SOME RESULTS ON THE p－DIVISIBLE $k G$－MODULE

HUANG Wen－lin
（School of Information，Renmin University of China，Beijing 100872，China）

Abstract

In this paper，we study the p－divisible $k G$－module，which is essentially controlled by the prime p ．With the Heller operator，we prove that the n th－Heller operator permutates the isomorphism classes of the indecomposable non－projective p－divisible $k G$－modules；and with the methods of induction and restriction，we prove that Green correspondence induces a bijection between the isomorphism classes of the indecomposable p－divisible $k G$－modules and that of the in－ decomposable p－divisible $k H$－modules whenever H is strongly p－embedded in G ，which generalizes Green correspondence for the indecomposable relative projective modules．

Keywords：p－divisible module；endo－p－permutation module；Heller operator；Green corre－ spondence

2010 MR Subject Classification：20C05；20C20
Document code：A Article ID：0255－7797（2017）03－0613－08

1 Introduction

The terminology of the p－divisible $k G$－module was introduced in［2］to be an absolutely p－divisible $k G$－module，as a tool to study the nilpotent elements in the Green ring，confined to the algebraic closed field k of characteristic p ，it is essentially controlled by the prime p ．This terminology was also studied in［1］from the sight of splitting trace module，where with the so－called splitting trace module the authors obtain some results on the problem of decomposing a tensor product into a direct sum of indecomposable modules，and then some results on the almost－split sequence related to the finite group representation is obtained． Landrock also contributed to this kind of modules．The class of p－divisible $k G$－modules is a big one，any（relative）projective $k G$－module is p－divisible．

Here we prove the properties on the p－divisible $k G$－module．We show that how can the induction and the restriction of a p－divisible $k G$－module remain to be p－divisible．We con－ firm that the n th－Heller operator preserves the p－divisible $k G$－modules，that is，besides the class of indecomposable non－projective $k G$－modules，the class of the p－divisible $k G$－modules is another one which is closed under Heller operators；and confirm that the vertex of the in－ decomposable end－p－permutation $k G$－module being p－divisible at the same time must be the proper p－subgroup of G ．Finally，we prove that，Green correspondence between the indecom－ posable $k G$－modules and the indecomposable $k H$－modules induces a bijection between the

[^0]isomorphism classes of indecomposable p-divisible $k G$-modules and that of indecomposable p-divisible $k H$-modules whenever H is strongly p-embedded in G.

Throughout the paper, we fix a prime p, a finite group G such that $p \||G|$, and an algebraic closed field k of characteristic p. All modules involved are finitely generated, the order of any finite group involve in the p-divisible $k G$-module is divided by p. Our main results are as follows in Section 2.

Theorem A Any indecomposable endo-p-permutation $k G$-module V with vertex P is p-divisible if and only if P is the proper p-subgroup of G, moreover, in the case of P being the Sylow p-subgroup of G, p does not divide $\operatorname{dim}_{k}(V)$, and $\operatorname{Res}_{P}^{G}(V)$ is a capped endo-permutation $k P$-module (Theorem 2.9).

The following result shows that, $\Omega^{n}(-)$ permutates the isomorphism classes of indecomposable non-projective p-divisible $k G$-modules.

Theorem B Let V be a $k G$-module, then for any $n \in Z, V$ is p-divisible if and only if $\Omega^{n}(V)$ is p-divisible (Theorem 2.11).

The following result shows that the class of the indecomposable p-divisible modules is closed under the bijection of Green correspondence between the indecomposable $k G$-modules and the indecomposable $k H$-modules whenever H is strongly p-embedded in G.

Theorem C Let $G \geq H \geq N_{G}(P)$, where P is a Sylow p-subgroup of G, if H is strongly p-embedded, then Green correspondence between the indecomposable $k G$-modules and the indecomposable kH -modules induces a bijection between the isomorphism classes of indecomposable p-divisible $k G$-modules and that of indecomposable p-divisible $k H$-modules (Theorem 2.14).

2 The p-Divisible $k G$-Module

Definition 2.1 For a $k G$-module V, if the dimension of any indecomposable direct summand of V is divisible by P, where $p=\operatorname{char} k$, we say V is a p-divisible $k G$-module.

Notation The terminology of the p-divisible $k G$-module here is based on "absolutely" (see [2]), while for the algebraic closed field k, any indecomposable $k G$-module is already absolutely indecomposable therein, so that, in this paper, a p-divisible $k G$-module is essentially controlled by the prime p. We often denote a p-divisible $k G$-module with (p-divisible) for short. Obviously, the trivial $k G$-module k is not p-divisible.

Lemma 2.2 Let U, V be two p-divisible $k G$-modules, W be a $k G$-module, and P be a proper p-subgroup of G, then
(1) any P-projective $k G$-module is p-divisible, particularly, any projective $k G$-module is p-divisible;
(2) V^{*} is p-divisible;
(3) $U \oplus_{k} V$ is p-divisible, and vice versa;
(4) $U \otimes_{k} W$ is p-divisible;
(5) $\operatorname{Hom}_{k}(U, V)$ is p-divisible, in particular, $\operatorname{End}_{k}(U)$ is p-divisible;
(6) any direct summand of U is p-divisible, especially, k is not the direct summand of U and not the direct summand of $\operatorname{End}_{k}(U)$.

Proof (1) It comes from the fact that any direct summand of the P-projective $k G$ module (respectively, the projective $k G$-module) remains to be P-projective (respectively, projective), and from the fact that the dimension of any indecomposable P-projective $k G$ module (respectively, any projective $k G$-module) can be divided by $|G: P|_{p}$ (respectively, by $|G|_{p}$) (see [5, Exercise 23.1, Exercise 21.2(a)]).
(2) First, we see that $\operatorname{dim}_{k}\left(V^{*}\right)=\operatorname{dim}_{k}(V)$ from the dual basis, secondly, we have $\left(V^{*}\right)^{*} \cong V$ as $k G$-module, then if V is indecomposable, so is V^{*}, hence we have the result from the fact that all the dimensions of the indecomposable direct summands of V^{*} are just that of V.
(3) We confirm this result because of Krull-Schmidt theorem.
(4) In the case that U is an indecomposable $k G$-module, so is $U \otimes_{k} W$ by [1, Corollary 4.3, Corollary 4.7] since k here is algebraically closed. For the general case it is also true because of (3).
(5) It is true because of (4) and the $k G$-module isomorphism $\operatorname{Hom}_{k}(U, V) \cong U^{*} \otimes_{k} V$.
(6) It follows from (3).

Proposition 2.3 Let $G \geq H$ and V be a $k G$-module, if $\operatorname{Res}_{H}^{G}(V)$ is a p-divisible $k H$-module, then V is a p-divisible $k G$-module.

Proof It follows from Krull-Schmidt theorem.
Proposition 2.4 Let $G \geq H$ and V be a p-divisible $k G$-module, if H contains a Sylow p-subgroup of G, then $\operatorname{Res}_{H}^{G}(V)$ is a p-divisible $k H$-module.

Proof Proof by contradiction. If $\operatorname{Res}_{H}^{G}(V)$ is not p-divisible, then p does not divide $\operatorname{dim}_{k}\left(V_{1}\right)$, and then $k \mid \operatorname{End}_{k}\left(V_{1}\right)$ for some direct summand V_{1} of $\operatorname{Res}_{H}^{G}(V)$ by [1, Corollary 4.7], we see that $k \mid \operatorname{End}_{k}\left(\operatorname{Res}_{H}^{G}(V)\right)$, so that

$$
\operatorname{Ind}_{H}^{G}(k) \mid \operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}\left(\operatorname{End}_{k}(V)\right)\right)
$$

On the other hand,

$$
\operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}\left(\operatorname{End}_{k}(V)\right)\right) \cong \operatorname{Ind}_{H}^{G}(k) \otimes_{k} \operatorname{End}_{k}(V)
$$

by Frobenius Reciprocity, so that $\operatorname{Ind}_{H}^{G}(k) \otimes_{k} \operatorname{End}_{k}(V)$ is also p-divisible by Lemma 2.2(5)(4), that is, $\operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}\left(\operatorname{End}_{k}(V)\right)\right)$ is p-divisible, it means that $\operatorname{Ind}_{H}^{G}(k)$ is p-divisible by Lemma 2.2(3), it contradicts with the order of $\operatorname{Ind}_{H}^{G}(k)$ if H contains some Sylow p-subgroup of G.

For any $k(G / N)$-module V, where $G \unrhd N$, the inflation $k G$-module $\inf (V)$ has the same k-vector space as V, while its G-action is from the composition of the canonical group homomorphisms: $G \rightarrow G / N \rightarrow \operatorname{End}_{k}(V)$.

Proposition 2.5 Let N be a normal subgroup of G with $p \| G: N \mid$, then V is a p-divisible $k(G / N)$-module if and only if $\inf (V)$ is a p-divisible $k G$-module.

Proof We see that V is an indecomposable $k(G / N)$-module if and only $\operatorname{iff}(V)$ is an indecomposable $k G$-module, moreover, the dimensions of V and $\inf (V)$ are the same since as k-module they are the same, then V is p-divisible if and only if $\inf (V)$ is p-divisible.

Let $G \geq H$, a $k G$-module M is said to be H-projective, if there exists a $k H$-module N such that $M \mid \operatorname{Ind}_{H}^{G}(N)$; moreover, if M is indecomposable, then the minimal subgroup H such that M is H-projective is unique under the G-conjugation, we call H the vertex of M, it must be a p-group, in the case, the $k H$-module N is called the corresponding source module (see $[5,6]$).

Corollary 2.6 Let U be not a p-divisible $k G$-module, if P is a p-subgroup of G, then $U \otimes_{k} V$ is P-projective if and only if the $k G$-module V is P-projective.

Proof The proof of sufficiency is obvious; for the necessity, we see $k \mid\left(U^{*} \otimes_{k} U\right)$ as the proof of Proposition 2.4, then

$$
k \otimes_{k} V \mid\left(\left(U^{*} \otimes_{k} U\right) \otimes_{k} V\right)
$$

that is,

$$
V \mid U^{*} \otimes_{k}(P \text {-projective })
$$

hence, V is a direct summand of the P-projective $k G$-module, so that V is P-projective.
By Green indecomposability theorem (see [5, Corollary 23.6]), $\operatorname{Ind}_{Q}^{P}(k)$ is p-divisible if Q is the proper subgroup of the p-group P. In general, we have the following result.

Proposition 2.7 Let $G \geq H, V$ be a $k G$-module, and U be a $k H$-module such that $V=\operatorname{Ind}_{H}^{G}(U)$;
(1) if the Sylow p-subgroup of H is a proper p-subgroup of G, then V is p-divisible;
(2) if U is p-divisible and H contains some Sylow p-subgroup of G such that $p \| G$: $H \cap{ }^{g} H \mid$ for any $g \in G-H$, then V is p-divisible;
(3) if U is not p-divisible while V is p-divisible, then the Sylow p-subgroup of H is a proper p-subgroup of G.

Proof (1) By Lemma 2.2(1), $\operatorname{Ind}_{H}^{G}(U)$ is p-divisible since $\operatorname{Ind}_{H}^{G}(U)$ is P-projective, where P is a Sylow p-subgroup of H.
(2) We see that

$$
\begin{aligned}
\operatorname{Res}_{H}^{G}(V) & =\operatorname{Res}_{H}^{G}\left(\operatorname{Ind}_{H}^{G}(U)\right) \\
& \cong \bigoplus_{g \in[H \backslash G / H]} \operatorname{Ind}_{H \cap{ }^{g} H}^{H}\left(\operatorname{Res}_{H \cap{ }^{g} H}^{H}\left({ }^{g} U\right)\right) \\
& =\bigoplus_{g \in[H \backslash G / H]} \operatorname{Ind}_{H \cap{ }^{g} H}^{H}\left({ }^{g} U\right) \\
& =U \oplus\left(\bigoplus_{1 \neq g \in[H \backslash G / H]} \operatorname{Ind}_{H \cap{ }^{g} H}^{H}\left({ }^{g} U\right)\right),
\end{aligned}
$$

where each $\operatorname{Ind}_{H \cap g_{H}}^{H}\left({ }^{g} U\right)$ must be p-divisible by (1). So that $\operatorname{Res}_{H}^{G}(V)$ is p-divisible by Lemma 2.2 (3), and then V is also p-divisible by Proposition 2.3.
(3) On the contrary, if H contains a Sylow p-subgroup of G, then $U \mid \operatorname{Res}_{H}^{G}\left(\operatorname{Ind}_{H}^{G}(U)\right)$, it means that $\operatorname{Ind}_{H}^{G}(U)$ cannot be p-divisible. Indeed, $\operatorname{if~}_{\operatorname{Ind}}^{H} G(U)$ is p-divisible, so is

$$
\operatorname{Res}_{H}^{G}\left(\operatorname{Ind}_{H}^{G}(U)\right)
$$

by Proposition 2.4, and so is U by Lemma 2.2 (3). Contradiction!
Recall that a subgroup H of G is strongly p-embedded if p divides the order of H but does not divide $\left|H \cap{ }^{x} H\right|$, for all $x \in G-H$. Note here that the strongly p-embedded subgroup H of G contains the normalizer in G of any p-subgroup of G, and such H exists whenever the Sylow p-subgroup of G is trivial intersection (that is, T.I set) (see [9]).

Corollary 2.8 (1) Let $G \geq H$, then $\operatorname{Ind}_{H}^{G}(k)$ is p-divisible if and only if the Sylow p-subgroup of H is a proper p-subgroup of G;
(2) let $G \geq H$ and U be a p-divisible $k H$-module such that $V=\operatorname{Ind}_{H}^{G}(U)$, if H is strongly p-embedded, then V is p-divisible.

Proof It follows from Proposition 2.7.
A $k G$-module M is called a p-permutation $k G$-module if $\operatorname{Res}_{Q}^{G}(M)$ is a permutation module for every p-subgroup Q of G (see [3]); an endo- p-permutation $k G$-module N is a $k G$ module N with $\operatorname{End}_{k}(N)$ being a p-permutation $k G$-module under the conjugation action of G, in the case, if G is a p-group, we call it an endo-permutation module (see [5]); any p-permutation $k G$-module is an endo- p-permutation $k G$-module, and the p-permutation $k G$ module plays a crucial role for the equivalence of the categories of blocks of $k G$ (see [7, 8]).

Theorem 2.9 Any indecomposable endo- p-permutation $k G$-module V with the vertex P is p-divisible if and only if P is the proper p-subgroup of G, moreover, in the case of P being the Sylow p-subgroup of G, P does not $\operatorname{divide~}_{\operatorname{dim}}^{k}(V)$, and $\operatorname{Res}_{P}^{G}(V)$ is a capped endo-permutation $k P$-module.

Proof If P is the Sylow p-subgroup of $G, \operatorname{Res}_{P}^{G}(V)$ is an endo-permutation $k P$-module, and the source module of V has the vertex P and is the direct summand of $\operatorname{Res}_{P}^{G}(V)$, then $\operatorname{Res}_{P}^{G}(V)$ is a capped endo-permutation $k P$-module, so that, $\operatorname{dim}_{k}(V) \equiv \pm 1(\bmod p)$ by [5, Corollary 28.11], that is, p does not divide $\operatorname{dim}_{k}(V), V$ is not p-divisible.

On the contrary, if P is the proper p-subgroup of G, V is p-divisible by Lemma 2.2 (1).
Given a $k G$-module M, the Heller translate $\Omega(M)$ is the kernel of the projective cover $P_{M} \rightarrow M$, so that there is a short exact sequence of $k G$-modules $0 \rightarrow \Omega(M) \rightarrow P_{M} \rightarrow$ $M \rightarrow 0$; since projective covers of M are unique up to isomorphism, $\Omega(M)$ is well-defined up to isomorphism; similarly, one may define $\Omega^{-1}(M)$ to be the cokernel of the injective hull $M \rightarrow I_{M}$. The Heller operator Ω provides a way to construct new indecomposable $k G$-modules from the old ones. Let $\Omega^{0}(M)$ be the non-projective $k G$-module such that $M=\Omega^{0}(M) \oplus_{k}$ (projective), $\Omega^{1}(M)=\Omega(M)$; one can obtain the n th-Heller translates

$$
\Omega^{n}(M):=\Omega\left(\Omega^{n-1}(M)\right) \quad(n \geq 2)
$$

and

$$
\Omega^{n}(M):=\Omega^{-1}\left(\Omega^{n+1}(M)\right)(n \leq-2)
$$

(see [6]).
Lemma 2.10 Let V and W be $k G$-modules, then for any $m, n \in Z, \Omega^{m}(V) \otimes_{k} \Omega^{n}(W) \cong$ $\Omega^{m+n}\left(V \otimes_{k} W\right) \oplus_{k}$ (projective), particularly, there exists a projective $k G$-module U such that $V \otimes_{k} \Omega^{n}(k) \cong \Omega^{n}(V) \oplus_{k} U$.

Proof Set $m=0, W=k$ in the former, we can obtain the latter. While the latter is also Proposition 11.7.2 of [6], now we prove the former by the latter.

Set $V \otimes_{k} \Omega^{m}(k) \cong \Omega^{m}(V) \oplus_{k} X$ and $W \otimes_{k} \Omega^{n}(k) \cong \Omega^{n}(W) \oplus_{k} Y$, where X and Y are projective $k G$-modules. Then

$$
\begin{aligned}
& \left(\Omega^{m}(V) \oplus_{k} X\right) \otimes_{k}\left(\Omega^{n}(W) \oplus_{k} Y\right) \cong \Omega^{m}(V) \otimes_{k} \Omega^{n}(W) \oplus_{k}(\text { projective }) \\
\cong & \left(V \otimes_{k} \Omega^{m}(k)\right) \otimes_{k}\left(W \otimes_{k} \Omega^{n}(k)\right) \cong V \otimes_{k} W \otimes_{k}\left(\Omega^{m}(k) \otimes_{k} \Omega^{n}(k)\right) \\
\cong & \left(V \otimes_{k} W\right) \otimes_{k}\left(\Omega^{m+n}(k) \oplus_{k}(\text { projective })\right) \\
\cong & \Omega^{m+n}\left(V \otimes_{k} W\right) \oplus_{k}(\text { projective }),
\end{aligned}
$$

it means that $\Omega^{m}(V) \otimes_{k} \Omega^{n}(W) \cong \Omega^{m+n}\left(V \otimes_{k} W\right) \oplus_{k}($ projective $)$ since $\Omega^{m+n}\left(V \otimes_{k} W\right)$ has no projective direct summands.

The following result shows that, $\Omega^{n}(-)$ permutates the isomorphism classes of indecomposable non-projective p-divisible $k G$-modules.

Theorem 2.11 Let V be a $k G$-module, then for any $n \in Z, V$ is p-divisible if and only if $\Omega^{n}(V)$ is p-divisible.

Proof If V is p-divisible, so is $V \otimes_{k} \Omega^{n}(k)$, and then $\Omega^{n}(V) \oplus_{k} U$ is also p-divisible by Lemma 2.10, that is, $\Omega^{n}(V)$ is p-divisible for each $n \in Z$.

On the contrary, if $\Omega^{n}(V)$ is p-divisible, so is $\Omega^{n}(V) \oplus_{k} U$ in Lemma 2.10, and then $V \otimes_{k} \Omega^{n}(k)$ is p-divisible, so that $\left(V \otimes_{k} \Omega^{n}(k)\right) \otimes_{k} \Omega^{-n}(k)$ is also p-divisible. While

$$
\begin{aligned}
& \left(V \otimes_{k} \Omega^{n}(k)\right) \otimes_{k} \Omega^{-n}(k) \cong V \otimes_{k}\left(\Omega^{n}(k) \otimes_{k} \Omega^{-n}(k)\right) \\
\cong & V \otimes_{k}\left(\Omega^{0}\left(k \otimes_{k} k\right) \oplus_{k} U_{1}\right) \cong V \otimes_{k}\left(k \oplus_{k} U_{1}\right) \\
\cong & V \oplus_{k}\left(V \otimes_{k} U_{1}\right),
\end{aligned}
$$

where U_{1} is some projective $k G$-module. We have $V \mid\left(V \otimes_{k} \Omega^{n}(k)\right) \otimes_{k} \Omega^{-n}(k)$, then V is also p-divisible.

Corollary 2.12 Let $0 \rightarrow U \rightarrow W \rightarrow V \rightarrow 0$ be a short exact sequence of the $k G$ modules, if W is projective, then U is a p-divisible $k G$-module if and only if V is p-divisible.

Proof One can check the following $k G$-module isomorphisms by Schanuel's lemma

$$
\begin{aligned}
& U \cong \Omega(V) \oplus_{k} \text { (projective) }, \\
& V \cong \Omega^{-1}(U) \oplus_{k} \text { (projective) }
\end{aligned}
$$

then the result follows from Theorem 2.11 and Lemma 2.2(1)(3).
A V-projective $k G$-module W is the one such that $W \mid\left(V \otimes_{k} X\right)$ for some $k G$-module X; the V-projective $k G$-module generalizes the notion of the (relative) projective $k G$-modules (see [4]).

Proposition 2.13 Let V be a p-divisible $k G$-module and W be a V-projective $k G$ module, then W is p-divisible; if moreover, V is Q-projective, where Q is a p-subgroup of G, then W is also Q-projective.

Proof If W is indecomposable and p does not divide $\operatorname{dim}_{k}(W)$, then $k \mid\left(W^{*} \otimes_{k} W\right)$, and then $k \mid\left(W^{*} \otimes_{k} V \otimes_{k} X\right)$ since W is V-projective, where X is a $k G$-module; while $W^{*} \otimes_{k} V \otimes_{k} X$ is p-divisible by Lemma 2.2 (4), so that, k is p-divisible by Lemma 2.2 (3), too; it contradicts with Lemma 2.2 (6). In general, W is always p-divisible.

If V is Q-projective, so is $V \otimes_{k} X$ (see [5], Lemma 14.3), and then the direct summand W is also Q-projective.

Let $G \geq H \geq N_{G}(P)$, where P is a Sylow p-subgroup of G. The following result shows that the class of the indecomposable p-divisible modules is closed under the bijection of Green correspondence between the indecomposable $k G$-modules and the indecomposable $k H$-modules whenever H is strongly p-embedded in G.

Theorem 2.14 Let $G \geq H \geq N_{G}(P)$, where P is a Sylow p-subgroup of G, if H is strongly p-embedded, then Green correspondence between the indecomposable $k G$-modules and the indecomposable kH -modules induces a bijection between the isomorphism classes of indecomposable p-divisible $k G$-modules and that of indecomposable p-divisible $k H$-modules.

Proof In the case of H being strongly p-embedded, for the indecomposable p-divisible $k G$-module V with the vertex $P, \operatorname{Res}_{H}^{G}(V)$ is a p-divisible $k H$-module by Proposition 2.4, it means that the Green correspondent of V remains to be p-divisible by Lemma 2.2 (3); similarly, if U is a p-divisible $k H$-module with the vertex P, then $\operatorname{Ind}_{H}^{G}(U)$ is p-divisible by Corollary 2.8, and then the Green correspondent of U remains to be p-divisible by Lemma 2.2 (3) again.

Since H contains the normalizer of any proper p-subgroup Q of G (see [9]), Green correspondence sets up a bijection between the isomorphism classes of the indecomposable $k G$-modules with the vertex Q and that of the indecomposable $k H$-modules with the same vertex Q, moreover, these indecomposable modules with the vertex Q are p-divisible (Lemma 2.2 (1)).

Sum up the above, for any p-subgroup Q of G, whether or not it is a proper p-subgroup, the indecomposable p-divisible modules with the vertex Q are closed under the bijection of Green correspondence between the indecomposable $k G$-modules and the indecomposable $k H$-modules, so that, Green correspondence between the indecomposable $k G$-modules and the indecomposable kH -modules induces a bijection between the isomorphism classes of indecomposable p-divisible $k G$-modules and that of indecomposable p-divisible $k H$-modules.

References

[1] Auslander M, Carlson J. Almost-split sequences and group rings[J]. J. Alg., 1986, 103: 122-140.
[2] Benson D, Carlson J. Nilpotent elements in the Green ring[J]. J. Alg., 1986, 104(2): 329-350.
［3］Broué M．On Scott module and p－permutation modules：an approach through the Brauer mor－ phism［J］．Proc．Amer．Math．Soc．，1985，93（3）：401－408．
［4］Carlson J，Peng C，Wheeler W．Transfer maps and virtual projectivity［J］．J．Alg．，1998，204：286－ 311.
［5］Thévenaz J．G－algebras and modular representation theory［M］．New York：Clarendon Press Oxford Univ．Press， 1995.
［6］Webb P．A Course in finite group representation theory［M］．New York：Cambridge Univ．Press， pre－publication version， 2016.
［7］Perepelitsky P．p－permutation equivalences between blocks of finite groups［R］．Diss．Theses．Grad．， 2014.
［8］Boltje R，Xu B．On p－permutation equivalences：between Rickard equivalences and isotypies［J］． Trans．Amer．Math．Soc．，2008，360（10）：5067－5087．
［9］Parker C，Stroth G．Strongly p－embedded subgroups［J］．Pure Appl．Math．Quart．，2009，7（4）：797－ 858.
［10］Huang Wenlin．Properties and decision of multiplication modules［J］．J．Math．，2003，23（2）： $173-176$.

关于 p－可除 $k G$－模的一些结论

黄文林
（中国人民大学信息学院，北京 100872）

摘要：本文研究了 p－可除 $k G$－模，这是一类由群阶的素数因子来控制的模类。利用Heller算子，证明了 n 次Heller算子置换非投射不可分解 p－可除 $k G$－模的同类；利用模的诱导和限制方法，证明了若 H 是 G 的强 p－嵌入子群，则Green对应建立了不可分解 p－可除 $k G$－模的同构类与不可分解 p－可除 $k H$－模的同构类之间的一一对应。推广了不可分解相对投射 $k G$－模上的Green对应。

关键词：p－可除 $k G$－模；置换模；Heller 算子；Green 对应
$\operatorname{MR}(2010)$ 主题分类号：20C05；20C20 中图分类号：O152．1；O152．6

[^0]: ＊Received date：2016－09－23 Accepted date：2016－12－19
 Foundation item：Supported by National Natural Science Foundation of China（10826057）．
 Biography：Huang Wenlin（1977－），male，born at Huanggang，Hubei，Ph．D，major in representa－ tion theory of finite groups．

