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Abstract: In this paper, we study the relations between the operator inequalities and the

operator monotone functions. By using the fundamental conclusions based on majorization, namely,

product lemma and product theorem for operator monotone functions, we can give some operator

inequalities. This result contains the Furuta inequality, which has a huge impact on positive

operator theory.
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1 Introduction

Let J be an interval such that J 6= (−∞,∞). P (J) denotes the set of all operator
monotone functions on J . We set P+(J) = {f ∈ P (J) | f(t) ≥ 0, t ∈ J}. If f ∈ P+(a, b) and
−∞ < a, then f has the natural extension to [a, b), which belongs to P+[a, b). We therefore
identify P+(a, b) with P+[a, b).

It is well-known that if f(t) ∈ P+(0,∞), then t
f(t)

(if f 6= 0) and f(tα)
1
α are both in

P+(0,∞), and that if f(t), φ(t), ϕ(t) are all in P+(0,∞), then so are

φ(f(t))ϕ(
t

f(t)
) (if f 6= 0), f(tα)φ(t1−α)

and f(t)αφ(t)1−α for 0 < α < 1 (see [1–5]). Throughout this work, we assume that a function
is continuous and increasing means “strictly increasing”. Further more, for convenience, let
B(H) denote the C∗-algebra of all bounded linear operators acting on a Hilbert space H.
A capital letter A means an element belongs to B(H), Φ means a positive linear map from
B(H) to B(H) and we assume Φ(I) = I always stand (see [7, 8]). In this paper, we also
assume that J = [a, b) or J = (a, b) with −∞ ≤ a < b ≤ +∞.

Definition 1.1 [9, 10] LetP−1
+ (J), LP+(J) denote the following sets, respectively,

P−1
+ (J) =

{
h | h is increasing on J, h((a, b)) = (0,∞), h−1 ∈ P (h(J))

}
,
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where h−1 stands for the inverse function of h.

LP+(J) = {h | h is defined on J, h(t) > 0 on (a, b), log h ∈ P (a, b)} .

Definition 1.2 Let h(t) and g(t) be functions defined on J , and g(t) is increasing, then
h is said to be majorized by g, in symbol h ¹ g if the composite h◦g−1 is operator monotone
on g(J), which is equivalent to

σ(A), σ(B) ⊂ J, g(A) ≤ g(B) =⇒ h(A) ≤ h(B).

Lemma 1.1 (Product lemma) (see [9, 10]) Let h, g be non-negative functions defined
on J . Suppose the product hg is increasing, (hg)(a + 0) = 0 and (hg)(b− 0) = ∞. Then

g ¹ hg on J ⇐⇒ h ¹ hg on J.

Moreover, for every ψ1, ψ2 in P+[0,∞),

g ¹ hg on J =⇒ ψ1(h)ψ2(g) ¹ hg on J.

Theorem 1.1 (Product theorem) (see [9,10])

P−1
+ (J) · P−1

+ (J) ⊂ P−1
+ (J), LP−1

+ (J) · P−1
+ (J) ⊂ P−1

+ (J).

Further, let gi(t) ∈ LP+(J) for 1 ≤ i ≤ m and hj(t) ∈ P−1
+ (J) for 1 ≤ j ≤ n. Then for every

ψi, φj ∈ P+[0,∞), we have

m∏
i=1

ψi(gi)
n∏

j=1

φj(hj) ¹
m∏

i=1

gi

n∏
j=1

hj ∈ P−1
+ (J).

2 Main Results

Before to prove our main results, we give the following lemmas.
Lemma 2.1 (L-H inequality) (see [2, 12]) If 0 ≤ α ≤ 1, A ≥ B ≥ 0, then Aα ≥ Bα.

Lemma 2.2 (Furuta inequality) (see [6, 9]) Let A ≥ B ≥ 0, then
(1) (B

r
2 ApB

r
2 )α ≥ (B

r
2 BpB

r
2 )α;

(2) (A
r
2 ApA

r
2 )α ≥ (A

r
2 BpA

r
2 )α,

where r ≥ 0, p ≥ 1 with 0 < α ≤ 1+r
p+r

.
Lemma 2.3 (Hansen inequality) (see [13]) Let X and A be bounded linear operators

on H, and such that X ≥ 0, ‖A‖ ≤ 1. If f is an operator monotone function on [0,∞), then

A∗f(X)A ≤ f(A∗XA).

Theorem 2.1 Put J 6= (−∞,∞), η ∈ P+(J) ∩ P−1
+ (J), fi ∈ P+(J), i = 1, 2, · · · , n,

g(t) ∈ P−1
+ (J) ∪ {f1(t)}, and kn(t) = f1(t)f2(t) · · · fn(t). If h(t) is defined on J such that

f1(t)h(t) ∈ P−1
+ (J), then
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(i) the function φn on (0,∞) defined by

φn(kn(t)h(t)g(t)) = kn(t)η(t) (t ∈ J) (2.1)

belongs to P+(0,∞);
(ii) if A ≤ C ≤ B, then

φn(kn(C)
1
2 h(A)g(A)kn(C)

1
2 ) ≤ φn(kn(C)

1
2 h(C)g(C)kn(C)

1
2 )

≤ φn(kn(C)
1
2 h(B)g(B)kn(C)

1
2 ).

(2.2)

Proof (i) Since f1(t) ¹ t ¹ f1(t)h(t), by product lemma h(t) ¹ f1(t)h(t), therefore
h(t) is nondecreasing. When g ∈ P−1

+ (J), since η ∈ P+(J)∩P−1
+ (J), we have η(t) ¹ t ¹ g(t).

Now putting ψ0(s) = s, ψ1(g) = η, ψ2(f1h) = f1, obviously, we have ψ0, ψ1, ψ2 ∈ P+(0,∞).
By taking s in ψ0(s) as f2 · · · fn, and from product theorem, we obtain

knη = ψ0(f2 · · · fn)ψ1(g)ψ2(f1h) ¹ kn(t)h(t)g(t).

Therefore we have φn belongs to P+(0,∞) for φn given in (i).
When g(t) = f1(t), by taking ψ0(s) = s, ψ1(g(t)h(t)) = η(t), we have ψ0, ψ1 ∈ P+(0,∞),

and then φn ∈ P+(0,∞) by product theorem.
(ii) First we prove that

C ≤ B =⇒ φn(kn(C)
1
2 h(C)g(C)kn(C)

1
2 ) ≤ φn(kn(C)

1
2 h(B)g(B)kn(C)

1
2 ).

Since φn, kn, h, g are all nonnegative, nondecreasing functions and J is a right open interval,
by considering C + ε, B + ε, we may assume that kn(C)

1
2 , h(C), h(B), g(C), g(B) are positive

semi-definite and invertible. Through (i),

φ1(f1(t)h(t)g(t)) = f1(t)η(t). (2.3)

Since 0 ≤ f1(C) ≤ f1(B) =⇒ f1(C)
1
2 f1(B)−1f1(C)

1
2 ≤ 1, by Lemma 2.3, we have

φ1(k1(C)
1
2 h(B)g(B)k1(C)

1
2 ) = φ1(f1(C)

1
2 f1(B)−

1
2 f1(B)h(B)g(B)f1(B)−

1
2 f1(C)

1
2 )

≥ f1(C)
1
2 f1(B)−

1
2 φ1(f1(B)h(B)g(B))f1(B)−

1
2 f1(C)

1
2

= f1(C)
1
2 f1(B)−

1
2 f1(B)η(B)f1(B)−

1
2 f1(C)

1
2

= f1(C)
1
2 η(B)f1(C)

1
2

≥ f1(C)η(C) = φ1(k1(C)
1
2 h(C)g(C)k1(C)

1
2 ).

This implies the right part of (2.2) holds for n = 1. Next we assume the right part of (2.2)
holds for n − 1. Since kn−1(t)η(t) ∈ P−1

+ (J) and fn ∈ P+(J), so fn ¹ t ¹ kn−1(t)η(t),
and this means that there exists Ψn ∈ P+(0,∞) such that fn(t) = Ψn(kn−1(t)η(t)). Put
s = kn−1(t)η(t), we can obtain φn(φ−1

n−1(s)Ψn(s)) = sΨn(s). Since the following inequality
holds

φn−1(kn−1(C)
1
2 h(C)g(C)kn−1(C)

1
2 ) ≤ φn−1(kn−1(C)

1
2 h(B)g(B)kn−1(C)

1
2 ).



No. 4 Some operator inequalities of monotone functions containing Furuta inequality 701

Denote the left side of the upper inequalities as H, the right one as K, we have

Ψn(H)
1
2 Ψn(K)−1Ψn(H)

1
2 ≤ I.

By H = φn−1(kn−1(C)h(C)g(C)) = kn−1(C)η(C), we obtain

Ψn(H) = fn(C), φ−1
n−1(K) = kn−1(C)

1
2 h(B)g(B)kn−1(C)

1
2 . (2.4)

By Lemma 2.3 again, we obtain

φn(Ψn(H)
1
2 φ−1

n−1(K)Ψn(H)
1
2 )

= φn(Ψn(H)
1
2 Ψn(K)−

1
2 Ψn(K)φ−1

n−1(K)Ψn(K)−
1
2 Ψn(H)

1
2 )

≥ Ψn(H)
1
2 Ψn(K)−

1
2 φn(Ψn(K)φ−1

n−1(K))Ψn(K)−
1
2 Ψn(H)

1
2

= Ψn(H)
1
2 Ψn(K)−

1
2 KΨn(K)Ψn(K)−

1
2 Ψn(H)

1
2

= Ψn(H)
1
2 KΨn(H)

1
2 ≥ HΨn(H).

From the above inequalities and (2.4), we get

φn(fn(C)
1
2 kn−1(C)

1
2 h(B)g(B)kn−1(C)

1
2 fn(C)

1
2 )

≥ fn(C)kn−1(C)η(C) = φn(kn(C)h(C)g(C)).

Therefore the right part of (2.2) holds for n, one can proof the left part of (2.2) similarly.
Remark In Theorem 2.1, let n = 2, f1(t) = g(t) = 1, f2(t) = tr(r ≥ 0), h(t) = tp (p ≥

1), and η(t) = t, then we have φ2(tp+r) = t1+r. So Furuta inequality can be obtained by
(2.2) and L-H inequality.

Lemma 2.4 (see [10, 11]) Put J 6= (−∞,∞), then g ∈ LP+(J) if and only if there
exists a sequence {gn} of a finite product of functions in P+(J) which converges pointwise
to g on J , further more, {gn} converges uniformly to g on every bounded closed subinterval
of J .

Theorem 2.2 Put J 6= (−∞,∞), f(t) > 0 for t ∈ J and η(t), h(t), k(t), g(t) are
nonnegative functions on J such that η ∈ P+(J) ∩ P−1

+ (J), f ∈ P+(J), fh ∈ P−1
+ (J), k

f
∈

LP+(J), g ∈ P−1
+ (J) ∪ {f}, then

(i) the function φ on (0,∞) defined by

φ(k(t)h(t)g(t)) = k(t)η(t) (t ∈ J) (2.5)

belongs to P+(0,∞);
(ii) If A ≤ C ≤ B, then for ϕ ∈ P (0,∞) such that ϕ ¹ φ on (0,∞),

ϕ(k(C)
1
2 h(A)g(A)k(C)

1
2 ) ≤ ϕ(k(C)

1
2 h(C)g(C)k(C)

1
2 ) ≤ ϕ(k(C)

1
2 h(B)g(B)k(C)

1
2 ). (2.6)

Proof (i) First consider g ∈ P−1
+ (J). Put l = k

f
, then k = lf and

k(t)h(t)g(t) = l(t)f(t)h(t)g(t), k(t)η(t) = l(t)f(t)η(t).
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Let ψ0(s) = s, ψ1(f(t)h(t)) = f(t), ψ2(g(t)) = η(t), then ψ0, ψ1, ψ2 ∈ P+(0,∞). By taking
s = l(t) and applying product theorem, we get

ψ0(l(t))ψ1(f(t)h(t))ψ2(g(t)) ¹ l(t)f(t)h(t)g(t),

which equals to k(t)η(t) ¹ k(t)h(t)g(t). So we have φ ∈ P+(0,∞) for φ such that

φ(k(t)h(t)g(t)) = k(t)η(t) (t ∈ I).

If g = f , taking ψ0(s) = s, ψ1(h(t)g(t)) = η(t), obviously, we have ψ0, ψ1 ∈ P+(0,∞), and
then ψ0(k)ψ1(hg) ¹ khg. Hence we also have φ ∈ P+(0,∞) from product theorem.

(ii) From Lemma 2.4, we obtain there exists a sequence {ln}, where ln(t) is a finite
product of functions in P+(J), such that ln(t) converges ponitwise to l(t). Put kn(t) =
f(t)ln(t) then we easily get kn(t) converges to k(t) = f(t)l(t). Define φn(kn(t)h(t)g(t)) =
kn(t)η(t) (t ∈ J), φn ∈ P+(0,∞). By Theorem 2.1, we have

φn(kn(C)
1
2 h(A)g(A)kn(C)

1
2 ) ≤ φn(kn(C)

1
2 h(C)g(C)kn(C)

1
2 )

≤ φn(kn(C)
1
2 h(B)g(B)kn(C)

1
2 ).

Since kn(t)h(t)g(t) ∈ P−1
+ (J) therefore kn(t)h(t)g(t) is increasing on J and converges uni-

formly to k(t)h(t)g(t) on every compact interval of J . Since k(t)h(t)g(t)(∈ P−1
+ (J)) is

increasing, the inverse of kn(t)h(t)g(t) converges uniformly to one of k(t)h(t)g(t) on every
compact interval of J . It is also clear that kn(t)η(t) converges uniformly to k(t)η(t) on every
compact interval of J . Therefore φn converges uniformly to φ on every compact interval of
J , since kn(C) converges to k(C) in the operator norms, (2.6) holds for φ hence for any ϕ

given by ϕ ¹ φ.
Lemma 2.5 (Choi inequality ) (see [6, 7]) Let Φ be a positive unital linear map, then
(C1) when A > 0 and −1 ≤ p ≤ 0, then Φ(A)p ≤ Φ(Ap);
(C2) when A ≥ 0 and 0 ≤ p ≤ 1, then Φ(A)p ≥ Φ(Ap);
(C3) when A ≥ 0 and 1 ≤ p ≤ 2, then Φ(A)p ≤ Φ(Ap).
Corollary 2.1 Put J 6= (−∞,∞), f(t) > 0 for t ∈ J and η(t), h(t), k(t), g(t) are

nonnegative functions on J such that η ∈ P+(J) ∩ P−1
+ (J), f ∈ P+(J), fh ∈ P−1

+ (J), k
f
∈

LP+(J), g ∈ P−1
+ (J) ∪ {f}, the function φ on (0,∞) defined as (2.5), Φ is a positive unital

linear map. If
Ap0

0 ≤ Ap0
1 , Ap1

1 ≤ Ap1
2 , 0 ≤ p0 ≤ p1 ≤ p2,

then for ϕ ∈ P (0,∞) such that ϕ ¹ φ,

ϕ(k(Φ(Ap1
1 )

p0
p1 )

1
2 h(Φ(Ap0

0 ))g(Φ(Ap0
0 ))k(Φ(Ap1

1 )
p0
p1 )

1
2 )

≤ϕ(k(Φ(Ap1
1 )

p0
p1 )

1
2 h(Φ(Ap1

1 )
p0
p1 )g(Φ(Ap1

1 )
p0
p1 )k(Φ(Ap1

1 )
p0
p1 )

1
2 )

≤ϕ(k(Φ(Ap1
1 )

p0
p1 )

1
2 h(Φ(Ap2

2 )
p0
p2 )g(Φ(Ap2

2 )
p0
p2 )k(Φ(Ap1

1 )
p0
p1 )

1
2 ).

(2.7)

Proof By Choi inequality and L-H inequality, we obtain

Φ(Ap2
2 )

p0
p2 = Φ(Ap2

2 )
p1
p2
· p0

p1 ≥ Φ(Ap1
2 )

p0
p1 ≥ Φ(Ap1

1 )
p0
p1 ≥ Φ(Ap0

1 ) ≥ Φ(Ap0
0 ),
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which contains Φ(Ap2
2 )

p0
p2 ≥ Φ(Ap1

1 )
p0
p1 ≥ Φ(Ap0

0 ), from Theorem 2.2, we thus get (2.7).
Corollary 2.2 Put

η(t) ∈ P+(J) ∩ P−1
+ (J),

h(t)
tp

,
k(t)
tr

∈ LP+(0,∞), p, r ≥ 0

and p + r ≥ 1, g(t) ∈ P−1
+ (0,∞). The function φ on (0,∞) is defined by

φ(k(t)h(t)g(t)) = k(t)η(t) (t ∈ J), ϕ ∈ P (0,∞)

such that ϕ ¹ φ. Then (2.5) and (2.6) in Theorem 2.2 hold.
Proof Put c = min {1, p}, then f(t) = t1−c ∈ P+(0,∞). Thus we get

f(t)h(t) =
h(t)
tp

t1+p−c ∈ P−1
+ (0,∞),

k(t)
f(t)

=
k(t)
tr

tr+c−1 ∈ LP+(0,∞),

which means the conditions of Theorem 2.2 is satisfied. Therefore (2.5) and (2.6) in Theorem
2.2 hold.

Corollary 2.3 Put η(t) ∈ P+(J) ∩ P−1
+ (J), h(t)

tp , k(t)
tr ∈ LP+(0,∞), p, r ≥ 0 and

p + r ≥ 1, s ≥ 1, we obtain

log(k(C)
1
2 h(A)Ask(C)

1
2 ) ≤ log(k(C)

1
2 h(C)Csk(C)

1
2 ) ≤ log(k(C)

1
2 h(B)Bsk(C)

1
2 ). (2.8)

Proof Put g(t) = ts(s ≥ 1), η(t) = t in Corollary 2.2. Then we only need to show
log s ¹ φ(s), s ∈ (0,∞). The definition of φ is given in (2.5). The upper majorization
relationship is equivalent to

log(k(t)h(t)ts) ¹ φ(k(t)h(t)ts) = k(t)t.

It is obviously that log k(t), log h(t), log ts are operator monotone on (0,∞) and k(t)t =
k(t)
tr tr+1 ∈ P−1

+ (0,∞), then

log(k(t)h(t)ts) = log k(t) + log h(t) + log ts ¹ t ¹ k(t)t, t ∈ (0,∞).

Therefore (2.8) holds.
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一些蕴含Furuta不等式的算子单调函数的算子不等式

杨长森,杨朝军

(河南师范大学数学与信息科学学院, 河南新乡 453007)

摘要: 本文研究了算子不等式与算子单调函数之间的联系. 利用关于算子单调函数的乘积引理, 乘积

定理等基本控制原理, 给出许多算子不等式, 这些不等式可包含正算子理论中应有十分广泛的Furuta不等式.
关键词: 算子单调函数; 积引理; 积定理; 控制
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