
Vol. 37 ( 2017 )
No. 3

数 学 杂 志
J. of Math. (PRC)

A NEW CLASS OF PERMUTATION POLYNOMIALS

OVER FINITE FIELDS

ZHENG Yan-bin1,2,3

(1.Guangxi Key Laboratory of Trusted Software,

Guilin University of Electronic Technology, Guilin 541004, China)
(2.Guangxi Key Laboratory of Cryptography and Information Security,

Guilin University of Electronic Technology, Guilin 541004, China)
(3.Key Laboratory of Information Security, Guangzhou University, Guangzhou 510006, China)

Abstract: In this paper, the problem of constructing permutation polynomials over finite

fields is investigated. By using the piecewise method, a class of permutation polynomials of the

form (xq − x + c)
k(q2−1)

d
+1 + xq + x over Fq2 is constructed, where 1 ≤ k < d and d is an arbitrary

factor of q − 1, which generalizes some known results in the literature.
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1 Introduction

A polynomial over a finite field Fq is called a permutation polynomial (PP) of Fq if it
induces a bijection of Fq. The study of permutation polynomials (PPs) started with Hermite
[1] for prime fields, and Dickson [2] for arbitrary finite fields. Recently, the applications of
PPs of finite fields for cryptography [3–7] bring this subject to the front scene. Let M be a
message (an element of Fq) which is to be sent securely from Alice to Bob. If f(x) is a PP
of Fq, then Alice sends to Bob the field element N = f(M). Because f(x) is bijective, Bob
can recover the message M by computing f−1(N) = f−1(f(M)) = M . In order to be useful
in a cryptographic system, f(x) have some additional properties [8].

Although PPs were a subject of study for a long time, only a handful of specific families
of PPs of finite fields are known so far. Hence finding new classes of PPs is an interesting
subject. Recently, it has achieved significant progress; see for example, [9–19].

Very recently, Li, Helleseth and Tang [9] investigated PPs of the form

g(x) = (xq − x + c)
q2−1

d +1 + xq + x,
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where d = 3 and c ∈ Fq2 with c + cq = 0. It was a further result of Theorem 1 presented
by Zha and Hu [19]. It is an open problem to determine such kind of PPs for d = 4. This
paper is motivated by the question: when does g(x) permute Fq2 for d ≥ 4 ?

In this paper we extend the integer d to an arbitrary positive factor of q− 1. The main
contribution of this paper is that we give a simple condition for which

(xq − x + c)
k(q2−1)

d +1 + xq + x

is a PP of Fq2 , where d and k are integers such that 1 ≤ k < d and d | q− 1. This work gives
a substantial extension of the result of Li, Helleseth and Tang [9].

2 Preliminaries

The following lemma provides an interpolation method of constructing PPs. It is de-
veloped by Cao, Hu and Zha [11, Proposition 2], which is a generalization of a result of
Fernando and Hou [13, Proposition 1].

Lemma 1 Let θ(x) ∈ Fq[x] induce a map from Fq to its subset {e1, · · · , en}. Define

f(x) =
n∑

i=1

fi(x)
(
1− (θ(x)− ei)q−1

)
, (2.1)

where f1(x), · · · , fn(x) ∈ Fq[x]. Then f(x) is a PP of Fq if and only if
(i) fi is injective on θ−1(ei) for each i ∈ {1, 2, · · · , n}; and
(ii) fi(θ−1(ei)) ∩ fj(θ−1(ej)) = ∅ for all i 6= j ∈ {1, 2, · · · , n},

here θ−1(ei) = {x | θ(x) = ei} and fi(θ−1(ei)) is the image set of θ−1(ei) under fi.
It is observed from (2.1) that f(x) = fi(x) for x ∈ θ−1(ei). In other words, f(x) is a

piecewise polynomial composed of fi(x) as pieces. Clearly {θ−1(ei) | i = 1, 2, · · · , n} is a
partition of Fq. This lemma indicates that f(x) is a PP of Fq if and only if {fi(θ−1(ei)) |
i = 1, 2, · · · , n} is a partition of Fq. We also need the following lemmas.

Lemma 2 αxq + βx + γ ∈ Fq2 [x] is a PP of Fq2 if and only if αq+1 6= βq+1.
Proof αxq + βx is a PP of Fq2 if and only if

∣∣ α βq

β αq

∣∣ 6= 0, i.e., αq+1 6= βq+1.
Lemma 3 Let ξ be a primitive element of Fq2 . Then the subfield

Fq = {0} ∪ {ξ(q+1)i | i = 1, 2, · · · , q − 1}.

Proof Since ξ is a primitive element of Fq2 , ξ(q+1)i are all distinct for i ∈ {1, 2, · · · , q−
1}. Also (ξ(q+1)i)q = ξ(q2+q)i = ξ(1+q)i = ξ(q+1)i, hence the result holds true.

3 Main Results

Theorem 1 Let q be an odd prime power, and let k, d be integers with 1 ≤ k < d and
d | q − 1. Let c ∈ Fq2 with c + cq = 0, and define

f(x) = (xq − x + c)
k(q2−1)

d +1 + xq + x.
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Then the following statements hold
(i) for even d, f(x) is a PP of Fq2 if gcd

(
k(q2−1)

d
+ 1, d

)
= 1.

(ii) for odd d, f(x) is a PP of Fq2 if and only if gcd
(

k(q2−1)
d

+ 1, d
)

= 1.
Theorem 1 describes explicit conditions for f(x) to be a PP of Fq2 . It provides a

substantial extension of the result of Li, Helleseth and Tang [9]. It is well-known that the
trace function TrFq2/Fq

(c) = c + cq = 0 if and only if c = aq − a for some a ∈ Fq2 . Hence the
conditions in Theorem 1 are easy to satisfied.

The remainder of this section is devoted to the proof of Theorem 1.
Proof of Theorem 1 Let ξ be a primitive element of Fq2 and ω = ξ(q2−1)/d. For sim-

plicity, denote θ(x) = (xq−x+ c)
q2−1

d . Then θ induces a map from Fq2 to {0, ω, ω2, · · · , ωd}.
Denote θ−1(0) = {x ∈ Fq2 | θ(x) = 0} and θ−1(ωi) = {x ∈ Fq2 | θ(x) = ωi}. Then

f(x) =

{
f0(x) := ψ(x) for x ∈ θ−1(0),
fi(x) := ωikφ(x) + ψ(x) for x ∈ θ−1(ωi) and i ∈ [d],

here φ(x) = xq − x + c, ψ(x) = xq + x and [d] = {1, 2, · · · , d}.
(i) We will prove that f(x) is a PP of Fq2 if gcd(k(q2−1)

d
+1, d) = 1. The proof is divided

into four steps. First, we show that fi(x) is a PP of Fq2 for each i ∈ [d]. In fact,

fi(x) = (ωik + 1)xq + (1− ωik)x + ωikc.

Since ωd = 1 and d | q − 1, we have ωq = ω. Because q is odd, it follows that

(ωik + 1)q+1 − (1− ωik)q+1

= (ωik + 1)q(ωik + 1)− (1− ωik)q(1− ωik)

= (ωikq + 1)(ωik + 1)− (1− ωikq)(1− ωik)

= (ωik + 1)2 − (1− ωik)2

= 4ωik 6= 0.

By Lemma 2, fi(x) is a PP of Fq2 for each i ∈ [d].
Next, we need to verify that f0 is injective on θ−1(0), fi is injective on θ−1(ωi) and

f0(θ−1(0)) ∩ fi(θ−1(ωi)) = ∅

for each i ∈ [d]. If θ−1(0) = ∅, then we are done. If θ−1(0) 6= ∅, there exists e ∈ θ−1(0); that
is, θ(e) = φ(e)(q

2−1)/d = 0. Then φ(e) = 0. Substituting e into fi(x) yields

fi(e) = ωikφ(e) + ψ(e) = ψ(e) = f0(e).

Hence fi(θ−1(0)) = f0(θ−1(0)). Since fi(x) is a PP of Fq2 for each i ∈ [d], fi(x) is injective
on θ−1(0) and θ−1(ωi), and fi(θ−1(0)) ∩ fi(θ−1(ωi)) = ∅. Thus f0(x) is injective on θ−1(0),
and f0(θ−1(0)) ∩ fi(θ−1(ωi)) = ∅ for each i ∈ [d].
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Now we show that, for i 6= j ∈ [d], fi(θ−1(ωi))∩ fj(θ−1(ωj)) = ∅ if and only if eqs. (3.1)
and (3.2) have no common solutions in Fq2 . Assume that y ∈ fi(θ−1(ωi))∩fj(θ−1(ωj)), then
there exist e ∈ θ−1(ωi) and e′ ∈ θ−1(ωj) such that y = fi(e) = fj(e′). Combining fi(e) = y

and fi(e)q = yq leads to

e = (4ωik)−1[(ωik + 1)yq + (ωik − 1)y + 2ωikc].

Substituting the above identity into θ(e) = ωi gives rise to

(−yq + y)
q2−1

d = 2
q2−1

d ωsi, (3.1)

where s = k(q2−1)
d

+ 1. Similarly, for e′ ∈ θ−1(ωj), we have

(−yq + y)
q2−1

d = 2
q2−1

d ωsj . (3.2)

So fi(θ−1(ωi)) ∩ fj(θ−1(ωj)) 6= ∅ if and only if eqs. (3.1) and (3.2) have common solutions.
Finally, if gcd(s, d) = 1 then si 6≡ sj (mod d) and ωsi 6= ωsj for all i 6= j ∈ [d], so eqs.

(3.1) and (3.2) have no common solutions. Thus fi(θ−1(ωi)) ∩ fj(θ−1(ωj)) = ∅. By Lemma
1, if gcd(k(q2−1)

d
+ 1, d) = 1 then f(x) is a PP of Fq2 .

(ii) To prove the latter part of the theorem, it suffices to show that if d is odd and
gcd(s, d) > 1 then f(x) is not a PP of Fq2 . Let gcd(s, d) = a > 1, there exists an integer b

such that ab = d and 1 ≤ b < d. Then

sb = s(d/a) = d(s/a) ≡ 0 ≡ sd (mod d),

so ωsb = ωsd. We assert that fb(θ−1(ωb))∩ fd(θ−1(ωd)) 6= ∅, namely f(x) is not a PP of Fq2 .
It is enough to prove that eqs. (3.1) and (3.2) have a common solution for i = b and

j = d, i.e., the following equation
{

(−xq + x)
q2−1

d = 2
q2−1

d ωsb,

(−xq + x)
q2−1

d = 2
q2−1

d ωsd
(3.3)

has a solution in Fq2 if d is an odd divisor of q − 1. By ωsb = ωsd = 1, eq. (3.3) reduces to

(−xq + x)
q2−1

d = 2
q2−1

d . (3.4)

From −1 = ξ
q2−1

2 = (ξ
q+1
2 )q−1, it follows that −xq +x = C−1((Cx)q +Cx), where C = ξ

q+1
2 .

Because ((2C)
q2−1

d )d = 1 and ω is a primitive d-th root of unity, (2C)
q2−1

d is a power of ω.
We may assume (2C)

q2−1
d = ωk for some k ∈ [d]. Then eq. (3.4) can be rewritten as

(
(Cx)q + Cx

)(q2−1)/d
= ωk. (3.5)

As the trace function TrFq2/Fq
(x) = xq + x induces a surjection from Fq2 to Fq,

{xq + x | x ∈ Fq2} = Fq. (3.6)
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Both x and Cx permute Fq2 , it follows that

{(Cx)q + Cx | x ∈ Fq2} = {xq + x | x ∈ Fq2}. (3.7)

Combining (3.6), (3.7) and Lemma 3 yields

{(Cx)q + Cx | x ∈ Fq2} = {0} ∪ {ξ(q+1)i : i = 1, 2, · · · , q − 1}.

Since ω = ξ(q2−1)/d, we have

{((Cx)q + Cx
)(q2−1)/d | x ∈ Fq2} = {0} ∪ {ω(q+1)i : i = 1, 2, · · · , q − 1}.

Since d is an odd divisor of q − 1,

gcd(q + 1, d) = gcd(q − 1 + 2, d) = gcd(2, d) = 1,

and so {(q + 1)i | i = 1, · · · , d} is a complete set of residues modulo d. Consequently,

{((Cx)q + Cx
)(q2−1)/d | x ∈ Fq2} = {0, ω, ω2, · · · , ωd}

and eq. (3.5) has a solution for any k ∈ [d]. Therefore fb(θ−1(ωb))∩ fd(θ−1(ωd)) 6= ∅, and so
f(x) is not a PP of Fq2 .

4 Conclusion

Permutation polynomials of the form (xq−x+c)
k(q2−1)

d +1+xq+x over Fq2 are presented,
where 1 ≤ k < d and d is an arbitrary positive divisor of q − 1. This result generalizes a
known class of permutation polynomials.
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一类新的有限域上的置换多项式
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摘要: 本文研究了有限域上置换多项式的构造问题. 利用分段方法构造了 Fq2 上形如 (xq − x +

c)
k(q2−1)

d
+1 + xq + x 的置换多项式, 其中 1 ≤ k < d且 d是 q − 1的任意因子, 推广了已有文献中的某些结

果.
关键词: 密码函数; 置换多项式; 分段函数
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