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Abstract: In this paper, the problem of constructing permutation polynomials over finite

fields is investigated. By using the piecewise method, a class of permutation polynomials of the
k(q?—1)

form (z? —z +¢) 14+ 2%+ over F 2 is constructed, where 1 < k < d and d is an arbitrary

factor of ¢ — 1, which generalizes some known results in the literature.
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1 Introduction

A polynomial over a finite field [, is called a permutation polynomial (PP) of I, if it
induces a bijection of IF,. The study of permutation polynomials (PPs) started with Hermite
[1] for prime fields, and Dickson [2] for arbitrary finite fields. Recently, the applications of
PPs of finite fields for cryptography [3-7] bring this subject to the front scene. Let M be a
message (an element of F,) which is to be sent securely from Alice to Bob. If f(x) is a PP
of F,, then Alice sends to Bob the field element N = f(M). Because f(x) is bijective, Bob
can recover the message M by computing f~'(N) = f~}(f(M)) = M. In order to be useful
in a cryptographic system, f(z) have some additional properties [8].

Although PPs were a subject of study for a long time, only a handful of specific families
of PPs of finite fields are known so far. Hence finding new classes of PPs is an interesting
subject. Recently, it has achieved significant progress; see for example, [9-19].

Very recently, Li, Helleseth and Tang [9] investigated PPs of the form

a?-1

g(x) = (2 =z +c) T T4 al tua,
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where d = 3 and ¢ € Fp with ¢+ ¢? = 0. It was a further result of Theorem 1 presented
by Zha and Hu [19]. It is an open problem to determine such kind of PPs for d = 4. This
paper is motivated by the question: when does g(z) permute Fp2 for d >4 7

In this paper we extend the integer d to an arbitrary positive factor of ¢ — 1. The main

contribution of this paper is that we give a simple condition for which

k(a®=1)
(27 —x4c) @ Traiin

is a PP of F 2, where d and k are integers such that 1 < k < d and d | ¢ — 1. This work gives
a substantial extension of the result of Li, Helleseth and Tang [9].

2 Preliminaries

The following lemma provides an interpolation method of constructing PPs. It is de-
veloped by Cao, Hu and Zha [11, Proposition 2], which is a generalization of a result of
Fernando and Hou [13, Proposition 1].

Lemma 1 Let 6(x) € F,[z] induce a map from F, to its subset {e1,--- ,e,}. Define
@) =3 fio) (1= (0) — e, (2.1)
i=1

where fi(z), ---, fu(x) € Fy[z]. Then f(x) is a PP of F, if and only if
(i) f; is injective on 071 (e;) for each i € {1,2,--- ,n}; and
(i) fi(0 ()N fj(07 (e;)) =0 for all i # j € {1,2,--- ,n},
here 01 (e;) = {z | 0(x) = e;} and f;(67'(e;)) is the image set of 071 (e;) under f;.
It is observed from (2.1) that f(z) = f;(x) for z € 67 (e;). In other words, f(z) is a

piecewise polynomial composed of f;(z) as pieces. Clearly {6~ '(e;) | i = 1,2,---,n} is a
partition of F,. This lemma indicates that f(x) is a PP of F, if and only if {f;(6~(e;)) |
i=1,2,---,n}is a partition of F,. We also need the following lemmas.

Lemma 2 az?+ fz+ v € Fpelz] is a PP of F,2if and only if a4t £ gotl,
Proof az?+ 3z isa PP of Fy if and only if | § 7, | #0, ie., a?l s gatt,
Lemma 3 Let £ be a primitive element of Fj2. Then the subfield

Fq:{o}u{g(q_'—l)le:vav 7q_1}

Proof Since ¢ is a primitive element of Fe, €@+ are all distinct for i € {1,2,--- ,q—
1}. Also (€la+Diya = ¢(@®+0)i = ¢0+0)i — ¢(a+Di hence the result holds true.

3 Main Results

Theorem 1 Let ¢ be an odd prime power, and let k, d be integers with 1 < k < d and
d|q—1. Let ¢ € Fp2 with ¢+ ¢? = 0, and define

k(a?—1)

f@)y=@'—z+c) = +al+a.
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Then the following statements hold

(i) for even d, f(z) is a PP of Fyz if ged (K€~ 41, d) =1.

(ii) for odd d, f(x) is a PP of F if and only if ged (w +1,d) =1.

Theorem 1 describes explicit conditions for f(z) to be a PP of Fpe. It provides a
substantial extension of the result of Li, Helleseth and Tang [9]. It is well-known that the
trace function Try , /r, (¢) =c+c? =0 if and only if ¢ = a? — a for some a € Fp2. Hence the
conditions in Theorem 1 are easy to satisfied.

The remainder of this section is devoted to the proof of Theorem 1.

Proof of Theorem 1 Let £ be a primitive element of F» and w = §(q2’1)/d. For sim-
plicity, denote 6(x) = (29 —z + (:)‘12771 Then 6 induces a map from F2 to {0,w,w?, -+ ,w?}.
Denote §71(0) = {z € F2 | 0(x) =0} and 6~ ' (w") = {z € F2 | 0(z) = w'}. Then

) = fo(z) := () for x € 071(0),
filx) = w®¢(z) +(x) for z € 0~ (w?) and i € [d],

here ¢p(z) =2 —x + ¢, Y(x) =2+ 2z and [d] = {1,2,--- ,d}.
(i) We will prove that f(z) is a PP of F if gcd(w +1, d) = 1. The proof is divided
into four steps. First, we show that f;(z) is a PP of F 2 for each i € [d]. In fact,

fi(z) = (W* + D)z? + (1 — ™)z + w'ke.
Since w? =1 and d | ¢ — 1, we have w? = w. Because ¢ is odd, it follows that

(W 4 1)1+ (1 — @ikyat!
= (" +D)I(@*+1) — (1 w11 —w™)
= @™+ D" +1) = (1 -w™)(1 - w™)
= W*+1)2 - (1—w™)?
= 4w’ £ 0.
By Lemma 2, f;(z) is a PP of Fy for each i € [d].

Next, we need to verify that fy is injective on 71(0), f; is injective on 67! (w’) and
fo(0~H0) N fi(0~H(w') =0

for each i € [d]. If 671(0) = (), then we are done. If 71(0) # (), there exists e € 671(0); that
is, 0(e) = ¢(e)@1/9= (. Then ¢(e) = 0. Substituting e into f;(x) yields

file) = w™o(e) +v(e) = ¥(e) = fole).

Hence f;(671(0)) = fo(6~1(0)). Since fi(z) is a PP of F2 for each i € [d], fi(z) is injective
on 071(0) and 6~ (w"), and f;(0~1(0)) N f;(6~ (w?)) = 0. Thus fo(z) is injective on 671(0),
and fo(671(0)) N fi(6~!(w")) = 0 for each i € [d].
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Now we show that, for i # j € [d], f;(67*(w")) N f;(67(w?)) = 0 if and only if egs. (3.1)
and (3.2) have no common solutions in F,2. Assume that y € f;(67(w")) N f;(07*(w?)), then
there exist e € 67! (w") and €’ € §7*(w’) such that y = fi(e) = f;(€).
and f;(e)? = y? leads to

Combining f;(e) =y

e = (4w™) (W™ + Dy? + (W — Dy + 2w™¢].

Substituting the above identity into f(e) = w’ gives rise to

a?-1 a?-1

(—y'+y) T =27 w7, (3.1)

_ k(®-1) S / —1/, j
where s = == + 1. Similarly, for ¢’ € 67" (w’), we have

21

=257 ¥, (3.2)

(—y* +9) T

So fi(07 (w®)) N f;(67 (w?)) # 0 if and only if egs. (3.1) and (3.2) have common solutions.

Finally, if ged(s,d) = 1 then si # sj (mod d) and w*® # w® for all i # j € [d], so egs.
(3.1) and (3.2) have no common solutions. Thus f;(0~!(w?)) N f;(6~'(w?)) = 0. By Lemma
1, if gcd(@ + 1, d) =1 then f(z) is a PP of Fp.

(ii) To prove the latter part of the theorem, it suffices to show that if d is odd and
ged(s,d) > 1 then f(x) is not a PP of Fp2. Let ged(s,d) = a > 1, there exists an integer b
such that ab=d and 1 < b < d. Then

sb=s(d/a) =d(s/a) =0=sd (mod d),

so w®® = w*. We assert that f,(071(w?)) N fa(607(w?)) # 0, namely f(z) is not a PP of Fe.
It is enough to prove that egs. (3.1) and (3.2) have a common solution for ¢ = b and

j =d, i.e., the following equation

e (3.3)

N
|

2 2o
{ (—xq + x)%dl = 271wa7

has a solution in F, if d is an odd divisor of ¢ — 1. By w*® = w®@ =1, eq. (3.3) reduces to

a?-1 a?-1

(—zt4z)T =27, (3.4)

From —1 = fQ2;1 = (f%l)q_l, it follows that —2¢+x = C~'((Cx)?+ Cx), where C' = s

Because ((2C)“7 )¢ = 1 and w is a primitive d-th root of unity, (2C)*7 is a power of w.
2

We may assume (2C)“@ = w* for some k € [d]. Then eq. (3.4) can be rewritten as
2_
((Cz)? +Cx)' T~V = ok, (3.5)
As the trace function Trs , /v, () = 27 + z induces a surjection from Fg2 to Fy,

{z?+z |z €Fp}=F, (3.6)
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Both = and Cxz permute IFy2, it follows that
{(C2)14+Cr|xeFp}={a"+a|xeFp} (3.7)
Combining (3.6), (3.7) and Lemma 3 yields
{(Cx)1 +Cax |z eFe}={0 u{ceij=12. .. ¢—1}.
Since w = £@~1/4_ e have
{((C2)1 +Cx) T 2 eFp} = {0} U{w* i i= 1,2, g —1}.
Since d is an odd divisor of ¢ — 1,
ged(g +1,d) = ged(q — 1+ 2,d) = ged(2,d) =1,
and so {(¢+1)i|i=1,---,d} is a complete set of residues modulo d. Consequently,
(€)1 +Cx) TV 2 eFp) = {0,007 wi}

and eq. (3.5) has a solution for any k € [d]. Therefore f,(071(w?)) N fa(071(w?)) # 0, and so
f(z) is not a PP of F.

4 Conclusion

(a2
Permutation polynomials of the form (z?—z+c) e +2z942 over [F 2 are presented,

where 1 < k < d and d is an arbitrary positive divisor of ¢ — 1. This result generalizes a

known class of permutation polynomials.
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