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Abstract: In this paper, we study the differential equation on the line bundle over the
pseudo-Riemannian symmetric space SL(n + 1,R)/S(GL(1,R) x GL(n,R)). We use Lie algebraic
method, i.e., Casimir operator to obtain the desired differential operator. The differential equation
turns out to be a hypergeometric differential equation, which generalizes the differential equations
in [1, 3, 5].
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1 Introduction

Hypergeometric functions play important roles in harmonic analysis over pseudo-Rieman
nian symmetric spaces. Hyperbolic spaces are examples of pseudo-Riemannian symmetric
spaces. There are a lot of work on hyperbolic spaces such as [3, 4]. Using a geometric method,
Faraut obtained a second order differential equation in the explicit case of hyperbolic spaces
U(p,q;F)/U(1;F) x U(p — 1,¢;F) with F =R, C or H in [3]. Later in an algebraic way, i.e.,
through Casimir operator of sl(n + 1,R), van Dijk and Kosters obtained a hypergeometric
equation on the pseudo-Riemannian smmetric space SL(n + 1,R)/GL(n,R) in [5].

A natural extension of [3, 5] is harmonic analysis on the sections of vector bundles over
pseudo-Riemannian symmetric spaces. Charchov obtained a hypergeometric equation on the
sections of line bundles over complex hyperbolic spaces U(p, ¢; C)/U(1;C) x U(p — 1,¢;C)
in his doctor thesis [1]. The differential equation in [1] is the same as the one in [3]. In
this paper we will follow the method in [6] to obtain the hypergeometric equation on the
sections of line bundles over SL(n + 1,R)/GL(n,R). When the parameter \ is zero, our
result degenerates to the differential equation in [5]. Our hypergeometric equation will be
used to obtaining the Plancherel formula on the sections of the line bundle over SL(n +
1,R)/S(GL(1,R) x GL(n,R)) in a future paper.
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2 Preliminaries and Main Result
Let G = SL(n + 1,R) and H; = SL(n,R). We imbed H; in G as usual, i.e., for any
1
h e Hy, h— ( b ) € G. Let H be the subgroup of G:

H = S(GL(1,R) x GL(n,R)) = { ( deth™! . ) he GL(n,R)} .

In what follows A denotes the transpose of a matrix A. Let X; be the algebraic manifold

of
R:Jrl % ]R1L+1 (R:r‘rl — Rf+1 \ {0}>
defined by
Xy = {(z,y) e RI X R (2,y) = woyo + 2191 + -+ + Ty = 1},
where z = t(xovxlv e axn)a Y= t<y07y1> o 7yn)7 G acts on RZJrl X RZ+1 by

g (x,y) = (92,'¢ ') (2.1)

for any g € G and any (x,y) € R?™ x R*™!. With this action, X, is transitive under G. Let
2% = (ep, e0) € X1 where ¢ is the first standard unit vector in R"*!, i.e., eg = *(1,0,--- ,0).
Then the stabilizer of 2z° in G is H;. An elementary proof shows that X; ~ G/H;. We also
have X ~ G/H where X = {z € M,,;1(R) : rankz = trz = 1}, here M,,;1(R) is the space of
all real (n + 1) x (n + 1) matrices. G acts on M,,;1(R) by conjugation (see [5])

g-x=grg " (9€G,zeM,1(R)). (2.2)

Let g = sl(n + 1,R) be the Lie algebra of G. The Killing form of g is B(X,Y) =
2(n+1)trXY for X, Y € g. The Killing form induces a measure on X;. With this measure,
the Casimir operator €) of g induces a second order differential operator on X;. We call it
the Laplace operator and denote it as [Jy.

For A € R, set xo(t) = tﬁ)‘, t € R, be a continuous unitary character of R,. Define a
= py

character x, of H as x, (h) = xo(ho) for

h:<h° >6H.
hy

Let D(X;) be the space of complex-valued C*°-functions on X; with compact support. The
action of G on X; induces a representation U of G in D(X;):

Ulg)f(z)=f(g"'z), ¢g€G, z€Xi, feD(X)

and by inverse transposition a representation U of G in D'(X;).
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We define
D'(X1,x,) ={T € D'(Xy): UMR)T = x,(h)"'T, he H}.

Because x, = 1 on H;, the above distributions 7" can be viewed as the bi-H;-invariant
distributions on G satisfying U(h)T = x, (h)~'T, h € H.
If p € C, define

D/(th/\?/“j‘) = {T € D/(XlaXA) : DllT = :LLT}?

where 0] is the transpose of the Laplace operator ;.

Definition 2.1 The x,-spherical distributions 7" on X; are the distributions on G
satisfying the following properties

e T is Hy-invariant,

o T'(hx)=x,(h)T(z), he H, x € Xy,

o NT = puT for some p € C.

As in [2], we define a mapping Q1 : X; — R by Q:(x,y) = zoyo. We take the open
subsets X? = {(z,y) € X1 : Qi(z,y) < 1} and X| = {(z,y) € X1 : Q1(z,y) > 0} of X;.
There is an averaging mapping M : f +— M f defined by

My f(t) = ; [z, y)6(Q1(z,y) — t)d(z,y),
where ¢ is the Dirac measure and d(z,y) is a G-invariant measure on X;. Define £ : X; — R?
by £(2.4) = (€1(2.9),&(2,9)) = (x0,0)- Then xo 0 &i(x,y) = o™ Let M{ =y, =
(xo0&1)- M where M} is the adjoint of M;. Then we have the main theorem of this paper.
Theorem 2.1 There is a second order differential operator Ly on R such that the
following formula holds

Oy o MY =gy = My =n 0 L, (2.3)
where
d? d on
Ly = 4t(t 1) 2 +[4((n 4+ 1)t = ) +4V=INE = 1)) 2+ = VIV I n £ 1), (2.4)

3 Proof of Main Result

We take a basis of g = sl(n+ 1,R) as
1 n+1

{En == B Bjj— B ja(2<j <) Bi Ea(2<s <n+ 1), Eu(2<k#L<n+ 1)} :
=2

where Eo3 = (00,08,) 0 is as usual.

On X; we take the coordinates {xo, Yo, T1, Y1, " * s Tn_1,Yn—1, Tn}. Using (2.1), we follow
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the way in [6] to express F,s as differential operators on X; in terms of the coordinates

{20, Y0, T1, Y1, sy Tn_1,Yn_1,Tn}. The results are
n+1 n n—1
0 1 0 0
Bi— = Ey=wog— Yoz —+— | =D @iz- 5 s (31
11 Z y08y0+n< 2::33 axi‘FZ?Jayi) (3.1)
0 0
Fi,=x,_1— — , 2<j3<mn, 3.2
1j Jj—1 3:60 Yo ayj—l J ( )
0
El,n+1 = xna?7 (3-3)
0
0 0
Fi=co——yi_1—, 2<j5<n, 3.4
i1 = Zo 9z, 1 Yj 18y0 SJ=Nn (3.4)
0 1 —2oyo — 2191 — " — Tp—1Yn—1 0
F, =Tog— — —_— 3.5
+1,1 To oz, T 321/0 ( )

Following [1], let the function F on X; be the form F(x,y) = F(z¢,yo). We calculate
the action of the Laplace operator [J; or the Casimir operator §2 on such functions. Because

F depends on xg, yo only, we take ) as

k=2

n+1 2 n+1
n 1
2(n+1)Q = ] (Eu - — Z Eu> + Z EqEy + Ey1 Eqy) + other terms,  (3.6)

where the ‘other terms’ are the combinations of Fy;(2 < k # [ < n+1). With the coordinates
{x()a Yo, T1,Y1," ;Tn—1,Yn—1, xn}7 uSing (31)7(35)7 we have

n 0? 0? 2 0?
2(TL+ 1)QF(£IJO7y0) = {M < Oaxo +y0 6y0> + <TL—|— 1.T0y0 — 2) amoayo

nn+2) 0 nnh+2) I
il ﬂﬂoamO Thrl yO@yo F(zo,yo)- (3.7)

Now taking function F'(zg,yo) with the form F(zo,yo) = x(‘)ﬁ Fo(zoyo) and t = zoyo,
we obtain
A(n 4 1)Qzy " Fo(zoyo)) = 2~ Ly Fo(zoyo) (3.8)
with
d? d
Ly =4t(t— 1)ﬁ +A4((n+ 1Dt —1)+4vV—-1A(t — 1)]% —IANV=1A+n+1). (3.9

For f € D(X;), T € D'(R),
/X T[T 0 Q1) - & ), y) f (2, y)d(, y)

- / (AT (@ (.9)) - €M) (2, )z, ) = / (LaT)(2) / V@) f () dads
X, R Q

1(z)=t
= (LT, My&Y P g = (MG LT, &7 fx, = (&P MILLT, f)x,, (3.10)
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tL'DmTan-af”Kmyﬁ@zwﬂay)

/X (T oQ1)(x,y) - & (w,y) (O ) (z, y)d(z, )

(T M€ PO ))e = (MT, & P00 f)x, = (OiM] =, T, flx,. (3.11)

Comparing (3.10) and (3.11), we have [J; o M V= ’1\/_7/\ o Ly. This completes
the proof of Theorem 2.1.
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