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SOME RESULTS ON THE p-DIVISIBLE tG-MODULE

HUANG Wen-lin
(School of Information, Renmin University of China, Beijing 100872, C’hina)

Abstract: In this paper, we study the p-divisible kG-module, which is essentially controlled
by the prime p. With the Heller operator, we prove that the nth-Heller operator permutates
the isomorphism classes of the indecomposable non-projective p-divisible kG-modules; and with
the methods of induction and restriction, we prove that Green correspondence induces a bijection
between the isomorphism classes of the indecomposable p-divisible kG-modules and that of the in-
decomposable p-divisible kH-modules whenever H is strongly p-embedded in GG, which generalizes
Green correspondence for the indecomposable relative projective modules.
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1 Introduction

The terminology of the p-divisible kG-module was introduced in [2] to be an absolutely
p-divisible kG-module, as a tool to study the nilpotent elements in the Green ring, confined
to the algebraic closed field k£ of characteristic p, it is essentially controlled by the prime
p. This terminology was also studied in [1] from the sight of splitting trace module, where
with the so-called splitting trace module the authors obtain some results on the problem of
decomposing a tensor product into a direct sum of indecomposable modules, and then some
results on the almost-split sequence related to the finite group representation is obtained.
Landrock also contributed to this kind of modules. The class of p-divisible kG-modules is a
big one, any (relative) projective kG-module is p-divisible.

Here we prove the properties on the p-divisible kG-module. We show that how can the
induction and the restriction of a p-divisible kG-module remain to be p-divisible. We con-
firm that the nth-Heller operator preserves the p-divisible kG-modules, that is, besides the
class of indecomposable non-projective kG-modules, the class of the p-divisible kG-modules
is another one which is closed under Heller operators; and confirm that the vertex of the in-
decomposable end-p-permutation kG-module being p-divisible at the same time must be the
proper p-subgroup of G. Finally, we prove that, Green correspondence between the indecom-

posable kG-modules and the indecomposable kH-modules induces a bijection between the
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isomorphism classes of indecomposable p-divisible kG-modules and that of indecomposable
p-divisible kK H-modules whenever H is strongly p-embedded in G.

Throughout the paper, we fix a prime p, a finite group G such that p||G|, and an
algebraic closed field k of characteristic p. All modules involved are finitely generated, the
order of any finite group involve in the p-divisible kG-module is divided by p. Our main
results are as follows in Section 2.

Theorem A Any indecomposable endo-p-permutation kG-module V' with vertex P
is p-divisible if and only if P is the proper p-subgroup of G, moreover, in the case of P
being the Sylow p-subgroup of G, p does not divide dim,(V), and Res%(V) is a capped
endo-permutation kP-module (Theorem 2.9).

The following result shows that, Q™(—) permutates the isomorphism classes of indecom-
posable non-projective p-divisible kG-modules.

Theorem B Let V be a kG-module, then for any n € Z, V is p-divisible if and only if
Q"(V) is p-divisible (Theorem 2.11).

The following result shows that the class of the indecomposable p-divisible modules is
closed under the bijection of Green correspondence between the indecomposable kG-modules
and the indecomposable kH-modules whenever H is strongly p-embedded in G.

Theorem C Let G > H > Ng(P), where P is a Sylow p-subgroup of G, if H is
strongly p-embedded, then Green correspondence between the indecomposable kG-modules
and the indecomposable k H-modules induces a bijection between the isomorphism classes of

indecomposable p-divisible kG-modules and that of indecomposable p-divisible kH-modules
(Theorem 2.14).

2 The p-Divisible kG-Module

Definition 2.1 For a kG-module V, if the dimension of any indecomposable direct
summand of V is divisible by P, where p = chark, we say V is a p-divisible kG-module.

Notation The terminology of the p-divisible kG-module here is based on “absolutely”
(see [2]), while for the algebraic closed field k, any indecomposable kG-module is already
absolutely indecomposable therein, so that, in this paper, a p-divisible kG-module is essen-
tially controlled by the prime p. We often denote a p-divisible kG-module with (p-divisible)
for short. Obviously, the trivial kG-module k is not p-divisible.

Lemma 2.2 Let U, V be two p-divisible kG-modules, W be a kG-module, and P be a
proper p-subgroup of G, then

(1) any P-projective kG-module is p-divisible, particularly, any projective kG-module
is p-divisible;

(2) V*is p-divisible;

(3)
(4) U @y W is p-divisible;
(5) Homy (U, V) is p-divisible, in particular, Endg(U) is p-divisible;

U @, V is p-divisible, and vice versa;
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(6) any direct summand of U is p-divisible, especially, k is not the direct summand of
U and not the direct summand of End(U).

Proof (1) It comes from the fact that any direct summand of the P-projective kG-
module (respectively, the projective kG-module) remains to be P-projective (respectively,
projective), and from the fact that the dimension of any indecomposable P-projective kG-
module (respectively, any projective kG-module) can be divided by |G : P|, (respectively,
by |G|,) (see [5, Exercise 23.1, Exercise 21.2(a)]).

(2) First, we see that dimg(V*) = dim, (V) from the dual basis, secondly, we have
(V*)* 2V as kG-module, then if V' is indecomposable, so is V*, hence we have the result
from the fact that all the dimensions of the indecomposable direct summands of V* are just
that of V.

(3) We confirm this result because of Krull-Schmidt theorem.

(4) In the case that U is an indecomposable kG-module, so is U ®; W by [1, Corollary
4.3, Corollary 4.7] since k here is algebraically closed. For the general case it is also true
because of (3).

(5) Tt is true because of (4) and the kG-module isomorphism Homy (U, V) 2 U* @ V.

(6) It follows from (3).

Proposition 2.3 Let G > H and V be a kG-module, if Res% (V) is a p-divisible
kH-module, then V is a p-divisible kG-module.

Proof It follows from Krull-Schmidt theorem.

Proposition 2.4 Let G > H and V be a p-divisible kG-module, if H contains a Sylow
p-subgroup of G, then Resg(V) is a p-divisible kH-module.

Proof Proof by contradiction. If Resg(V) is not p-divisible, then p does not divide
dimy,(V;), and then k|End(V;) for some direct summand V; of Res%; (V) by [1, Corollary
4.7), we see that k|Endy(Res$(V)), so that

Indg(k)|Indg(Resg(Endk(V))).
On the other hand,
Ind$ (Res% (End,,(V))) 2 IndS (k) @ End, (V)

by Frobenius Reciprocity, so that Ind$ (k) @, Endy (V) is also p-divisible by Lemma 2.2(5)~
(4), that is, Ind% (Res$ (End,(V))) is p-divisible, it means that Ind% (k) is p-divisible by
Lemma 2.2(3), it contradicts with the order of Ind% (k) if H contains some Sylow p-subgroup
of G.

For any k(G/N)-module V, where G > N, the inflation kG-module inf(V') has the
same k-vector space as V', while its G-action is from the composition of the canonical group
homomorphisms: G — G/N — End, (V).

Proposition 2.5 Let N be a normal subgroup of G with p||G : N|, then V is a
p-divisible k(G /N)-module if and only if inf(V') is a p-divisible kG-module.
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Proof We see that V' is an indecomposable k(G /N )-module if and only if inf(V') is an
indecomposable kG-module, moreover, the dimensions of V' and inf(V') are the same since
as k-module they are the same, then V' is p-divisible if and only if inf(V') is p-divisible.

Let G > H, a kG-module M is said to be H-projective, if there exists a kH-module
N such that M |Indf1(N ); moreover, if M is indecomposable, then the minimal subgroup
H such that M is H-projective is unique under the G-conjugation, we call H the vertex of
M, it must be a p-group, in the case, the kH-module N is called the corresponding source
module (see [5, 6]).

Corollary 2.6 Let U be not a p-divisible kG-module, if P is a p-subgroup of G, then
U ®;, V is P-projective if and only if the kG-module V' is P-projective.

Proof The proof of sufficiency is obvious; for the necessity, we see k|(U* ®; U) as the

proof of Proposition 2.4, then
Ep VU@ U) @, V),

that is,
V|U* ®, (P-projective),

hence, V' is a direct summand of the P-projective kG-module, so that V is P-projective.

By Green indecomposability theorem (see [5, Corollary 23.6)), Indg(k‘) is p-divisible if
@ is the proper subgroup of the p-group P. In general, we have the following result.

Proposition 2.7 Let G > H, V be a kG-module, and U be a kH-module such that
V = Ind%(U);

(1) if the Sylow p-subgroup of H is a proper p-subgroup of G, then V' is p-divisible;

(2) if U is p-divisible and H contains some Sylow p-subgroup of G such that p||G :
HnN 9H| for any g € G — H, then V is p-divisible;

(3) if U is not p-divisible while V' is p-divisible, then the Sylow p-subgroup of H is a
proper p-subgroup of G.

Proof (1) By Lemma 2.2(1), Ind$(U) is p-divisible since Ind% (U) is P-projective,
where P is a Sylow p-subgroup of H.

(2) We see that

Res% (V) = Res$(Ind$(U))
= @ Indjre o (Resie o (“U))

ge[H\G/H]

= @ Indgm o (PU)

g€[H\G/H]
= Ua( @ Indgm o (U)),

1#g€[H\G/H]

where each Ind® . ,,; (“U) must be p-divisible by (1). So that Res% (V) is p-divisible by
Lemma 2.2 (3), and then V is also p-divisible by Proposition 2.3.
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(3) On the contrary, if H contains a Sylow p-subgroup of G, then U|Res% (Ind$ (U)), it
means that Ind% (U) cannot be p-divisible. Indeed, if Ind$,(U) is p-divisible, so is

Res% (Ind$ (U))

by Proposition 2.4, and so is U by Lemma 2.2 (3). Contradiction!

Recall that a subgroup H of G is strongly p-embedded if p divides the order of H but
does not divide |H N *H]|, for all z € G — H. Note here that the strongly p-embedded
subgroup H of G contains the normalizer in G of any p-subgroup of G, and such H exists
whenever the Sylow p-subgroup of G is trivial intersection (that is, T.I set) (see [9]).

Corollary 2.8 (1) Let G > H, then Ind% (k) is p-divisible if and only if the Sylow
p-subgroup of H is a proper p-subgroup of G;

(2) let G > H and U be a p-divisible kH-module such that V = Ind%(U), if H is
strongly p-embedded, then V is p-divisible.

Proof It follows from Proposition 2.7.

A kG-module M is called a p-permutation kG-module if Resg(M ) is a permutation
module for every p-subgroup @ of G (see [3]); an endo-p-permutation kG-module N is a kG-
module N with Endg(N) being a p-permutation kG-module under the conjugation action
of G, in the case, if G is a p-group, we call it an endo-permutation module (see [5]); any
p-permutation kG-module is an endo-p-permutation kG-module, and the p-permutation kG-
module plays a crucial role for the equivalence of the categories of blocks of kG (see [7, 8]).

Theorem 2.9 Any indecomposable endo-p-permutation kG-module V' with the vertex
P is p-divisible if and only if P is the proper p-subgroup of G, moreover, in the case of P
being the Sylow p-subgroup of G, P does not divide dim(V), and Res%(V) is a capped
endo-permutation kP-module.

Proof If P is the Sylow p-subgroup of G, Resg(V) is an endo-permutation kP-module,
and the source module of V has the vertex P and is the direct summand of Res%(V), then
Res%(V) is a capped endo-permutation kP-module, so that, dimy(V) = +1 ( mod p) by
[5, Corollary 28.11], that is, p does not divide dimy(V'), V' is not p-divisible.

On the contrary, if P is the proper p-subgroup of G, V' is p-divisible by Lemma 2.2 (1).

Given a kG-module M, the Heller translate Q(A/) is the kernel of the projective cover
Py, — M, so that there is a short exact sequence of kG-modules 0 — Q(M) — Py —
M — 0; since projective covers of M are unique up to isomorphism, Q(M) is well-defined
up to isomorphism; similarly, one may define Q~'(M) to be the cokernel of the injective
hull M — Ip;. The Heller operator 2 provides a way to construct new indecomposable
kG-modules from the old ones. Let Q°(M) be the non-projective kG-module such that
M = Q%(M) @& (projective), Q' (M) = Q(M); one can obtain the nth-Heller translates

QM) = Q" (M) (n>2)

and
Q"(M) == Q7 Q" (M) (n < 2)
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(see [6]).

Lemma 2.10 Let V and W be kG-modules, then for any m,n € Z, Q™(V)®,Q"(W) =
QM (V @, W)Ei (projective), particularly, there exists a projective kG-module U such that
VerQk)=Q"(V)e, U.

Proof Set m=0, W = k in the former, we can obtain the latter. While the latter is
also Proposition 11.7.2 of [6], now we prove the former by the latter.

Set V @, Q"(k) =2 Q™(V) &r X and W @, Q" (k) = Q" (W) &, Y, where X and Y are
projective kG-modules. Then

Q™M(V) @ X) @ (A" (W) @ Y) =2 Q™(V) @, Q" (W) @&, (projective)

= (V@ Q" (k) @k (W @, Q" (k) 2V @ W @y, (Q™(k) @, Q" (k)
= (Vap W)@ (" (k) @y, (projective))

12

Q" (V @ W) @y, (projective),

it means that Q"(V) @, Q"(W) = Q"+ "(V @, W) @&, (projective) since Q™" (V @, W) has
no projective direct summands.

The following result shows that, Q"(—) permutates the isomorphism classes of indecom-
posable non-projective p-divisible kG-modules.

Theorem 2.11 Let V be a kG-module, then for any n € Z, V is p-divisible if and only
if Q™(V) is p-divisible.

Proof If V is p-divisible, so is V ® Q" (k), and then Q™ (V) @, U is also p-divisible by
Lemma 2.10, that is, Q™(V') is p-divisible for each n € Z.

On the contrary, if Q™(V) is p-divisible, so is Q"(V) &, U in Lemma 2.10, and then
V ®k Q" (k) is p-divisible, so that (V ®; Q" (k)) @k Q7" (k) is also p-divisible. While

(V @ Q"(k)) @ Q7" (k) 2V @k (Q"(k) @, Q7" (k))
= Ve, (QUkrk)@rUy) 2V @ (k@ Uy)
V & (V R Ul),

1

where U; is some projective kG-module. We have V|(V ®; Q" (k)) ®, Q" (k), then V is also
p-divisible.

Corollary 2.12 Let 0 - U — W — V — 0 be a short exact sequence of the kG-
modules, if W is projective, then U is a p-divisible kG-module if and only if V is p-divisible.

Proof One can check the following kG-module isomorphisms by Schanuel's lemma

U = Q(V) & (projective),
V =0 Y(U) @ (projective),
then the result follows from Theorem 2.11 and Lemma 2.2(1)(3).
A V-projective kG-module W is the one such that W|(V ® X) for some kG-module X;

the V-projective kG-module generalizes the notion of the (relative) projective kG-modules
(see [4]).
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Proposition 2.13 Let V be a p-divisible kG-module and W be a V-projective kG-
module, then W is p-divisible; if moreover, V is Q-projective, where @) is a p-subgroup of G,
then W is also @-projective.

Proof If W isindecomposable and p does not divide dimy (W), then k|(W* ®;, W), and
then k|(W*®,V ®; X) since W is V-projective, where X is a kG-module; while W*®;, V ®; X
is p-divisible by Lemma 2.2 (4), so that, k is p-divisible by Lemma 2.2 (3), too; it contradicts
with Lemma 2.2 (6). In general, W is always p-divisible.

If V is Q-projective, so is V ®; X (see [5], Lemma 14.3), and then the direct summand
W is also Q-projective.

Let G > H > Ng(P), where P is a Sylow p-subgroup of G. The following result
shows that the class of the indecomposable p-divisible modules is closed under the bijection
of Green correspondence between the indecomposable kG-modules and the indecomposable
kH-modules whenever H is strongly p-embedded in G.

Theorem 2.14 Let G > H > Ng(P), where P is a Sylow p-subgroup of G, if H is
strongly p-embedded, then Green correspondence between the indecomposable kG-modules
and the indecomposable k H-modules induces a bijection between the isomorphism classes of
indecomposable p-divisible kG-modules and that of indecomposable p-divisible kH-modules.

Proof In the case of H being strongly p-embedded, for the indecomposable p-divisible
kG-module V with the vertex P, Res (V) is a p-divisible kH-module by Proposition 2.4,
it means that the Green correspondent of V' remains to be p-divisible by Lemma 2.2 (3);
similarly, if U is a p-divisible kH-module with the vertex P, then Ind% (U) is p-divisible by
Corollary 2.8, and then the Green correspondent of U remains to be p-divisible by Lemma
2.2 (3) again.

Since H contains the normalizer of any proper p-subgroup @ of G (see [9]), Green
correspondence sets up a bijection between the isomorphism classes of the indecomposable
kG-modules with the vertex @) and that of the indecomposable kH-modules with the same
vertex (), moreover, these indecomposable modules with the vertex @ are p-divisible (Lemma
2.2 (1)).

Sum up the above, for any p-subgroup Q) of G, whether or not it is a proper p-subgroup,
the indecomposable p-divisible modules with the vertex ) are closed under the bijection
of Green correspondence between the indecomposable kG-modules and the indecomposable
kH-modules, so that, Green correspondence between the indecomposable kG-modules and
the indecomposable kH-modules induces a bijection between the isomorphism classes of

indecomposable p-divisible kG-modules and that of indecomposable p-divisible kH-modules.
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