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Abstract: A finite group G is called an SMSN-group if its 2-maximal subgroups are sub-
normal in G. In this paper, the author investigates the structure of finite groups which are not
SMSN-groups but all their proper subgroups are SMSN-groups. Using the idea of local analysis, a
complete classification of this kind of groups is given, which generalizes some results of the structure
of finite groups.
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1 Introduction

All groups in this paper are finite and our notation is standard (see [1]). Let X be
an abstract group theoretical property, for example, nilpotency, supersolvability, solvability,
etc. If all proper subgroups of a group G have the property ¥ but G does not have the
property %, then G is called a minimal non-3-group.

One of the hottest topics in group theory is to determinate the structure of minimal
non-Y-groups and many meaningful results about this topic were obtained. The specific
papers about this topic can refer to [2-10].

The aim of this paper is to study the structure of a kind of minimal non-¥-groups. We
call the groups whose 2-maximal subgroups are subnormal SMSN-groups. A group G is a
minimal non-SMSN-group if every proper subgroup of G is an SMSN-group but G itself is

not, and we classify the minimal non-SMSN-groups completely.
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2 Preliminaries

In this section, we give some definitions and some lemmas needed in this paper.

Lemma 2.1 (see [5, Lemma 5]) Every 2-maximal subgroup of a group G is subnormal
if and only if either G is nilpotent or GG is a Schmidt group with abelian Sylow subgroups.

Lemma 2.2 If G is a solvable minimal non-SMSN-group, then |7(G)| < 3.

Proof If |7(G)| > 4, then every maximal subgroup of G has at least three prime divi-
sors since G is solvable. Applying Lemma 2.1, G is minimal non-nilpotent, a contradiction.
Hence |7(G)| < 3.

Lemma 2.3 (see [10]) Any minimal simple group (non-abelian simple group all of
whose proper subgroups are solvable) is isomorphic to one of the following simple groups

(1) PSL(3,3);

(2) PSL(2,p), where p is a prime with p > 3 and 5 p? — 1;

(3) PSL(2,29), where ¢ is a prime;

(4) PSL(2,39), where ¢ is an odd prime;
(5) The Suzuki group Sz(27), where ¢ is an odd prime.
Lemma 2.4 (see [11]) Suppose that p’-group H acts on a p-group G. Let

Q(G) _ {QI(G)v p > 27
QQ(G), P = 2.

If H acts trivially on Q(G), then H acts trivially on G as well.

Lemma 2.5 (see [7, Lemma 2.9]) If a p-group G of order p"*! has a unique non-cyclic
maximal subgroup, then G is isomorphic to one of the following groups

(I) Cpn x Cp = {a,b | a?” = b =1,[a,b] = 1), where n > 2;

(I1) Myuir = {a,b | a®" =" =1,b""ab = a' ™" '), where n > 2 and n > 3 if p = 2.

Lemma 2.6 (see [12]) Let G be a group and H a nilpotent subnormal subgroup of G.

Then G contains a nilpotent normal subgroup of G containing H.

3 Main Results

In this section, we give the specific classification of the minimal non-SMSN-groups.

Theorem 3.1 A non-solvable group G is a minimal non-SMSN-group if and only if G
is isomorphic to As, where As is the alternating group of degree 5.

Proof We only prove the necessity part.

Since G is a non-solvable group whose maximal subgroups are all SMSN-groups, then G
is a minimal non-solvable group by Lemma 2.1, and so G/®(G) is a minimal simple group.

Case 1 Assume ®(G) = 1. Then G is isomorphic to one of the simple groups mentioned
in Lemma 2.3.

Let G = PSL(3,3). Then G has a subgroup which is isomorphic to Sy by [13, p.13], but
S4 is not an SMSN-group, a contradiction. So G 2 PSL(3,3).
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Let G = PSL(2,p), where p is a prime with p > 3 and 51 p*> — 1. If p > 13, then there
exists a maximal subgroup of G which is isomorphic to a dihedral group D,,_; or D, by [14,
Corollary 2.2]. Certainly, 4 divides the order of either D,_; or D,1, say A, and A is not an
SMSN-group applying Lemma 2.1, a contradiction. If p = 7, then p?> = 1(mod 16). By [14,
Corollary 2.2], G has a subgroup which is isomorphic to Sy, but Sy is not an SMSN-group,
a contradiction. Hence p =5 and G = As.

Let G = PSL(2,27). By [14, Corollary 2.2], G has maximal subgroups: the dihedral
groups of order 2(27+1); the Frobenius group H of order 27(27—1); the alternating group Ay
of degree 4 when ¢ = 2. Clearly, G = A5 when ¢ = 2 and it is a minimal non-SMSN-group. If
q > 2, then 3| 294 1. It follows from Lemma 2.1 that G is not a minimal non-SMSN-group.

Let G = PSL (2,39). Similar arguments as above, G has a dihedral group B whose
Sylow 2-subgroups are neither cyclic nor normal, which contradicts the fact that B is an
SMSN-group. So G 2 PSL(2,37).

Let G = Sz(27). By [15, Theorem 9], G has a Frobenius group K of order 4(2’1:|:2h21 +1),
but the Sylow 2-subgroups of K are neither cyclic nor normal, a contradiction. So G 2
Sz(29).

Case 2 Assume ®(G) # 1. It is easy to see that ®(G/®(G)) = 1 and G/P(G) is
a non-solvable minimal non-SMSN-group. Similar arguments as above and by induction,
G/®(G) = As;. Hence G has two non-nilpotent maximal subgroups M; and M, such that
M, /®(G) = Ay and My /®(G) = Dy, where Ay is the alternating group of degree 4 and D1q
is the dihedral group of order 10. Since M; and M, are SMSN-groups, they are minimal
non-nilpotent by Lemma 2.1. It makes |G| = 2% -3 -5 and |®(G)| = 2°72, where a > 3.
By Lemma 2.1 again, the Sylow 2-subgroups of M; are elementary abelian. At the same
time, the Sylow 2-subgroups of M, are cyclic whose orders are more than 2 by Lemma 2.1,
a contradiction.

Theorem 3.2 The minimal non-SMSN-group G whose order has exactly two prime
divisors p and ¢ is exactly one of the following types (P and @ are Sylow subgroups)

(1) G=(z,y|a? =y =1,y ay = 2'), where i? # 1(mod p), i = 1(mod p), p > g,
n>2and 0 < i< p;

(2) G = (z,y | 271 = y? = 1,y oy = 2'), where p = 1(mod q), i = 1(mod q),
19 =1(mod p) and 1 < i < p;

(3) G=(x,y|a?=1y" =2y oy =a");

(4) G = (z,y,z|a? =y =29 =1,y oy = 2%, [2,2] = 1,[y, 2] = 1) where p > ¢,
i # 1(mod p), i = 1(mod p) and n > 3;

(5) G=(w,y,z|a? =y’ =20=1y " oy =a'|z,z] =12 yz =yt "), where
p>q, 1 % 1(mod p), i = 1(mod p), n > 3 and n > 4 if ¢ = 2;

(6) G = P x @, where P = (a;) x (az) X -+ X (a,) is an elementary abelian p-group
with 7 > 2, Q = (y) with |y| = ¢" and n > 2, (y7) acts irreducibly on P and (y?) centralizes
P;

(7) G =P xQ, where P = (a1) X (as) X - -+ X (a,) is an elementary abelian p-group and
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r>2,Q = (y) with |y| = ¢" and n > 1, [a1, Q] = 1, Q acts irreducibly on {as) X - -+ X (a,)
and ®(Q) centralizes P;

(8) G = P x @, where P = (a;) x (az) X -+ X (a,) is an elementary abelian p-group
with » > 2, Q = (y) with |y| = ¢" and n > 1, Q acts irreducibly on (a;) x --- X (a;—1) and
(@) x -+ x {(a,) with [ > 2, and ®(Q) centralizes P;

(9) G = P xQ, where P = (a;1) X {az) x --+ x {a,) (r > 2) is a p-group with |a;| =
las| = -+ = |a,| = p?, Q = (y) with |y| = ¢" and n > 1, Q acts irreducibly on ®(P), ®(Q)
centralizes P, and G/®(P) is a minimal non-abelian group;

(10) G = P x @, where P is a non-abelian special p-group of rank 2m, the order of p
modulo ¢ being 2m, @ = (y) is cyclic of order ¢" > 1, y induces an automorphism in P such
that P/®(P) is a faithful and irreducible @Q-module, and y centralizes ®(P). Furthermore,
|P/®(P)| = p*™ and |P'| < p™;

(11) G = P % @, where P is a non-abelian special p-group with exp(P) < p? and
|®(P)| > p?, Q = (y) with |y| = ¢" and n > 1, Q acts irreducibly on ®(P), ®(Q) centralizes
P, and G/®(P) is a minimal non-abelian group;

(12) G = P x Q, where P = (a;) X {(a3) x -+ x {a,) is an elementary abelian p-group
with r > 2, Q = (a,b|a? =07 =1, [a,b] = 1), [P, b] =

(13) G = P x Q, where P = (a;) X {(az) x -+ x {a,) is an elementary abelian p-group
with r > 2, Q = (a,b]| a? = b7 =1, [a,b] = 1), (a) and (b) act irreducibly on P;

(14) G = P x Q, where P = {a;) X {(ag) X -+ X {(a,) is an elementary abelian p-group
with r > 2, Q = (a,b | a* = 1,0*> = a®,b~'ab = a™'),[P,b] = 1 and (a) acts irreducibly on
P.

b

1, {a) acts irreducibly on P;

(15) G = P % Q, where P = (a;) X {ag) X -+ X {(a,) is an elementary abelian p-group
with r > 2, Q = (a,b | a* = 1,0* = a®>,b7'ab = a7 '), [P,a®] = 1, {a) and (b) act irreducibly
on P;

(16) G = P x Q, where P = (a;) x (ag) X -+ X {(a,) is an elementary abelian p-group
withr > 2, Q= (y,z|y?7  =27=1,[y,2] = 1) with n > 3, z € Z(G), (y) acts irreducibly
on P and (y?) centralizes P;

(17) G = P x Q, where P = (a;) x (ag) X --- X {(a,) is an elementary abelian p-group
withr > 2, Q = (y,z |y =20 =1,2"1yz = Yyt ) with n > 3 and n > 4 if ¢ = 2,
(2) < Cq(P), (y) acts irreducibly on P and (y?) centralizes P;

(18) G = PQ, where P = (z) 4 G with |P| =p, Q = ({a1) X (a2) x -+ X {a,_1)) % {(a,)
is a non-normal g-group with r > 3, F'(G) = O4(G) = (a1) X (as) x -+ X (a,_1), P acts
irreducibly on O,(G), a, 'za, = z* and p > ¢, where i is a primitive ¢-th root of unity
modulo p, F(G) is the Fitting subgroup of G.

Proof If GG is a solvable minimal non-SMSN-group whose order has exactly two prime
divisors, then we assume G = PQ, where P € Syl,(G) and Q € Syl,(G).

Assume that P and @) are neither cyclic nor normal in G. The solvability of G implies
that G has a normal subgroup M of prime index, say ¢. Let M, be a Sylow p-subgroup of
M. Since M is an SMSN-group, we have that M, is either cyclic or normal in M by Lemma
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2.1. Clearly M, must be normal in M since it is also a Sylow p-group of G. Now it follows
from M, char M < G that M, < G, a contradiction. So G has a Sylow subgroup which is
either cyclic or normal.

(1) Assume that P and @ are cyclic and let P = (z) and Q = (y) with || = p™, |y| = ¢"
and p > ¢. In this case, y~'zy = 2° with i" = 1(mod p™), 0 < i < p™ and (p, ¢"(i—1)) = 1.
Considering the maximal subgroups P(y?) and (a?)Q of G, if (a?)Q = (zP) x Q, then by
Lemma 2.4, G is nilpotent, a contradiction. This implies (2?)Q = (2P) X Q. By Lemma 2.1,
27 =1, (y7) is not normal in G, but (y¢°) is normal in G. So i # 1(mod p), i¢° = 1(mod p)
and G is of type (1).

(2) Assume that P is a cyclic normal subgroup of G and @ is neither cyclic nor normal
in G. If ¢ > p, then by Burnside’s theorem [1, 10.1.8], @ < G, a contradiction. So ¢ < p. If
@ has two non-cyclic maximal subgroups )7 and @s, then by Lemma 2.1, PQ); = P X Q,
PQy; =P x Qs and so Q = (Q1@)2 is normal in GG, a contradiction. Therefore, every maximal
subgroup of @ is cyclic or @ has a unique non-cyclic maximal subgroup, and so @ is an
elementary abelian g-group of order ¢?, the quaternion group (g or one of the types in
Lemma 2.5.

Case 1 Assume P = (z) and Q = (a,b | a? = b? = 1,[a,b] = 1). If (a) and (b) acting
on P by conjugation are both trivial, then G is nilpotent, a contradiction. Therefore, we
may assume that (a) acting on P by conjugation is non-trivial. By Lemma 2.1, 2P = 1.
If Cq(P) = P, then G/Cg(P) is an elementary abelian g-group of order ¢®>. However,
G/Cq(P) < Aut(P), and Aut(P) is cyclic, a contradiction. Hence b is contained in Cg(P).
Clearly, Cq(P) = (z), y ‘zy = 2%, |[x| = pq, y = a, ¢l[p— 1, i = 1(mod q) and i = 1(mod p),
where x = zb is a generator of Cg(P). So G is of type (2).

Case 2 Assume P = (z) and Q = Qg = (a,b | a* = 1,b%> = a®,b~tab = a~!). Similar
arguments as Case 1, we have that 2P = 1, b is contained in Cg(P) and |Z(G)| = 2. So
Cq(P) = (z) with |z| = 4p, y = a, y 'zy = 2 and > = 1(mod 4p), where z = zb is a
generator of Cg(P). By computations, G is of type (3).

Case 3 Assume that P = (z) and @ is the type of Lemma 2.5 (I) with |Q| = ¢". Namely,
Q= (y, 2| yi" =21 =1, [y, z] = 1), where n > 3. Then @ has maximal subgroups H = (y),
Ky = (y9,z) and K, = (y?, zy®) = (zy®) with s =1,--- ,¢ — 1, where K is the unique non-
cyclic maximal subgroup of Q. By hypothesis and Lemma 2.1, PH # Px H, PKy = P x K
and z? = 1. Hence G = (z,y,z | 2P = yi" =20 = 1,y oy = 2, [z,2] = 1,[y, 2] = 1),
where ¢ # 1(mod p), i? = 1(mod p). So G is of type (4).

Case 4 Assume that P = (z) and @ is the type of Lemma 2.5 (II) with |Q| = ¢".
Namely, Q = (y, z | yi" =20 =1, lyz = y1+q7l72>, where n > 3 andn > 4 if ¢ = 2.

lyy = 2%, where

In the similar way as above, we have that a? = 1, (z) < Cg(P) and y~
i # 1(mod p) and i? = 1(mod p). So G is of type (5).

(3) Assume that P is a non-cyclic normal subgroup of G and @ = (y) is non-normal
cyclic subgroup of G with |y| = ¢". If there exists a subgroup P* of P with 1 < ®(P) < P* <

P such that P*QQ = QP*, then P* <G since P* is subnormal in G. By Maschke’s theorem
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[1, 8.1.2], P has a subgroup K with 1 < K < P such that P/®(P) = P*/®(P) x K/®(P),
K <G, K # P*, and at least one of P*() and K@ is a non-nilpotent SMSN-group. By
Lemma 2.1, it is easy to see that P* N K = ®(P) = 1, a contradiction. Hence ®(P) =1 or
P/®(P) is the minimal normal subgroup of G/®(P) when ®(P) # 1.

Case 1 Assume ®(P) = 1. If P is a minimal normal subgroup of G, then by hypothesis,
the maximal subgroup P®(Q) of G is non-nilpotent. By Lemma 2.1, (y?) acts irreducibly
on P and [P, yq2] = 1. So G is of type (6). If P has a non-trivial proper subgroup P; which
is normal in G, then there exists a subgroup P, of P such that P = P, x P, and P, < G
by Maschke’s theorem [1, 8.1.2]. Clearly, at least one action that (y) acts on P, and P by
conjugation is non-trivial. If P,Q = P, x Q and P>,Q = P> x @, then by Maschke’s theorem
[1, 8.1.2] and Lemma 2.1, it is easy to see that |Pi| = p, [P,y?] = 1 and G is of type (7). If
PiQ =P, xQ and P,Q = P, x @, then by Lemma 2.1, (y) acts irreducibly on P; and Ps,
and [P,y?] = 1. So G is of type (8).

Case 2 Assume ®(P) > 1 and Z(P) = P. By the same arguments as the beginning
of (3), it is easy to see that ®(P) is the unique normal subgroup of G which is contained
in P, and so P is a homocyclic p-group (a product of some cyclic subgroups of the same
order). By Lemma 2.1 and Lemma 2.4, we have easily that the exponent of P is p?, one
maximal subgroup P®(Q) of G is nilpotent. Hence another maximal subgroup ®(P)Q is
non-nilpotent, and (y) acts irreducibly on ®(P). Clearly the quotient group G/®(P) is a
minimal non-abelian group. So G is of type (9).

Case 3 Assume ®(P) > 1 and Z(P) < P. Similarly, ®(P) = Z(P) = P’ is the unique
non-trivial characteristic subgroup of P, that is, P is a special p-group with exp(P) < p* and
P®(Q) is nilpotent. If ®(P)Q is nilpotent also, then by a result in [4, Theorem 2], G is of
type (10). If |®(P)| = p and p < ¢, then G belongs to type (10). If ®(P)Q is non-nilpotent
with |®(P)| = p and p > ¢, then G is minimal non-supersolvable. Examining a result in
[4, Theorem 10], G is not isomorphic to anyone of them. If ®(P)Q is non-nilpotent with
|®(P)| > p?, then the quotient group G/®(P) is a minimal non-abelian group. So G is of
type (11).

(4) Assume that P is a non-cyclic normal subgroup of G and @ is neither cyclic nor
normal in G. If ®(P) > 1, then by Lemma 2.1, PQ; and PQ, are both nilpotent and so
G is nilpotent, a contradiction, where Q1 and Q)5 are two distinct maximal subgroups of Q.
Hence P is an elementary abelian p-group of order p” with r > 2. Similar arguments as in
(2), Q is an elementary abelian g-group of order ¢, the quaternion group Qg or one of the
types in Lemma 2.5.

Case 1 Let Q@ = (a,b | a? = b? = 1,[a,b] = 1). Clearly, there exists a non-trivial
automorphism that (a) or (b) acts on P by conjugation. We may assume that (a) acting on
P by conjugation is non-trivial and (b) acting on P by conjugation is trivial. So G is of type
(12). If (a) and (b) acting on P by conjugation are both non-trivial, then G is of type (13).

Case 2 Let Q = Qg = (a,b | a* = 1,0*> = a®,b'ab = a~!). Similar arguments as
above, G is of either type (14) or type (15).



720 Journal of Mathematics Vol. 37

Case 3 Let @ be as in Lemma 2.5 (I) with |Q| = ¢". Namely, Q = (y, z | yi" =1 =
1,[y, 2] = 1), where n > 3. Similar arguments as Case 3 in (2), (y) acts irreducibly on P,
[P,y?] =1 and z € Z(G). So G is of type (16).

Case 4 Let Q be as in Lemma 2.5 (II) with |Q| = ¢". Namely, Q = (y,z | y¢" =
20 =1,z"1yz = prn_Q), where n > 3 and n > 4 if p = 2. Similar arguments as Case 4 in
(2), (y) acts irreducibly on P, [P,y?] =1 and (z) < C(P). So G is of type (17).

(5) Assume that P = (x) is a non-normal cyclic subgroup of G and @ is neither cyclic
nor normal in G. Clearly p > ¢q. The solvability of G implies that G' has a normal subgroup
M of prime index. If |G : M| = p, then it is easy to see that G has a normal Sylow
g-group since M is an SMSN-group and applying Lemma 2.1, a contradiction. Therefore,
|G : M| = q. If there exists a cyclic Sylow g-subgroup M, of M, then M has a normal Sylow
p-subgroup M,,, and so M, is a normal Sylow p-subgroup of G, a contradiction. Hence M,
is non-cyclic and |@Q| > ¢3. By Lemma 2.1, M, is normal in M and M, has a maximal
subgroup P; such that P; is normal in M, where M, is a Sylow p-subgroup of M. Hence
M, and P; are both subnormal in G. By Lemma 2.6, F(G) = Pi x M, = O,(G) x O4(G).
Clearly, O,(G) = (zP) and O,(G) = (a1) x (az) X --- x (a,_1) is an elementary abelian ¢-
group with |O,(G)| > ¢*. If Ng(P) is nilpotent, then Ng(P) = C(P) since P is cyclic. By
Burnside Theorem [1, 10.1.8], G is p-nilpotent, a contradiction. Hence Ng(P) = P(a,) is a
Schmidt subgroup of G, and so P(a?) is nilpotent with |P| = p by Lemma 2.1, where a,. is a
g-element. Since M is a Schmidt subgroup of G also, O,(G) is a minimal normal subgroup of
G and G = M N¢(P). Hence O,(G)(a,) is a Sylow g-subgroup of G and O,(G)N{(a,) = (a?).
Furthermore, |a,| = ¢ since O,(G)P is a Schmidt subgroup of G. If ®(Q)) = 1, then @ is
abelian. Hence Ng(Q) = Ce(Q) = Q <G. So G is g-nilpotent, a contradiction. If ®(Q) # 1,
then Q = ({a1) x (az2) X -+ x (ay—1)) % (a,). So G is of type (18).

Conversely, it is clear that the groups of types (1)—(18) are minimal non-SMSN-groups.

Theorem 3.3 The solvable minimal non-SMSN-group G whose order has exactly
three prime divisors p,q and r is exactly one of the following types (P, @ and R are Sylow
subgroups)

(1) G = (P x Q) xR, where [P,R] =1, |P| = p, Q is an elementary abelian g-group,
R = (a) is cyclic, R acts irreducibly on @) and (a") centralizes Q;

(2) G = (P x Q) x R, where P and @ are both elementary abelian, R = (a) is cyclic,
R acts irreducibly on P and @, (a") centralizes PQ);

(3) G =P x(Q x R), where P is an elementary abelian p-group, @ is a group of order
q, R is a group of order r, Q and R act irreducibly on P, respectively.

Proof It is easy to see that G has at least one normal Sylow subgroup and we assume
that G = PQR, where P € Syl,(Q), Q € Syl,(G), R € Syl,(G), and P <G, R 4 G. Clearly,
we only need consider the following cases.

Case 1 If Q <G,PR =P x Rand QR = Q x R, then QR is an SMSN-group. By
Lemma 2.1, @ is an elementary abelian ¢-group and R = (a) is cyclic. If |P| # p, then P,QR
is nilpotent by Lemma 2.1 again, a contradiction, where 1 < P; < P. Hence |P| = p and G
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is of type (1).

Similarly, if @ 9SG, PR =P x R and QR = @ x R, then G is isomorphic to type (1)
also. If Q <G, PR =P x R and QR = Q x R, it is easy to see that G is of type (2).

Case 2 f Q 4 G, PQ =P xQ, PR=P x R, QR = Q x R, then by Lemma 2.1, P
is an elementary abelian p-group, @ = (a) is a cyclic group of order ¢, ¢ > r and R = (b) is
cyclic. Since C(P) = P x R< Ng(P) =G, R <G, a contradiction.

Q4G PQ=PxQ PR=PxR, QR=Q xR, and ®(R) # 1, then PQ®(R) is
nilpotent by Lemma 2.1, a contradiction. Hence ®(R) = 1, then G is of type (3).

Similarly, if Q@ 4 G, PQ = P xQ, PR =P x R, QR = Q x R, then P is elementary
abelian, Q = (a) is a group of order ¢, R = (b) is a group of order r and r|g — 1. Let
|P| = p*,a > 1. Then by [16, Theorem 1.5], p* = 1(mod ¢), p® = 1(mod r). Hence

p® —1 = gm = rn, where m and n are integers. So ¢ = rnm ™!

, a contradiction.
Conversely, it is clear that the groups of types (1)—(3) are minimal non-SMSN-groups.
By Lemma 2.1, combining Theorem 3.1, Theorem 3.2 and Theorem 3.3, the complete
classification of the minimal non-SMSN-groups is as follows.
Corollary 3.4 The minimal non-SMSN-groups are exactly the groups of As, types
(1) to (18) of Theorem 3.2 and types (1) to (3) of Theorem 3.3, where Aj is the alternating

group of degree 5.
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