A HYPERGEOMETRIC EQUATION ON THE LINE BUNDLE OVER $SL(n + 1, \mathbb{R})/S(GL(1, \mathbb{R}) \times GL(n, \mathbb{R}))$

YANG Xiang-hui¹, HE Min-hua¹, ZHU Li^{1,2}

(1. School of Science, Wuhan Institute of Technology, Wuhan 430205, China)
(2. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China)

Abstract: In this paper, we study the differential equation on the line bundle over the pseudo-Riemannian symmetric space $SL(n+1,\mathbb{R})/S(GL(1,\mathbb{R})\times GL(n,\mathbb{R}))$. We use Lie algebraic method, i.e., Casimir operator to obtain the desired differential operator. The differential equation turns out to be a hypergeometric differential equation, which generalizes the differential equations in [1, 3, 5].

Keywords: Casimir operator; pseudo-Riemannian symmetric space; line bundle; hypergeometric equation

2010 MR Subject Classification: 22E46; 33C05

Document code: A Article ID: 0255-7797(2017)04-0667-05

1 Introduction

Hypergeometric functions play important roles in harmonic analysis over pseudo-Rieman nian symmetric spaces. Hyperbolic spaces are examples of pseudo-Riemannian symmetric spaces. There are a lot of work on hyperbolic spaces such as [3, 4]. Using a geometric method, Faraut obtained a second order differential equation in the explicit case of hyperbolic spaces $U(p,q;\mathbb{F})/U(1;\mathbb{F}) \times U(p-1,q;\mathbb{F})$ with $\mathbb{F} = \mathbb{R}, \mathbb{C}$ or \mathbb{H} in [3]. Later in an algebraic way, i.e., through Casimir operator of $\mathfrak{sl}(n+1,\mathbb{R})$, van Dijk and Kosters obtained a hypergeometric equation on the pseudo-Riemannian symmetric space $SL(n+1,\mathbb{R})/GL(n,\mathbb{R})$ in [5].

A natural extension of [3, 5] is harmonic analysis on the sections of vector bundles over pseudo-Riemannian symmetric spaces. Charchov obtained a hypergeometric equation on the sections of line bundles over complex hyperbolic spaces $U(p,q;\mathbb{C})/U(1;\mathbb{C}) \times U(p-1,q;\mathbb{C})$ in his doctor thesis [1]. The differential equation in [1] is the same as the one in [3]. In this paper we will follow the method in [6] to obtain the hypergeometric equation on the sections of line bundles over $SL(n+1,\mathbb{R})/GL(n,\mathbb{R})$. When the parameter λ is zero, our result degenerates to the differential equation in [5]. Our hypergeometric equation will be used to obtaining the Plancherel formula on the sections of the line bundle over $SL(n+1,\mathbb{R})/S(GL(1,\mathbb{R}) \times GL(n,\mathbb{R}))$ in a future paper.

Foundation item: Supported by the Research Foundation of Education Department of Hubei Province (Q20121512).

Biography: Yang Xianghui (1980–), female, born at Xiantao, Hubei, lecturer, major in functional differential equations.

2 Preliminaries and Main Result

Let $G = \mathrm{SL}(n+1,\mathbb{R})$ and $H_1 = \mathrm{SL}(n,\mathbb{R})$. We imbed H_1 in G as usual, i.e., for any $h \in H_1, h \mapsto \begin{pmatrix} 1 \\ h \end{pmatrix} \in G$. Let H be the subgroup of G:

$$H = S(\operatorname{GL}(1,\mathbb{R}) \times \operatorname{GL}(n,\mathbb{R})) = \left\{ \left(\begin{array}{cc} \det h^{-1} & \\ & h \end{array} \right) : h \in \operatorname{GL}(n,\mathbb{R}) \right\}.$$

In what follows ${}^{t}A$ denotes the transpose of a matrix A. Let X_1 be the algebraic manifold of

$$\mathbb{R}^{n+1}_* \times \mathbb{R}^{n+1}_* \ (\mathbb{R}^{n+1}_* = \mathbb{R}^{n+1}_* \setminus \{\mathbf{0}\})$$

defined by

$$X_1 = \{(x, y) \in \mathbb{R}^{n+1}_* \times \mathbb{R}^{n+1}_* : \langle x, y \rangle = x_0 y_0 + x_1 y_1 + \dots + x_n y_n = 1\},$$

where $x = {}^{t}(x_0, x_1, \dots, x_n), y = {}^{t}(y_0, y_1, \dots, y_n), G \text{ acts on } \mathbb{R}^{n+1}_* \times \mathbb{R}^{n+1}_*$ by

$$g \cdot (x, y) = (gx, {}^{t}g^{-1}y) \tag{2.1}$$

for any $g \in G$ and any $(x,y) \in \mathbb{R}^{n+1}_* \times \mathbb{R}^{n+1}_*$. With this action, X_1 is transitive under G. Let $x^0 = (e_0, e_0) \in X_1$ where e_0 is the first standard unit vector in \mathbb{R}^{n+1} , i.e., $e_0 = {}^t(1, 0, \dots, 0)$. Then the stabilizer of x^0 in G is H_1 . An elementary proof shows that $X_1 \simeq G/H_1$. We also have $X \simeq G/H$ where $X = \{x \in M_{n+1}(\mathbb{R}) : \operatorname{rank} x = \operatorname{tr} x = 1\}$, here $M_{n+1}(\mathbb{R})$ is the space of all real $(n+1) \times (n+1)$ matrices. G acts on $M_{n+1}(\mathbb{R})$ by conjugation (see [5])

$$g \cdot x = gxg^{-1} \quad (g \in G, x \in \mathcal{M}_{n+1}(\mathbb{R})). \tag{2.2}$$

Let $\mathfrak{g} = \mathfrak{sl}(n+1,\mathbb{R})$ be the Lie algebra of G. The Killing form of \mathfrak{g} is $B(X,Y) = 2(n+1) \operatorname{tr} XY$ for $X, Y \in \mathfrak{g}$. The Killing form induces a measure on X_1 . With this measure, the Casimir operator Ω of \mathfrak{g} induces a second order differential operator on X_1 . We call it the Laplace operator and denote it as \square_1 .

For $\lambda \in \mathbb{R}$, set $\chi_0(t) = t^{\sqrt{-1}\lambda}$, $t \in \mathbb{R}_*$ be a continuous unitary character of \mathbb{R}_* . Define a character χ_{λ} of H as $\chi_{\lambda}(h) = \chi_0(h_0) = h_0^{\sqrt{-1}\lambda}$ for

$$h = \left(\begin{array}{cc} h_0 \\ h_1 \end{array}\right) \in H.$$

Let $\mathcal{D}(X_1)$ be the space of complex-valued C^{∞} -functions on X_1 with compact support. The action of G on X_1 induces a representation U of G in $\mathcal{D}(X_1)$:

$$U(g)f(x) = f(g^{-1}x), \quad g \in G, \ x \in X_1, \ f \in \mathcal{D}(X_1)$$

and by inverse transposition a representation U of G in $\mathcal{D}'(X_1)$.

We define

$$\mathcal{D}'(X_1, \chi_{\lambda}) = \{ T \in \mathcal{D}'(X_1) : U(h)T = \chi_{\lambda}(h)^{-1}T, h \in H \}.$$

Because $\chi_{\lambda} = 1$ on H_1 , the above distributions T can be viewed as the bi- H_1 -invariant distributions on G satisfying $U(h)T = \chi_{\lambda}(h)^{-1}T$, $h \in H$.

If $\mu \in \mathbb{C}$, define

$$\mathcal{D}'(X_1,\chi_{\lambda},\mu) = \{ T \in \mathcal{D}'(X_1,\chi_{\lambda}) : \Box_1'T = \mu T \},\$$

where \square'_1 is the transpose of the Laplace operator \square_1 .

Definition 2.1 The χ_{λ} -spherical distributions T on X_1 are the distributions on G satisfying the following properties

- T is H_1 -invariant,
- $T(hx) = \chi_{\lambda}(h)T(x), h \in H, x \in X_1,$
- $\square_1'T = \mu T$ for some $\mu \in \mathbb{C}$.

As in [2], we define a mapping $Q_1: X_1 \to \mathbb{R}$ by $Q_1(x,y) = x_0y_0$. We take the open subsets $X_1^0 = \{(x,y) \in X_1: Q_1(x,y) < 1\}$ and $X_1^1 = \{(x,y) \in X_1: Q_1(x,y) > 0\}$ of X_1 . There is an averaging mapping $\mathcal{M}_1: f \mapsto \mathcal{M}_1 f$ defined by

$$\mathcal{M}_1 f(t) = \int_{X_1} f(x, y) \delta(Q_1(x, y) - t) d(x, y),$$

where δ is the Dirac measure and d(x,y) is a G-invariant measure on X_1 . Define $\xi: X_1 \to \mathbb{R}^2$ by $\xi(x,y) = (\xi_1(x,y), \xi_2(x,y)) = (x_0,y_0)$. Then $\chi_0 \circ \xi_1(x,y) = x_0^{\sqrt{-1}\lambda}$. Let $\mathcal{M}'_{1,\sqrt{-1}\lambda} = (\chi_0 \circ \xi_1) \cdot \mathcal{M}'_1$ where \mathcal{M}'_1 is the adjoint of \mathcal{M}_1 . Then we have the main theorem of this paper.

Theorem 2.1 There is a second order differential operator L_{λ} on $\mathbb R$ such that the following formula holds

$$\square_1' \circ \mathcal{M}_{1,\sqrt{-1}\lambda}' = \mathcal{M}_{1,\sqrt{-1}\lambda}' \circ L_\lambda, \tag{2.3}$$

where

$$L_{\lambda} = 4t(t-1)\frac{d^2}{dt^2} + \left[4((n+1)t-1) + 4\sqrt{-1}\lambda(t-1)\right]\frac{d}{dt} + \frac{2n}{n+1}\sqrt{-1}\lambda(\sqrt{-1}\lambda + n + 1). \quad (2.4)$$

3 Proof of Main Result

We take a basis of $\mathfrak{g} = \mathfrak{sl}(n+1,\mathbb{R})$ as

$$\left\{E_{11} - \frac{1}{n} \sum_{i=2}^{n+1} E_{ii}, E_{jj} - E_{j+1,j+1} (2 \le j \le n), E_{1s}, E_{s1} (2 \le s \le n+1), E_{kl} (2 \le k \ne l \le n+1)\right\},$$

where $E_{\alpha\beta} = (\delta_{\alpha\mu}\delta_{\beta\nu})_{\mu\nu}$ is as usual.

On X_1 we take the coordinates $\{x_0, y_0, x_1, y_1, \cdots, x_{n-1}, y_{n-1}, x_n\}$. Using (2.1), we follow

the way in [6] to express $E_{\alpha\beta}$ as differential operators on X_1 in terms of the coordinates $\{x_0, y_0, x_1, y_1, \dots, x_{n-1}, y_{n-1}, x_n\}$. The results are

$$E_{11} - \frac{1}{n} \sum_{i=2}^{n+1} E_{ii} = x_0 \frac{\partial}{\partial x_0} - y_0 \frac{\partial}{\partial y_0} + \frac{1}{n} \left(-\sum_{i=1}^n x_i \frac{\partial}{\partial x_i} + \sum_{i=1}^{n-1} y_i \frac{\partial}{\partial y_i} \right), \quad (3.1)$$

$$E_{1j} = x_{j-1} \frac{\partial}{\partial x_0} - y_0 \frac{\partial}{\partial y_{j-1}}, \quad 2 \le j \le n, \tag{3.2}$$

$$E_{1,n+1} = x_n \frac{\partial}{\partial x_0},\tag{3.3}$$

$$E_{j1} = x_0 \frac{\partial}{\partial x_{j-1}} - y_{j-1} \frac{\partial}{\partial y_0}, \quad 2 \le j \le n, \tag{3.4}$$

$$E_{n+1,1} = x_0 \frac{\partial}{\partial x_n} - \frac{1 - x_0 y_0 - x_1 y_1 - \dots - x_{n-1} y_{n-1}}{x_n} \frac{\partial}{\partial y_0}.$$
 (3.5)

Following [1], let the function F on X_1 be the form $F(x,y) = F(x_0,y_0)$. We calculate the action of the Laplace operator \square_1 or the Casimir operator Ω on such functions. Because F depends on x_0, y_0 only, we take Ω as

$$2(n+1)\Omega = \frac{n}{n+1} \left(E_{11} - \frac{1}{n} \sum_{i=2}^{n+1} E_{ii} \right)^2 + \sum_{k=2}^{n+1} (E_{1k} E_{k1} + E_{k1} E_{1k}) + \text{other terms}, \quad (3.6)$$

where the 'other terms' are the combinations of $E_{kl}(2 \le k \ne l \le n+1)$. With the coordinates $\{x_0, y_0, x_1, y_1, \cdots, x_{n-1}, y_{n-1}, x_n\}$, using (3.1)–(3.5), we have

$$2(n+1)\Omega F(x_0, y_0) = \left\{ \frac{n}{n+1} \left(x_0^2 \frac{\partial^2}{\partial x_0^2} + y_0^2 \frac{\partial^2}{\partial y_0^2} \right) + \left(\frac{2}{n+1} x_0 y_0 - 2 \right) \frac{\partial^2}{\partial x_0 \partial y_0} + \frac{n(n+2)}{n+1} x_0 \frac{\partial}{\partial x_0} + \frac{n(n+2)}{n+1} y_0 \frac{\partial}{\partial y_0} \right\} F(x_0, y_0).$$
(3.7)

Now taking function $F(x_0, y_0)$ with the form $F(x_0, y_0) = x_0^{\sqrt{-1}\lambda} F_0(x_0 y_0)$ and $t = x_0 y_0$, we obtain

$$4(n+1)\Omega(x_0^{\sqrt{-1}\lambda}F_0(x_0y_0)) = x_0^{\sqrt{-1}\lambda}L_{\lambda}F_0(x_0y_0)$$
(3.8)

with

$$L_{\lambda} = 4t(t-1)\frac{d^2}{dt^2} + \left[4((n+1)t-1) + 4\sqrt{-1}\lambda(t-1)\right]\frac{d}{dt} + \frac{2n}{n+1}\sqrt{-1}\lambda(\sqrt{-1}\lambda + n + 1). \quad (3.9)$$

For $f \in \mathcal{D}(X_1)$, $T \in \mathcal{D}'(\mathbb{R})$,

$$\int_{X_{1}} \Box_{1}[(T \circ Q_{1}) \cdot \xi_{1}^{\sqrt{-1}\lambda}](x,y)f(x,y)d(x,y)
= \int_{X_{1}} (L_{\lambda}T)(Q_{1}(x,y)) \cdot \xi_{1}^{\sqrt{-1}\lambda}(x,y)f(x,y)d(x,y) = \int_{\mathbb{R}} (L_{\lambda}T)(t) \int_{Q_{1}(x)=t} \xi_{1}^{\sqrt{-1}\lambda}(x)f(x)dxdt
= \langle L_{\lambda}T, \mathcal{M}_{1}\xi_{1}^{\sqrt{-1}\lambda}f \rangle_{\mathbb{R}} = \langle \mathcal{M}'_{1}L_{\lambda}T, \xi_{1}^{\sqrt{-1}\lambda}f \rangle_{X_{1}} = \langle \xi_{1}^{\sqrt{-1}\lambda} \mathcal{M}'_{1}L_{\lambda}T, f \rangle_{X_{1}},$$
(3.10)

$$\int_{X_{1}} \Box_{1}[(T \circ Q_{1}) \cdot \xi_{1}^{\sqrt{-1}\lambda}](x,y)f(x,y)d(x,y)$$

$$= \int_{X_{1}} (T \circ Q_{1})(x,y) \cdot \xi_{1}^{\sqrt{-1}\lambda}(x,y)(\Box_{1}f)(x,y)d(x,y)$$

$$= \langle T, \mathcal{M}_{1}(\xi_{1}^{\sqrt{-1}\lambda}\Box_{1}f)\rangle_{\mathbb{R}} = \langle \mathcal{M}'_{1}T, \xi_{1}^{\sqrt{-1}\lambda}\Box_{1}f\rangle_{X_{1}} = \langle \Box_{1}\mathcal{M}'_{1,\sqrt{-1}\lambda}T, f\rangle_{X_{1}}. \quad (3.11)$$

Comparing (3.10) and (3.11), we have $\Box_1 \circ \mathcal{M}'_{1,\sqrt{-1}\lambda} = \mathcal{M}'_{1,\sqrt{-1}\lambda} \circ L_\lambda$. This completes the proof of Theorem 2.1.

References

- [1] Charchov I. Harmonic analysis on line bundles over complex hyperbolic spaces[D]. Leiden: Univ. Leiden, 1999.
- [2] van Dijk G. $(GL(n+1,\mathbb{R}),GL(n,\mathbb{R}))$ is a generalized gelfand pair[J]. Russian J. Math. Phys., 2008, 15(4): 548–551.
- [3] Faraut J. Distributions sphériques sur les espaces hyperboliques[J]. J. Math. Pures Appl., 1979, 58: 369–444.
- [4] Han Yingbo, Feng Shuxiang. On complete hypersurfaces in hyperbolic space form $H^{n+1}(-1)[J]$. J. Math., 2013, 33(5): 767–772.
- [5] Kosters M T, van Dijk G. Spherical distributions on the Pseudo-Riemannian space $SL(n, \mathbb{R})/GL(n-1, \mathbb{R})$ [J]. J. Funct. Anal., 1986, 68: 168–213.
- [6] Lang S. SL₂(ℝ)[A]. Volume 105 of Graduate Texts in Mathematics[C]. Reprint of 1975 ed., New York: Springer-Verlag, 1985.

$\mathrm{SL}(n+1,\mathbb{R})/S(\mathrm{GL}(1,\mathbb{R})\times\mathrm{GL}(n,\mathbb{R}))$ 上线丛的一个超几何方程

杨向辉1, 何敏华1, 朱 理1,2

(1. 武汉工程大学理学院, 湖北 武汉 430205)

(2. 武汉大学数学与统计学院, 湖北 武汉 430072)

摘要: 本文研究了伪黎曼对称空间 $SL(n+1,\mathbb{R})/S(GL(1,\mathbb{R})\times GL(n,\mathbb{R}))$ 线丛上的微分方程. 利用李代数方法,即Casimir 算子得到这个微分算子. 这个微分算子是一个超几何方程,这个结论推广了文献[1,3,5]中的微分方程.

关键词: Casimir算子; 伪黎曼对称空间; 线丛; 超几何方程

MR(2010)主题分类号: 22E46; 33C05 中图分类号: O152.5