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Abstract: In this paper, we study the relations between the operator inequalities and the
operator monotone functions. By using the fundamental conclusions based on majorization, namely,
product lemma and product theorem for operator monotone functions, we can give some operator
inequalities. This result contains the Furuta inequality, which has a huge impact on positive
operator theory.
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1 Introduction

Let J be an interval such that J # (—o00,00). P(J) denotes the set of all operator
monotone functions on J. We set Py (J) ={f € P(J) | f(t)>0,te J}. If f € Py(a,b) and
—00 < a, then f has the natural extension to [a,b), which belongs to P, [a,b). We therefore
identify P, (a,b) with P,[a,b).

It is well-known that if f(¢) € P, (0,00), then % (if f # 0) and f(to‘)é are both in
P, (0,00), and that if f(t), #(¢), ¢(¢) are all in P, (0,00), then so are

Aol ) T #0).F07)o )
and f(t)*¢(t)'~* for 0 < a < 1 (see [1-5]). Throughout this work, we assume that a function
is continuous and increasing means “strictly increasing”. Further more, for convenience, let
B(H) denote the C*-algebra of all bounded linear operators acting on a Hilbert space H.
A capital letter A means an element belongs to B(H), ® means a positive linear map from
B(H) to B(H) and we assume ®(I) = I always stand (see [7, 8]). In this paper, we also
assume that J = [a,b) or J = (a,b) with —co < a < b < +o0.
Definition 1.1 [9, 10] LetP['(J), LP;(J) denote the following sets, respectively,

P (J) = {h|his increasing on J, h((a,b)) = (0,00), h~" € P(h(J))},
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where h~! stands for the inverse function of h.
LP. (J)={h|his defined on J, h(t) > 0on (a,b), logh € P(a,b)}.

Definition 1.2 Let h(t) and g(¢) be functions defined on J, and g(¢) is increasing, then

-1

h is said to be majorized by g, in symbol h < g if the composite hog™" is operator monotone

on g(J), which is equivalent to
o(A),o(B)CJ,  g(A) <g(B) = h(4) < h(B).

Lemma 1.1 (Product lemma) (see [9, 10]) Let h,g be non-negative functions defined
on J. Suppose the product hg is increasing, (hg)(a + 0) = 0 and (hg)(b —0) = co. Then

g=hgonJ <= h = hgonJ.
Moreover, for every 11,1, in P[0, 00),
g = hgon J == 1(h)i2(g) < hgon J.
Theorem 1.1 (Product theorem) (see [9,10])
PONI)-POI) C PN(T), LPIN(T) - PEN(T) € P
Further, let g;(t) € LPy(J) for 1 <i < m and h;(t) € P;'(J) for 1 < j < n. Then for every

Vi, ¢; € Py]0,00), we have

n

Hwi(gi) H¢j(hj) = Hgi th e PH(J).

j=1

2 Main Results

Before to prove our main results, we give the following lemmas.

Lemma 2.1 (L-H inequality) (see [2, 12]) If 0 < a <1,A > B >0, then A* > B“.

Lemma 2.2 (Furuta inequality) (see [6, 9]) Let A > B > 0, then

(1) (B2 A?B%)® > (B2 BPB?%)%;

(2) (A2 APA2)™ > (A2 BPA%)°,
WhereTZO,pzlwith0<a§%.

Lemma 2.3 (Hansen inequality) (see [13]) Let X and A be bounded linear operators
on H, and such that X > 0,||A|| < 1. If f is an operator monotone function on [0, 00), then

A f(X)A < f(A*XA).

Theorem 2.1 Put J # (—o00,0), n € P.(J) ﬂP_:l(J), fieP.(J),i=12--n,
g(t) € PEH(T) ULfi(t)}, and ky(t) = fi(t)fa(t) -+ fu(t). If h(t) is defined on J such that
fi(t)h(t) € P7'(J), then
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(i) the function ¢, on (0, 00) defined by

Pn(kn(HP(E)g(t)) = kn(t)n(t) (¢ € J) (2.1)

belongs to P, (0, 00);
(ii) if A < C < B, then

(K (C)2 h(A)g(A)k,(C)?) b (kn(C)2h(C)g(C)kn (C)?)
6n(kn(C)2R(B)g(B)kn(C)?).

Proof (i) Since fi(t) =t < fi(t)h(t), by product lemma h(t) < fi(t)h(t), therefore
h(t) is nondecreasing. When g € PJ:I(J)7 since ) € P+(J)ﬂP;1(J), we have n(t) <t < g(t).

Now putting 1o(s) = s, ¥1(g) = 1, ¥2(f1h) = f1, obviously, we have 1o, 91,92 € P, (0,00).
By taking s in ¢o(s) as fa - fn, and from product theorem, we obtain

kit = tho(fa -~ fn)1(9)¥2(f1h) 2 kn(D)R(E)g(t).

Therefore we have ¢,, belongs to P, (0, 00) for ¢,, given in (i).

When g(t) = f1(¢), by taking ¥o(s) = s, ¥1(g(t)h(t)) = n(t), we have g, 101 € P, (0, 00),
and then ¢, € P, (0,00) by product theorem.

(2.2)

(ii) First we prove that

=

C < B = ¢, (kn(C)2h(C)g(C)kn(C)?) < ¢ (kn(C)Zh(B)g(B)kn(C)?).

Since ¢, kn, h, g are all nonnegative, nondecreasing functions and J is a right open interval,
by considering C + ¢, B + ¢, we may assume that k,(C)z, h(C), h(B), g(C), g(B) are positive
semi-definite and invertible. Through (i),

P1([r(OR(B)g(t)) = fr()n(D)- (2.3)
Since 0 < f1(C) < f1(B) = f1(C)2 f1(B)"'f1(C)z < 1, by Lemma 2.3, we have

¢1(k1(C)2h(B)g(B)ki(C)2) = ¢1(f1(C)7 f1(B)% f1(B)h(B)g(B) f1(B) "% f1(C)%)

> f1(C): f1(B) "2 (f1(B)R(B)g(B)) f1(B) "2 f1(C)*
= [1(C)2 f1(B)"2 fu(B)n(B) f1(B) "2 fi(C)z
= f1(C)2n(B)f1(C)?

> f1(C)(C) = 61 (k (C)2(C)g(C)hi (C)%).
This implies the right part of (2.2) holds for n = 1. Next we assume the right part of (2.2)
holds for n — 1. Since k,_1(t)n(t) € P7'(J) and f, € Py(J), so fo <t < k,_1(t)n(t),
and this means that there exists ¥, € P;(0,00) such that f,(t) = U, (k,—1(¢t)n(t)). Put
5 = kn_1(t)n(t), we can obtain ¢, (¢, ", (s)¥,(s)) = s¥,(s). Since the following inequality
holds

b1 (kn_1(C)F1(C)g(CVhn_1(C)?) < Gy (kn_1(C)2h(B)g(B)kn_1(C)?).
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Denote the left side of the upper inequalities as H, the right one as K, we have
U, (H)2 W, (K)""W,(H)? <1
By H = ¢,_1(kn_1(C)h(C)g(C)) = ky—1(C)n(C), we obtain
U, (H) = fu(C),  &,11(K) = ky1(C)2h(B)g(B)kn-1(C)%. (2.4)

By Lemma 2.3 again, we obtain

vl
< @ e s
3 —
SRR

From the above inequalities and (2.4), we get

1

G (fu(C)2kn_1(C)2h(B)g(B)kn-1(C)% f(C)7)
> flC)kno1(C)N(C) = ¢ (kn(C)R(C)g(C)).

Therefore the right part of (2.2) holds for n, one can proof the left part of (2.2) similarly.

Remark In Theorem 2.1, let n =2, f1(t) = g(t) =1, fo(t) =¢"(r > 0), h(t) =t* (p >
1), and n(t) = t, then we have ¢o(t?*") = t'*7. So Furuta inequality can be obtained by
(2.2) and L-H inequality.

Lemma 2.4 (see [10, 11]) Put J # (—o0,00), then g € LP.(J) if and only if there
exists a sequence {g,} of a finite product of functions in Py (J) which converges pointwise
to g on J, further more, {g,} converges uniformly to g on every bounded closed subinterval
of J.

Theorem 2.2  Put J # (—o0,00), f(t) > 0 for t € J and n(t),h(t), k(t), g(t) are
nonnegative functions on J such that n € Py(J) NP '(J), f € P(J),fh € P7'(J),% €

f
LP,(J),g € P.'(J)U{f}, then
(i) the function ¢ on (0, 00) defined by
¢(k(B)h(t)g(t)) = k(t)n(t) (t€J) (2.5)

belongs to P, (0, c0);
(ii) If A <C < B, then for ¢ € P(0,00) such that ¢ < ¢ on (0, c0),

P(k(C)Fh(A)g(A)k(C)?) < p(k(C)*h(C)g(C)k(C)?) < @(k(C)2h(B)g(B)k(C)?). (2.6)

Proof (i) First consider g € P7'(J). Put I = £, then k = If and

|

k(t)h(t)g(t) = 1(t) f(O)h()g(t), K(t)n(t) = 1(E)f(E)n(t).
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Let to(s) = s, w1 (f(t)h(t)) = f(t), ¥2(g(t)) = n(t), then g, 1,12 € P (0,00). By taking
s = I(t) and applying product theorem, we get

Po(l() 91 (f()R(E))a(g(t)) = 1(E) f(E)R(E)g(1),
which equals to k(t)n(t) < k(t)h(t)g(t). So we have ¢ € P,(0,00) for ¢ such that

P(k(D)h(t)g(t)) = k(t)n(t) (t € I).

If g = f, taking ¥o(s) = s, ¥1(h(t)g(t)) = n(t), obviously, we have 1g,1; € Py(0,00), and
then g (k)11 (hg) < khg. Hence we also have ¢ € P, (0,00) from product theorem.

(ii) From Lemma 2.4, we obtain there exists a sequence {l,}, where [,(t) is a finite
product of functions in P, (J), such that 1,(t) converges ponitwise to I(t). Put k,(t) =
Ff@)l,(t) then we easily get k,(t) converges to k(t) = f(t)I(t). Define ¢, (k,(t)h(t)g(t)) =
k.(t)n(t) (t € J), ¢n € P (0,00). By Theorem 2.1, we have

n(kn(C)2h(A)g(A)kn(C)?)

Since k, (t)h(t)g(t) € P;'(J) therefore k,(t)h(t)g(t) is increasing on J and converges uni-
formly to k(t)h(t)g(t) on every compact interval of J. Since k(t)h(t)g(t)(€ P;'(J)) is
increasing, the inverse of k,(t)h(t)g(t) converges uniformly to one of k(t)h(t)g(t) on every
compact interval of J. It is also clear that &, (¢)n(t) converges uniformly to k(¢)n(t) on every
compact interval of J. Therefore ¢, converges uniformly to ¢ on every compact interval of
J, since k,(C) converges to k(C) in the operator norms, (2.6) holds for ¢ hence for any ¢
given by ¢ X ¢.

Lemma 2.5 (Choi inequality ) (see [6, 7]) Let ® be a positive unital linear map, then

(C1) when A >0 and —1 < p <0, then ®(A)? < (AP);

(C2) when A >0 and 0 <p <1, then ®(A)? > ®(AP);

(C3) when A >0 and 1 <p <2, then ®(A)? < O(AP).

Corollary 2.1 Put J # (—o0,00), f(t) > 0 for t € J and n(t),h(t),k(t),g(t) are
nonnegative functions on J such that n € Py(J) NP (J), f € Pi(J), fh € P;l(J),? €
LP,(J),g € Py*(J)U{f}, the function ¢ on (0,00) defined as (2.5), ® is a positive unital
linear map. If

AR® < AP AT < AR, 0<po < p1 < pa,
then for ¢ € P(0,00) such that ¢ < ¢,
P(R(B(AT) 7 ) FR(D(AT))g (BAT) R(B(AT) 7))
<p(R(R(AT)7) h(B(AT) 7 )g(2(AT) .
(P(A3

Nl

Po
P1

b2
iy

JR(P(AT)7)2) (2.7)

<(k(P(AD )7 ) ER(D(AR?) 72 )g(B(AL?) 72 )(D(AD*) 71 ) 2).

T

Proof By Choi inequality and L-H inequality, we obtain

(AR = B(AF) 7 2 D(AR)T = AP = B(AY) = B(AR),
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which contains CI)(AIQ’Q)% > @(A’ljl)%(l) > O(AP), from Theorem 2.2, we thus get (2.7).
Corollary 2.2 Put
h(t) k(t)

n(t)€P+(J)mP;1(J)7 T ?GLP+(0700)7 PJ“ZO

and p+r > 1, g(t) € P7'(0,00). The function ¢ on (0,00) is defined by

P(k()h(t)g(t)) = k(t)n(t) (t € J),¢ € P(0,00)

such that ¢ < ¢. Then (2.5) and (2.6) in Theorem 2.2 hold.
Proof Put ¢ = min{1,p}, then f(t) =t'"° € P;(0,00). Thus we get
ht) . _ k(t) _ k()
t)h(t) = —>t"P=¢ e P70 — =
f() () P € + ( 700)7 f(t) r
which means the conditions of Theorem 2.2 is satisfied. Therefore (2.5) and (2.6) in Theorem
2.2 hold.
Corollary 2.3 Put n(t) € P.(J)n P7'(J), ht(;), kt(f) € LP.(0,00), p,r > 0 and
p+r>1,s>1, we obtain

t'tet e LP,(0, 00),

log(k(C)2h(A)A*k(C)?) < log(k(C)2h(C)Ck(C)?) < log(k(C)>h(B)Bk(C)=).  (2.8)

Proof Put g(t) = t°(s > 1), n(t) = t in Corollary 2.2. Then we only need to show
logs < ¢(s),s € (0,00). The definition of ¢ is given in (2.5). The upper majorization
relationship is equivalent to

log(k(HA(DE) = GkWALE) = k(D).

It is obviously that logk(t),log h(t),logt® are operator monotone on (0,00) and k(t)t =
EByr+1 ¢ Pr1(0, 00), then

log(k(t)h(t)t*) = log k(t) 4+ log h(t) +logt® <t < k(t)t, € (0,00).

Therefore (2.8) holds.
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