;

(17) G = P oQ, where P = 〈a1〉 × 〈a2〉 × · · · × 〈ar〉 is an elementary abelian p-group
with r ≥ 2, Q = 〈y, z | yqn−1

= zq = 1, z−1yz = y1+qn−2〉 with n ≥ 3 and n ≥ 4 if q = 2,
〈z〉 ≤ CG(P ), 〈y〉 acts irreducibly on P and 〈yq〉 centralizes P ;

(18) G = PQ, where P = 〈x〉 5 G with |P | = p, Q = (〈a1〉 × 〈a2〉 × · · · × 〈ar−1〉)o 〈ar〉
is a non-normal q-group with r ≥ 3, F (G) = Oq(G) = 〈a1〉 × 〈a2〉 × · · · × 〈ar−1〉, P acts
irreducibly on Oq(G), a−1

r xar = xi and p > q, where i is a primitive q-th root of unity
modulo p, F (G) is the Fitting subgroup of G.

Proof If G is a solvable minimal non-SMSN-group whose order has exactly two prime
divisors, then we assume G = PQ, where P ∈ Sylp(G) and Q ∈ Sylq(G).

Assume that P and Q are neither cyclic nor normal in G. The solvability of G implies
that G has a normal subgroup M of prime index, say q. Let Mp be a Sylow p-subgroup of
M . Since M is an SMSN-group, we have that Mp is either cyclic or normal in M by Lemma
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2.1. Clearly Mp must be normal in M since it is also a Sylow p-group of G. Now it follows
from Mp char M E G that Mp E G, a contradiction. So G has a Sylow subgroup which is
either cyclic or normal.

(1) Assume that P and Q are cyclic and let P = 〈x〉 and Q = 〈y〉 with |x| = pm, |y| = qn

and p > q. In this case, y−1xy = xi with iq
n ≡ 1(mod pm), 0 < i < pm and (pm, qn(i−1)) = 1.

Considering the maximal subgroups P 〈yq〉 and 〈xp〉Q of G, if 〈xp〉Q = 〈xp〉 × Q, then by
Lemma 2.4, G is nilpotent, a contradiction. This implies 〈xp〉Q = 〈xp〉oQ. By Lemma 2.1,
xp = 1, 〈yq〉 is not normal in G, but 〈yq2〉 is normal in G. So iq 6≡ 1(mod p), iq

2 ≡ 1(mod p)
and G is of type (1).

(2) Assume that P is a cyclic normal subgroup of G and Q is neither cyclic nor normal
in G. If q > p, then by Burnside’s theorem [1, 10.1.8], Q E G, a contradiction. So q < p. If
Q has two non-cyclic maximal subgroups Q1 and Q2, then by Lemma 2.1, PQ1 = P ×Q1,
PQ2 = P ×Q2 and so Q = Q1Q2 is normal in G, a contradiction. Therefore, every maximal
subgroup of Q is cyclic or Q has a unique non-cyclic maximal subgroup, and so Q is an
elementary abelian q-group of order q2, the quaternion group Q8 or one of the types in
Lemma 2.5.

Case 1 Assume P = 〈z〉 and Q = 〈a, b | aq = bq = 1, [a, b] = 1〉. If 〈a〉 and 〈b〉 acting
on P by conjugation are both trivial, then G is nilpotent, a contradiction. Therefore, we
may assume that 〈a〉 acting on P by conjugation is non-trivial. By Lemma 2.1, zp = 1.
If CG(P ) = P , then G/CG(P ) is an elementary abelian q-group of order q2. However,
G/CG(P ) . Aut(P ), and Aut(P ) is cyclic, a contradiction. Hence b is contained in CG(P ).
Clearly, CG(P ) = 〈x〉, y−1xy = xi, |x| = pq, y = a, q|p− 1, i ≡ 1(mod q) and iq ≡ 1(mod p),
where x = zb is a generator of CG(P ). So G is of type (2).

Case 2 Assume P = 〈z〉 and Q = Q8 = 〈a, b | a4 = 1, b2 = a2, b−1ab = a−1〉. Similar
arguments as Case 1, we have that zp = 1, b is contained in CG(P ) and |Z(G)| = 2. So
CG(P ) = 〈x〉 with |x| = 4p, y = a, y−1xy = xi and i2 ≡ 1(mod 4p), where x = zb is a
generator of CG(P ). By computations, G is of type (3).

Case 3 Assume that P = 〈x〉 and Q is the type of Lemma 2.5 (I) with |Q| = qn. Namely,
Q = 〈y, z | yqn−1

= zq = 1, [y, z] = 1〉, where n ≥ 3. Then Q has maximal subgroups H = 〈y〉,
K0 = 〈yq, z〉 and Ks = 〈yq, zys〉 = 〈zys〉 with s = 1, · · · , q − 1, where K0 is the unique non-
cyclic maximal subgroup of Q. By hypothesis and Lemma 2.1, PH 6= P ×H, PK0 = P ×K0

and xp = 1. Hence G = 〈x, y, z | xp = yqn−1
= zq = 1, y−1xy = xi, [x, z] = 1, [y, z] = 1〉,

where i 6≡ 1(mod p), iq ≡ 1(mod p). So G is of type (4).

Case 4 Assume that P = 〈x〉 and Q is the type of Lemma 2.5 (II) with |Q| = qn.
Namely, Q = 〈y, z | yqn−1

= zq = 1, z−1yz = y1+qn−2〉, where n ≥ 3 and n ≥ 4 if q = 2.
In the similar way as above, we have that xp = 1, 〈z〉 ≤ CG(P ) and y−1xy = xi, where
i 6≡ 1(mod p) and iq ≡ 1(mod p). So G is of type (5).

(3) Assume that P is a non-cyclic normal subgroup of G and Q = 〈y〉 is non-normal
cyclic subgroup of G with |y| = qn. If there exists a subgroup P ∗ of P with 1 < Φ(P ) < P ∗ <

P such that P ∗Q = QP ∗, then P ∗ E G since P ∗ is subnormal in G. By Maschke’s theorem
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[1, 8.1.2], P has a subgroup K with 1 < K < P such that P/Φ(P ) = P ∗/Φ(P ) ×K/Φ(P ),
K E G, K 6= P ∗, and at least one of P ∗Q and KQ is a non-nilpotent SMSN-group. By
Lemma 2.1, it is easy to see that P ∗ ∩K = Φ(P ) = 1, a contradiction. Hence Φ(P ) = 1 or
P/Φ(P ) is the minimal normal subgroup of G/Φ(P ) when Φ(P ) 6= 1.

Case 1 Assume Φ(P ) = 1. If P is a minimal normal subgroup of G, then by hypothesis,
the maximal subgroup PΦ(Q) of G is non-nilpotent. By Lemma 2.1, 〈yq〉 acts irreducibly
on P and [P, yq2

] = 1. So G is of type (6). If P has a non-trivial proper subgroup P1 which
is normal in G, then there exists a subgroup P2 of P such that P = P1 × P2 and P2 E G

by Maschke’s theorem [1, 8.1.2]. Clearly, at least one action that 〈y〉 acts on P1 and P2 by
conjugation is non-trivial. If P1Q = P1 ×Q and P2Q = P2 oQ, then by Maschke’s theorem
[1, 8.1.2] and Lemma 2.1, it is easy to see that |P1| = p, [P, yq] = 1 and G is of type (7). If
P1Q = P1 o Q and P2Q = P2 o Q, then by Lemma 2.1, 〈y〉 acts irreducibly on P1 and P2,
and [P, yq] = 1. So G is of type (8).

Case 2 Assume Φ(P ) > 1 and Z(P ) = P . By the same arguments as the beginning
of (3), it is easy to see that Φ(P ) is the unique normal subgroup of G which is contained
in P , and so P is a homocyclic p-group (a product of some cyclic subgroups of the same
order). By Lemma 2.1 and Lemma 2.4, we have easily that the exponent of P is p2, one
maximal subgroup PΦ(Q) of G is nilpotent. Hence another maximal subgroup Φ(P )Q is
non-nilpotent, and 〈y〉 acts irreducibly on Φ(P ). Clearly the quotient group G/Φ(P ) is a
minimal non-abelian group. So G is of type (9).

Case 3 Assume Φ(P ) > 1 and Z(P ) < P . Similarly, Φ(P ) = Z(P ) = P ′ is the unique
non-trivial characteristic subgroup of P , that is, P is a special p-group with exp(P ) ≤ p2 and
PΦ(Q) is nilpotent. If Φ(P )Q is nilpotent also, then by a result in [4, Theorem 2], G is of
type (10). If |Φ(P )| = p and p < q, then G belongs to type (10). If Φ(P )Q is non-nilpotent
with |Φ(P )| = p and p > q, then G is minimal non-supersolvable. Examining a result in
[4, Theorem 10], G is not isomorphic to anyone of them. If Φ(P )Q is non-nilpotent with
|Φ(P )| ≥ p2, then the quotient group G/Φ(P ) is a minimal non-abelian group. So G is of
type (11).

(4) Assume that P is a non-cyclic normal subgroup of G and Q is neither cyclic nor
normal in G. If Φ(P ) > 1, then by Lemma 2.1, PQ1 and PQ2 are both nilpotent and so
G is nilpotent, a contradiction, where Q1 and Q2 are two distinct maximal subgroups of Q.
Hence P is an elementary abelian p-group of order pr with r ≥ 2. Similar arguments as in
(2), Q is an elementary abelian q-group of order q2, the quaternion group Q8 or one of the
types in Lemma 2.5.

Case 1 Let Q = 〈a, b | aq = bq = 1, [a, b] = 1〉. Clearly, there exists a non-trivial
automorphism that 〈a〉 or 〈b〉 acts on P by conjugation. We may assume that 〈a〉 acting on
P by conjugation is non-trivial and 〈b〉 acting on P by conjugation is trivial. So G is of type
(12). If 〈a〉 and 〈b〉 acting on P by conjugation are both non-trivial, then G is of type (13).

Case 2 Let Q = Q8 = 〈a, b | a4 = 1, b2 = a2, b−1ab = a−1〉. Similar arguments as
above, G is of either type (14) or type (15).
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Case 3 Let Q be as in Lemma 2.5 (I) with |Q| = qn. Namely, Q = 〈y, z | yqn−1
= zq =

1, [y, z] = 1〉, where n ≥ 3. Similar arguments as Case 3 in (2), 〈y〉 acts irreducibly on P ,
[P, yq] = 1 and z ∈ Z(G). So G is of type (16).

Case 4 Let Q be as in Lemma 2.5 (II) with |Q| = qn. Namely, Q = 〈y, z | yqn−1
=

zq = 1, z−1yz = y1+pn−2〉, where n ≥ 3 and n ≥ 4 if p = 2. Similar arguments as Case 4 in
(2), 〈y〉 acts irreducibly on P , [P, yq] = 1 and 〈z〉 ≤ CG(P ). So G is of type (17).

(5) Assume that P = 〈x〉 is a non-normal cyclic subgroup of G and Q is neither cyclic
nor normal in G. Clearly p > q. The solvability of G implies that G has a normal subgroup
M of prime index. If |G : M | = p, then it is easy to see that G has a normal Sylow
q-group since M is an SMSN-group and applying Lemma 2.1, a contradiction. Therefore,
|G : M | = q. If there exists a cyclic Sylow q-subgroup Mq of M , then M has a normal Sylow
p-subgroup Mp, and so Mp is a normal Sylow p-subgroup of G, a contradiction. Hence Mq

is non-cyclic and |Q| ≥ q3. By Lemma 2.1, Mq is normal in M and Mp has a maximal
subgroup P1 such that P1 is normal in M , where Mp is a Sylow p-subgroup of M . Hence
Mq and P1 are both subnormal in G. By Lemma 2.6, F (G) = P1 ×Mq = Op(G) × Oq(G).
Clearly, Op(G) = 〈xp〉 and Oq(G) = 〈a1〉 × 〈a2〉 × · · · × 〈ar−1〉 is an elementary abelian q-
group with |Oq(G)| ≥ q2. If NG(P ) is nilpotent, then NG(P ) = CG(P ) since P is cyclic. By
Burnside Theorem [1, 10.1.8], G is p-nilpotent, a contradiction. Hence NG(P ) = P 〈ar〉 is a
Schmidt subgroup of G, and so P 〈aq

r〉 is nilpotent with |P | = p by Lemma 2.1, where ar is a
q-element. Since M is a Schmidt subgroup of G also, Oq(G) is a minimal normal subgroup of
G and G = MNG(P ). Hence Oq(G)〈ar〉 is a Sylow q-subgroup of G and Oq(G)∩〈ar〉 = 〈aq

r〉.
Furthermore, |ar| = q since Oq(G)P is a Schmidt subgroup of G. If Φ(Q) = 1, then Q is
abelian. Hence NG(Q) = CG(Q) = QlG. So G is q-nilpotent, a contradiction. If Φ(Q) 6= 1,
then Q = (〈a1〉 × 〈a2〉 × · · · × 〈ar−1〉)o 〈ar〉. So G is of type (18).

Conversely, it is clear that the groups of types (1)–(18) are minimal non-SMSN-groups.

Theorem 3.3 The solvable minimal non-SMSN-group G whose order has exactly
three prime divisors p, q and r is exactly one of the following types (P, Q and R are Sylow
subgroups)

(1) G = (P × Q) o R, where [P, R] = 1, |P | = p, Q is an elementary abelian q-group,
R = 〈a〉 is cyclic, R acts irreducibly on Q and 〈ar〉 centralizes Q;

(2) G = (P ×Q) o R, where P and Q are both elementary abelian, R = 〈a〉 is cyclic,
R acts irreducibly on P and Q, 〈ar〉 centralizes PQ;

(3) G = P o (Q×R), where P is an elementary abelian p-group, Q is a group of order
q, R is a group of order r, Q and R act irreducibly on P , respectively.

Proof It is easy to see that G has at least one normal Sylow subgroup and we assume
that G = PQR, where P ∈ Sylp(G), Q ∈ Sylq(G), R ∈ Sylr(G), and P E G,R 5 G. Clearly,
we only need consider the following cases.

Case 1 If Q E G,PR = P × R and QR = Q o R, then QR is an SMSN-group. By
Lemma 2.1, Q is an elementary abelian q-group and R = 〈a〉 is cyclic. If |P | 6= p, then P1QR

is nilpotent by Lemma 2.1 again, a contradiction, where 1 < P1 < P . Hence |P | = p and G
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is of type (1).
Similarly, if Q E G,PR = P o R and QR = Q × R, then G is isomorphic to type (1)

also. If Q E G,PR = P oR and QR = QoR, it is easy to see that G is of type (2).
Case 2 If Q 5 G, PQ = P o Q, PR = P × R, QR = Q o R, then by Lemma 2.1, P

is an elementary abelian p-group, Q = 〈a〉 is a cyclic group of order q, q > r and R = 〈b〉 is
cyclic. Since CG(P ) = P ×R E NG(P ) = G, R E G, a contradiction.

If Q 5 G, PQ = P o Q, PR = P o R, QR = Q × R, and Φ(R) 6= 1, then PQΦ(R) is
nilpotent by Lemma 2.1, a contradiction. Hence Φ(R) = 1, then G is of type (3).

Similarly, if Q 5 G, PQ = P o Q, PR = P o R, QR = Q o R, then P is elementary
abelian, Q = 〈a〉 is a group of order q, R = 〈b〉 is a group of order r and r|q − 1. Let
|P | = pα, α ≥ 1. Then by [16, Theorem 1.5], pα ≡ 1(mod q), pα ≡ 1(mod r). Hence
pα − 1 = qm = rn, where m and n are integers. So q = rnm−1, a contradiction.

Conversely, it is clear that the groups of types (1)–(3) are minimal non-SMSN-groups.
By Lemma 2.1, combining Theorem 3.1, Theorem 3.2 and Theorem 3.3, the complete

classification of the minimal non-SMSN-groups is as follows.
Corollary 3.4 The minimal non-SMSN-groups are exactly the groups of A5, types

(1) to (18) of Theorem 3.2 and types (1) to (3) of Theorem 3.3, where A5 is the alternating
group of degree 5.
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所有极大子群都为SMSN-群的有限群

郭鹏飞1,2

(1.海南师范大学数学与统计学院,海南海口 571158)

(2.连云港师范高等专科学校数学与信息工程学院,江苏连云港 222006)

摘要: 若有限群G的每个2-极大子群在G中次正规, 则称G为SMSN-群. 本文研究了有限群G的每个真

子群是SMSN-群但G本身不是SMSN-群的结构, 利用局部分析的方法, 获得了这类群的完整分类, 推广了有

限群结构理论的一些成果.
关键词: 幂自同构; 幂零群; 内幂零群; 极小非SMSN-群
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