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Abstract: In this paper, we study the p-divisible kG-module, which is essentially controlled

by the prime p. With the Heller operator, we prove that the nth-Heller operator permutates

the isomorphism classes of the indecomposable non-projective p-divisible kG-modules; and with

the methods of induction and restriction, we prove that Green correspondence induces a bijection

between the isomorphism classes of the indecomposable p-divisible kG-modules and that of the in-

decomposable p-divisible kH-modules whenever H is strongly p-embedded in G, which generalizes

Green correspondence for the indecomposable relative projective modules.
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1 Introduction

The terminology of the p-divisible kG-module was introduced in [2] to be an absolutely
p-divisible kG-module, as a tool to study the nilpotent elements in the Green ring, confined
to the algebraic closed field k of characteristic p, it is essentially controlled by the prime
p. This terminology was also studied in [1] from the sight of splitting trace module, where
with the so-called splitting trace module the authors obtain some results on the problem of
decomposing a tensor product into a direct sum of indecomposable modules, and then some
results on the almost-split sequence related to the finite group representation is obtained.
Landrock also contributed to this kind of modules. The class of p-divisible kG-modules is a
big one, any (relative) projective kG-module is p-divisible.

Here we prove the properties on the p-divisible kG-module. We show that how can the
induction and the restriction of a p-divisible kG-module remain to be p-divisible. We con-
firm that the nth-Heller operator preserves the p-divisible kG-modules, that is, besides the
class of indecomposable non-projective kG-modules, the class of the p-divisible kG-modules
is another one which is closed under Heller operators; and confirm that the vertex of the in-
decomposable end-p-permutation kG-module being p-divisible at the same time must be the
proper p-subgroup of G. Finally, we prove that, Green correspondence between the indecom-
posable kG-modules and the indecomposable kH-modules induces a bijection between the
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isomorphism classes of indecomposable p-divisible kG-modules and that of indecomposable
p-divisible kH-modules whenever H is strongly p-embedded in G.

Throughout the paper，we fix a prime p, a finite group G such that p||G|, and an
algebraic closed field k of characteristic p. All modules involved are finitely generated, the
order of any finite group involve in the p-divisible kG-module is divided by p. Our main
results are as follows in Section 2.

Theorem A Any indecomposable endo-p-permutation kG-module V with vertex P

is p-divisible if and only if P is the proper p-subgroup of G, moreover, in the case of P

being the Sylow p-subgroup of G, p does not divide dimk(V ), and ResG
P (V ) is a capped

endo-permutation kP -module (Theorem 2.9).

The following result shows that, Ωn(−) permutates the isomorphism classes of indecom-
posable non-projective p-divisible kG-modules.

Theorem B Let V be a kG-module, then for any n ∈ Z, V is p-divisible if and only if
Ωn(V ) is p-divisible (Theorem 2.11).

The following result shows that the class of the indecomposable p-divisible modules is
closed under the bijection of Green correspondence between the indecomposable kG-modules
and the indecomposable kH-modules whenever H is strongly p-embedded in G.

Theorem C Let G ≥ H ≥ NG(P ), where P is a Sylow p-subgroup of G, if H is
strongly p-embedded, then Green correspondence between the indecomposable kG-modules
and the indecomposable kH-modules induces a bijection between the isomorphism classes of
indecomposable p-divisible kG-modules and that of indecomposable p-divisible kH-modules
(Theorem 2.14).

2 The p-Divisible kG-Module

Definition 2.1 For a kG-module V , if the dimension of any indecomposable direct
summand of V is divisible by P , where p = chark, we say V is a p-divisible kG-module.

Notation The terminology of the p-divisible kG-module here is based on“absolutely”
(see [2]), while for the algebraic closed field k, any indecomposable kG-module is already
absolutely indecomposable therein, so that, in this paper, a p-divisible kG-module is essen-
tially controlled by the prime p. We often denote a p-divisible kG-module with (p-divisible)
for short. Obviously, the trivial kG-module k is not p-divisible.

Lemma 2.2 Let U , V be two p-divisible kG-modules, W be a kG-module, and P be a
proper p-subgroup of G, then

(1) any P -projective kG-module is p-divisible, particularly, any projective kG-module
is p-divisible;

(2) V ∗ is p-divisible;

(3) U ⊕k V is p-divisible, and vice versa;

(4) U ⊗k W is p-divisible;

(5) Homk(U, V ) is p-divisible, in particular, Endk(U) is p-divisible;
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(6) any direct summand of U is p-divisible, especially, k is not the direct summand of
U and not the direct summand of Endk(U).

Proof (1) It comes from the fact that any direct summand of the P -projective kG-
module (respectively, the projective kG-module) remains to be P -projective (respectively,
projective), and from the fact that the dimension of any indecomposable P -projective kG-
module (respectively, any projective kG-module) can be divided by |G : P |p (respectively,
by |G|p) (see [5, Exercise 23.1, Exercise 21.2(a)]).

(2) First, we see that dimk(V ∗) = dimk(V ) from the dual basis, secondly, we have
(V ∗)∗ ∼= V as kG-module, then if V is indecomposable, so is V ∗, hence we have the result
from the fact that all the dimensions of the indecomposable direct summands of V ∗ are just
that of V .

(3) We confirm this result because of Krull-Schmidt theorem.
(4) In the case that U is an indecomposable kG-module, so is U ⊗k W by [1, Corollary

4.3, Corollary 4.7] since k here is algebraically closed. For the general case it is also true
because of (3).

(5) It is true because of (4) and the kG-module isomorphism Homk(U, V ) ∼= U∗ ⊗k V .
(6) It follows from (3).
Proposition 2.3 Let G ≥ H and V be a kG-module, if ResG

H(V ) is a p-divisible
kH-module, then V is a p-divisible kG-module.

Proof It follows from Krull-Schmidt theorem.
Proposition 2.4 Let G ≥ H and V be a p-divisible kG-module, if H contains a Sylow

p-subgroup of G, then ResG
H(V ) is a p-divisible kH-module.

Proof Proof by contradiction. If ResG
H(V ) is not p-divisible, then p does not divide

dimk(V1), and then k|Endk(V1) for some direct summand V1 of ResG
H(V ) by [1, Corollary

4.7], we see that k|Endk(ResG
H(V )), so that

IndG
H(k)|IndG

H(ResG
H(Endk(V ))).

On the other hand,

IndG
H(ResG

H(Endk(V ))) ∼= IndG
H(k)⊗k Endk(V )

by Frobenius Reciprocity, so that IndG
H(k)⊗k Endk(V ) is also p-divisible by Lemma 2.2(5)–

(4), that is, IndG
H(ResG

H(Endk(V ))) is p-divisible, it means that IndG
H(k) is p-divisible by

Lemma 2.2(3), it contradicts with the order of IndG
H(k) if H contains some Sylow p-subgroup

of G.
For any k(G/N)-module V , where G D N , the inflation kG-module inf(V ) has the

same k-vector space as V , while its G-action is from the composition of the canonical group
homomorphisms: G → G/N → Endk(V ).

Proposition 2.5 Let N be a normal subgroup of G with p||G : N |, then V is a
p-divisible k(G/N)-module if and only if inf(V ) is a p-divisible kG-module.
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Proof We see that V is an indecomposable k(G/N)-module if and only if inf(V ) is an
indecomposable kG-module, moreover, the dimensions of V and inf(V ) are the same since
as k-module they are the same, then V is p-divisible if and only if inf(V ) is p-divisible.

Let G ≥ H, a kG-module M is said to be H-projective, if there exists a kH-module
N such that M |IndG

H(N); moreover, if M is indecomposable, then the minimal subgroup
H such that M is H-projective is unique under the G-conjugation, we call H the vertex of
M , it must be a p-group, in the case, the kH-module N is called the corresponding source
module (see [5, 6]).

Corollary 2.6 Let U be not a p-divisible kG-module, if P is a p-subgroup of G, then
U ⊗k V is P -projective if and only if the kG-module V is P -projective.

Proof The proof of sufficiency is obvious; for the necessity, we see k|(U∗ ⊗k U) as the
proof of Proposition 2.4, then

k ⊗k V |((U∗ ⊗k U)⊗k V ),

that is,
V |U∗ ⊗k (P -projective),

hence, V is a direct summand of the P -projective kG-module, so that V is P -projective.
By Green indecomposability theorem (see [5, Corollary 23.6]), IndP

Q(k) is p-divisible if
Q is the proper subgroup of the p-group P . In general, we have the following result.

Proposition 2.7 Let G ≥ H, V be a kG-module, and U be a kH-module such that
V = IndG

H(U);
(1) if the Sylow p-subgroup of H is a proper p-subgroup of G, then V is p-divisible;
(2) if U is p-divisible and H contains some Sylow p-subgroup of G such that p||G :

H ∩ gH| for any g ∈ G−H, then V is p-divisible;
(3) if U is not p-divisible while V is p-divisible, then the Sylow p-subgroup of H is a

proper p-subgroup of G.
Proof (1) By Lemma 2.2(1), IndG

H(U) is p-divisible since IndG
H(U) is P -projective,

where P is a Sylow p-subgroup of H.
(2) We see that

ResG
H(V ) = ResG

H(IndG
H(U))

∼=
⊕

g∈[H\G/H]

IndH
H∩ gH(ResH

H∩ gH (gU))

=
⊕

g∈[H\G/H]

IndH
H∩ gH (gU)

= U ⊕ (
⊕

1 6=g∈[H\G/H]

IndH
H∩ gH (gU)),

where each IndH
H∩ gH (gU) must be p-divisible by (1). So that ResG

H(V ) is p-divisible by
Lemma 2.2 (3), and then V is also p-divisible by Proposition 2.3.
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(3) On the contrary, if H contains a Sylow p-subgroup of G, then U |ResG
H(IndG

H(U)), it
means that IndG

H(U) cannot be p-divisible. Indeed, if IndG
H(U) is p-divisible, so is

ResG
H(IndG

H(U))

by Proposition 2.4, and so is U by Lemma 2.2 (3). Contradiction!
Recall that a subgroup H of G is strongly p-embedded if p divides the order of H but

does not divide |H ∩ xH|, for all x ∈ G − H. Note here that the strongly p-embedded
subgroup H of G contains the normalizer in G of any p-subgroup of G, and such H exists
whenever the Sylow p-subgroup of G is trivial intersection (that is, T.I set) (see [9]).

Corollary 2.8 (1) Let G ≥ H, then IndG
H(k) is p-divisible if and only if the Sylow

p-subgroup of H is a proper p-subgroup of G;
(2) let G ≥ H and U be a p-divisible kH-module such that V = IndG

H(U), if H is
strongly p-embedded, then V is p-divisible.

Proof It follows from Proposition 2.7.
A kG-module M is called a p-permutation kG-module if ResG

Q(M) is a permutation
module for every p-subgroup Q of G (see [3]); an endo-p-permutation kG-module N is a kG-
module N with Endk(N) being a p-permutation kG-module under the conjugation action
of G, in the case, if G is a p-group, we call it an endo-permutation module (see [5]); any
p-permutation kG-module is an endo-p-permutation kG-module, and the p-permutation kG-
module plays a crucial role for the equivalence of the categories of blocks of kG (see [7, 8]).

Theorem 2.9 Any indecomposable endo-p-permutation kG-module V with the vertex
P is p-divisible if and only if P is the proper p-subgroup of G, moreover, in the case of P

being the Sylow p-subgroup of G, P does not divide dimk(V ), and ResG
P (V ) is a capped

endo-permutation kP -module.
Proof If P is the Sylow p-subgroup of G, ResG

P (V ) is an endo-permutation kP -module,
and the source module of V has the vertex P and is the direct summand of ResG

P (V ), then
ResG

P (V ) is a capped endo-permutation kP -module, so that, dimk(V ) ≡ ±1 ( mod p) by
[5, Corollary 28.11], that is, p does not divide dimk(V ), V is not p-divisible.

On the contrary, if P is the proper p-subgroup of G, V is p-divisible by Lemma 2.2 (1).
Given a kG-module M , the Heller translate Ω(M) is the kernel of the projective cover

PM → M , so that there is a short exact sequence of kG-modules 0 → Ω(M) → PM →
M → 0; since projective covers of M are unique up to isomorphism, Ω(M) is well-defined
up to isomorphism; similarly, one may define Ω−1(M) to be the cokernel of the injective
hull M → IM . The Heller operator Ω provides a way to construct new indecomposable
kG-modules from the old ones. Let Ω0(M) be the non-projective kG-module such that
M = Ω0(M)⊕k (projective), Ω1(M) = Ω(M); one can obtain the nth-Heller translates

Ωn(M) := Ω(Ωn−1(M)) (n ≥ 2)

and
Ωn(M) := Ω−1(Ωn+1(M)) (n ≤ −2)
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(see [6]).
Lemma 2.10 Let V and W be kG-modules, then for any m,n ∈ Z, Ωm(V )⊗kΩn(W ) ∼=

Ωm+n(V ⊗k W )⊕k (projective), particularly, there exists a projective kG-module U such that
V ⊗k Ωn(k) ∼= Ωn(V )⊕k U .

Proof Set m=0, W = k in the former, we can obtain the latter. While the latter is
also Proposition 11.7.2 of [6], now we prove the former by the latter.

Set V ⊗k Ωm(k) ∼= Ωm(V )⊕k X and W ⊗k Ωn(k) ∼= Ωn(W )⊕k Y , where X and Y are
projective kG-modules. Then

(Ωm(V )⊕k X)⊗k (Ωn(W )⊕k Y ) ∼= Ωm(V )⊗k Ωn(W )⊕k (projective)
∼= (V ⊗k Ωm(k))⊗k (W ⊗k Ωn(k)) ∼= V ⊗k W ⊗k (Ωm(k)⊗k Ωn(k))
∼= (V ⊗k W )⊗k (Ωm+n(k)⊕k (projective))
∼= Ωm+n(V ⊗k W )⊕k (projective),

it means that Ωm(V )⊗k Ωn(W ) ∼= Ωm+n(V ⊗k W )⊕k (projective) since Ωm+n(V ⊗k W ) has
no projective direct summands.

The following result shows that, Ωn(−) permutates the isomorphism classes of indecom-
posable non-projective p-divisible kG-modules.

Theorem 2.11 Let V be a kG-module, then for any n ∈ Z, V is p-divisible if and only
if Ωn(V ) is p-divisible.

Proof If V is p-divisible, so is V ⊗k Ωn(k), and then Ωn(V )⊕k U is also p-divisible by
Lemma 2.10, that is, Ωn(V ) is p-divisible for each n ∈ Z.

On the contrary, if Ωn(V ) is p-divisible, so is Ωn(V ) ⊕k U in Lemma 2.10, and then
V ⊗k Ωn(k) is p-divisible, so that (V ⊗k Ωn(k))⊗k Ω−n(k) is also p-divisible. While

(V ⊗k Ωn(k))⊗k Ω−n(k) ∼= V ⊗k (Ωn(k)⊗k Ω−n(k))
∼= V ⊗k (Ω0(k ⊗k k)⊕k U1) ∼= V ⊗k (k ⊕k U1)
∼= V ⊕k (V ⊗k U1),

where U1 is some projective kG-module. We have V |(V ⊗k Ωn(k))⊗k Ω−n(k), then V is also
p-divisible.

Corollary 2.12 Let 0 → U → W → V → 0 be a short exact sequence of the kG-
modules, if W is projective, then U is a p-divisible kG-module if and only if V is p-divisible.

Proof One can check the following kG-module isomorphisms by Schanuel
′
s lemma

U ∼= Ω(V )⊕k (projective),

V ∼= Ω−1(U)⊕k (projective),

then the result follows from Theorem 2.11 and Lemma 2.2(1)(3).
A V -projective kG-module W is the one such that W |(V ⊗k X) for some kG-module X;

the V -projective kG-module generalizes the notion of the (relative) projective kG-modules
(see [4]).
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Proposition 2.13 Let V be a p-divisible kG-module and W be a V -projective kG-
module, then W is p-divisible; if moreover, V is Q-projective, where Q is a p-subgroup of G,
then W is also Q-projective.

Proof If W is indecomposable and p does not divide dimk(W ), then k|(W ∗⊗k W ), and
then k|(W ∗⊗kV ⊗kX) since W is V -projective, where X is a kG-module; while W ∗⊗kV ⊗kX

is p-divisible by Lemma 2.2 (4), so that, k is p-divisible by Lemma 2.2 (3), too; it contradicts
with Lemma 2.2 (6). In general, W is always p-divisible.

If V is Q-projective, so is V ⊗k X (see [5], Lemma 14.3), and then the direct summand
W is also Q-projective.

Let G ≥ H ≥ NG(P ), where P is a Sylow p-subgroup of G. The following result
shows that the class of the indecomposable p-divisible modules is closed under the bijection
of Green correspondence between the indecomposable kG-modules and the indecomposable
kH-modules whenever H is strongly p-embedded in G.

Theorem 2.14 Let G ≥ H ≥ NG(P ), where P is a Sylow p-subgroup of G, if H is
strongly p-embedded, then Green correspondence between the indecomposable kG-modules
and the indecomposable kH-modules induces a bijection between the isomorphism classes of
indecomposable p-divisible kG-modules and that of indecomposable p-divisible kH-modules.

Proof In the case of H being strongly p-embedded, for the indecomposable p-divisible
kG-module V with the vertex P , ResG

H(V ) is a p-divisible kH-module by Proposition 2.4,
it means that the Green correspondent of V remains to be p-divisible by Lemma 2.2 (3);
similarly, if U is a p-divisible kH-module with the vertex P , then IndG

H(U) is p-divisible by
Corollary 2.8, and then the Green correspondent of U remains to be p-divisible by Lemma
2.2 (3) again.

Since H contains the normalizer of any proper p-subgroup Q of G (see [9]), Green
correspondence sets up a bijection between the isomorphism classes of the indecomposable
kG-modules with the vertex Q and that of the indecomposable kH-modules with the same
vertex Q, moreover, these indecomposable modules with the vertex Q are p-divisible (Lemma
2.2 (1)).

Sum up the above, for any p-subgroup Q of G, whether or not it is a proper p-subgroup,
the indecomposable p-divisible modules with the vertex Q are closed under the bijection
of Green correspondence between the indecomposable kG-modules and the indecomposable
kH-modules, so that, Green correspondence between the indecomposable kG-modules and
the indecomposable kH-modules induces a bijection between the isomorphism classes of
indecomposable p-divisible kG-modules and that of indecomposable p-divisible kH-modules.
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关于p-可除kG-模的一些结论

黄文林

(中国人民大学信息学院, 北京 100872)

摘要: 本文研究了p-可除kG-模, 这是一类由群阶的素数因子来控制的模类. 利用Heller算子, 证明

了n次Heller算子置换非投射不可分解p-可除kG-模的同类; 利用模的诱导和限制方法, 证明了若H是G的

强p-嵌入子群, 则Green对应建立了不可分解p-可除kG-模的同构类与不可分解p-可除kH-模的同构类之间的

一一对应. 推广了不可分解相对投射kG-模上的Green对应.
关键词: p-可除kG-模; 置换模; Heller 算子; Green 对应
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