ON THE BEST CONSTANTS OF HARDY INEQUALITIES ON HALF SPACES IN H-TYPE GROUPS

LIAN Bao-sheng, SHEN Xiao-yu, XU Yan-bing

(College of Science, Wuhan University of Science and Technology, Wuhan 430065, China)

Abstract: In this paper, using the corresponding fundamental solution, we obtain some Hardy inequalities on half spaces for Kohn's sublaplacian in H-type groups. Furthermore, the constants we obtain are sharp.

Keywords: Hardy inequality; H-type group; best constant

2010 MR Subject Classification: 26D10; 22E25

Document code: A Article ID: 0255-7797(2017)03-0591-07

1 Introduction

The Hardy inequality in \mathbb{R}^N reads that, for all $u \in C_0^{\infty}(\mathbb{R}^N)$ and $N \geq 3$,

$$\int_{\mathbb{R}^N} |\nabla u|^2 dx \ge \frac{(N-2)^2}{4} \int_{\mathbb{R}^N} \frac{u^2}{|x|^2} dx \tag{1.1}$$

and the constant $\frac{(N-2)^2}{4}$ in (1.1) is sharp. Recently, it was proved by Nazarov (see [12], Proposition 4.1 and [6]) that the following Hardy inequality is valid for $f \in C_0^{\infty}(\mathbb{R}^N_+)$,

$$\int_{\mathbb{R}^{N}} |\nabla u(x)|^{2} dx \ge \frac{N^{2}}{4} \int_{\mathbb{R}^{N}} \frac{u(x)^{2}}{|x|^{2}} dx, \tag{1.2}$$

where $\mathbb{R}_+^N=\{(x_1,\cdots,x_n)|x_N>0\}$, and the constant $\frac{N^2}{4}$ is sharp. This shows that the Hardy constant jumps from $\frac{(N-2)^2}{4}$ to $\frac{N^2}{4}$, when the singularity of the potential reaches the boundary. Inequality (1.2) was generalized by Su and Yang [14] to the cone $\mathbb{R}_{k_+}^N:=\mathbb{R}^{N-k}\times(\mathbb{R}_+)^k=\{(x_1,\cdots,x_N)|x_{N-k+1}>0,\cdots,x_N>0\}$. For more information about this inequality and its applications, we refer to [2, 3] and the references therein.

The aim of this note is to prove similar Hardy type inequality on half spaces for Kohn's sublaplacian in H-type groups G, a remarkable class of stratified groups of step two introduced by Kaplan [11]. Let $G = (\mathbb{R}^m \times \mathbb{R}^n, \circ)$ with group law defined in Section 2. It was

Foundation item: Supported by the Education Department of Hubei province science and technology research project (D20131108).

Biography: Lian Baosheng (1973–), male, born at Xiaogan, Hubei, associated professor, major in harmornic analysis.

proved by Han et al. (see [10] and [5, 8, 9, 13] for analogous inequalities on Heisenberg group) that for $u \in C_0^{\infty}(G)$, there holds

$$\int_{\mathbb{R}^m \times \mathbb{R}^n} |\nabla_G u|^2 dx dt \ge \frac{(Q-2)^2}{4} \int_{\mathbb{R}^m \times \mathbb{R}^n} \frac{u^2}{\rho^2} |\nabla_G \rho|^2 dx dt, \tag{1.3}$$

and the constant $\frac{(Q-2)^2}{4}$ is sharp, where Q=m+2n, $\rho(x,y)=(|x|^4+16|t|^2)^{\frac{1}{4}}$ and ∇_G is the the horizontal gradient associated with the Kohn's sublaplacian on G (for details, see Section 2). In this note we shall show when the singularity is on the boundary, the Hardy constant also jumps. In fact, we have the following:

Theorem 1.1 Let $\alpha < Q - 2$. There holds, for all $u \in C_0^{\infty}(\mathbb{R}^m \times \mathbb{R}^n_+)$,

$$\int_{\mathbb{R}^m \times \mathbb{R}^n_{\perp}} \frac{|\nabla_G u|^2}{\rho^{\alpha}} dx dt \ge \left(\frac{(Q+2-\alpha)^2}{4} + 2\alpha\right) \int_{\mathbb{R}^m \times \mathbb{R}^n_{\perp}} \frac{u^2}{\rho^{2+\alpha}} |\nabla_G \rho|^2 dx dt, \tag{1.4}$$

and the constant $\frac{(Q+2-\alpha)^2}{4}+2\alpha$ in (1.4) is sharp.

2 Notation and Preliminaries

We begin by describing the Lie groups and Lie algebras under consideration. For more information about H-type groups, we refer to [1, 11] and references therein. A H-type group G is a Carnot group of step two with the following properties: the Lie algebra \mathfrak{g} of G is endowed with an inner product \langle,\rangle such that, if \mathfrak{z} is the center of \mathfrak{g} , then $[\mathfrak{z}^{\perp},\mathfrak{z}^{\perp}]=\mathfrak{z}$ and moreover, for every fixed $z\in\mathfrak{z}$, the map $J_z:\mathfrak{z}^{\perp}\to\mathfrak{z}^{\perp}$ defined by

$$\langle J_z(v), \omega \rangle = \langle z, [v, \omega] \rangle, \ \forall \omega \in \mathfrak{z}^{\perp}$$

is an orthogonal map whenever $\langle z, z \rangle = 1$. Set $m = \dim \mathfrak{z}^{\perp}$ and $n = \dim \mathfrak{z}$. In the sequel we shall fix on G a system of coordinates (x,t) and that the group law has the form

$$(x,t) \circ (x',t') = \begin{pmatrix} x_i + x_i', & i = 1, 2, \dots, m \\ t_j + t_j' + \frac{1}{2} < x, U^{(j)}x' >, & j = 1, 2, \dots, n \end{pmatrix},$$
(2.1)

where the matrices $\{U^{(j)}\}_{j=1}^n$ have the following two properties (see [1])

- (1) $U^{(j)}$ is a $m \times m$ Skew symmetric and orthogonal matrix, for every $j = 1, 2, \dots, n$;
- (2) $U^{(i)}U^{(j)} + U^{(j)}U^{(i)} = 0$ for every $i, j \in \{1, 2, \dots, n\}$ with $i \neq j$.

A easy computation shows that the vector field in the algebra \mathfrak{g} of $N=(\mathbb{R}^{m+n},\circ)$ that agrees at the origin with $\frac{\partial}{\partial x_j}(j=1,\cdots,m)$ is given by

$$X_{j} = \frac{\partial}{\partial x_{j}} + \frac{1}{2} \sum_{k=1}^{n} \left(\sum_{i=1}^{m} U_{i,j}^{(k)} x_{i} \right) \frac{\partial}{\partial t_{k}},$$

and that \mathfrak{g} is spanned by the left-invariant vector fields $X_1, \dots, X_m, \frac{\partial}{\partial t_1}, \dots, \frac{\partial}{\partial t_n}$. We use the notation $\nabla_G = (X_1, \dots, X_m)$ and call it the horizontal gradient. The horizontal gradient can be written in the form

$$\nabla_G = \nabla_x - \frac{1}{2} U^{(1)} x \frac{\partial}{\partial t_1} - \dots - \frac{1}{2} U^{(n)} x \frac{\partial}{\partial t_n}$$
 (2.2)

with $x=(x_1,\cdots,x_m)$ and $\nabla_x=(\frac{\partial}{\partial x_1},\cdots,\frac{\partial}{\partial x_m})$. The Kohn's sublaplacian on the H-type group G is given by

$$\Delta_G = \sum_{j=1}^m X_j^2 = \sum_{j=1}^m \left(\frac{\partial}{\partial x_j} + \frac{1}{2} \sum_{k=1}^n \left(\sum_{i=1}^m U_{i,j}^{(k)} x_i \right) \frac{\partial}{\partial t_k} \right)^2$$
$$= \Delta_x + \frac{1}{4} |x|^2 \Delta_t + \sum_{k=1}^n \langle x, U^{(k)} \nabla_x \rangle \frac{\partial}{\partial t_k},$$

where $\Delta_x = \sum_{j=1}^m \left(\frac{\partial}{\partial x_j}\right)^2$ and $\Delta_t = \sum_{k=1}^n \left(\frac{\partial}{\partial t_k}\right)^2$. Moreover, on functions $f(x,t) = \widetilde{f}(|x|,t)$, we have

$$\langle x, U^{(k)} \nabla_x \rangle \widetilde{f}(|x|, t) = 0, \quad k = 1, 2, \dots, n.$$

Hence

$$\Delta_G \widetilde{f}(|x|, t) = \Delta_x \widetilde{f}(|x|, t) + \frac{1}{4}|x|^2 \Delta_t \widetilde{f}(|x|, t). \tag{2.3}$$

We also have

$$|\nabla_{G}\widetilde{f}(|x|,t)|^{2} = \left|\nabla_{x}\widetilde{f} - \frac{1}{2}\sum_{j=1}^{n}U^{(j)}x\frac{\partial\widetilde{f}}{\partial t_{j}}\right|^{2}$$

$$= |\nabla_{x}\widetilde{f}|^{2} + \frac{1}{4}\left|\sum_{j=1}^{n}U^{(j)}x\frac{\partial\widetilde{f}}{\partial t_{j}}\right|^{2} - \sum_{j=1}^{n}\langle U^{(j)}x,\nabla_{x}\widetilde{f}(|x|,t)\rangle\frac{\partial\widetilde{f}}{\partial t_{j}}$$

$$= |\nabla_{x}\widetilde{f}|^{2} + \frac{1}{4}|x|^{2}|\nabla_{t}\widetilde{f}(|x|,t)|^{2}.$$

$$(2.4)$$

To get the last inequality, we use the fact (r = |x|) in the equality below

$$\langle U^{(j)}x, \nabla_x \widetilde{f}(|x|, t) \rangle = \left\langle U^{(j)}x, \frac{x}{|x|} \right\rangle \frac{\partial \widetilde{f}}{\partial r} = 0$$

since $U^{(j)}$ $(1 \le j \le n)$ is a skew-symmetric matric and

$$\begin{split} \left| \sum_{j=1}^{n} U^{(j)} x \frac{\partial \widetilde{f}}{\partial t_{j}} \right|^{2} &= \sum_{j=1}^{n} \left| U^{(j)} x \frac{\partial \widetilde{f}}{\partial t_{j}} \right|^{2} + 2 \sum_{i < j} \langle U^{(i)} x, U^{(j)} x \rangle \frac{\partial \widetilde{f}}{\partial t_{i}} \frac{\partial \widetilde{f}}{\partial t_{j}} \\ &= |x|^{2} |\nabla_{t} \widetilde{f}(|x|, t)|^{2} + 2 \sum_{i < j} \langle (U^{(j)})^{T} U^{(i)} x, x \rangle \frac{\partial \widetilde{f}}{\partial t_{i}} \frac{\partial \widetilde{f}}{\partial t_{j}} \\ &= |x|^{2} |\nabla_{t} \widetilde{f}(|x|, t)|^{2} - 2 \sum_{i < j} \langle U^{(j)} U^{(i)} x, x \rangle \frac{\partial \widetilde{f}}{\partial t_{i}} \frac{\partial \widetilde{f}}{\partial t_{j}} \\ &= |x|^{2} |\nabla_{t} \widetilde{f}(|x|, t)|^{2} \end{split}$$

since $U^{(j)}U^{(i)}$ is also skew-symmetric for every $i \neq j$, for

$$(U^{(j)}U^{(i)})^T = (U^{(i)})^T(U^{(j)})^T = (-U^{(i)})(-U^{(j)}) = U^{(i)}U^{(j)} = -U^{(j)}U^{(i)}.$$

For each real number $\lambda > 0$, there is a dilation naturally associated with the group structure which is usually denoted as $\delta_{\lambda}(\xi) = \delta_{\lambda}(x,t) = (\lambda x, \lambda^2 t)$, $\xi = (x,t) \in G$. However, for simplicity we will write $\lambda \xi$ to denote $\delta_{\lambda}(\xi)$. The Jacobian determinant of δ_{λ} is λ^Q , where Q = m + 2n is the homogeneous dimension of G. The anisotropic dilation structure on G introduces homogeneous norm $\rho(\xi) = \rho(x,t) = (|x|^4 + 16|t|^2)^{\frac{1}{4}}$. With this norm, we can define the Heisenberg ball centered at $\xi = (x,t)$ with radius R,

$$B(\xi, R) = \{ v \in G : \rho(\xi^{-1} \circ v) < R \}.$$

For simplicity, we set

$$B_R = B(0, R) = \{ v \in G : \rho(v) < R \}. \tag{2.5}$$

Given any $\xi = (x,t) \neq \mathbf{0}$, set $x^* = \frac{x}{\rho(\xi)}$, $t^* = \frac{t}{\rho(\xi)^2}$ and $\xi^* = (x^*,t^*)$. Then $\xi^* \in \Sigma = \{v \in G, \rho(v) = 1\}$, the Heisenberg unit sphere. Furthermore, we have the following polar coordinates on G (see [7]):

$$\int_{G} f(\xi) dx dt = \int_{0}^{\infty} \int_{\Sigma} f(\lambda \xi^{*}) \lambda^{Q-1} d\sigma dr$$

for all $f \in L^1(G)$ and for $\beta > -m$ (see [4]),

$$C_{\beta} := \int_{\Sigma} |x^*|^{\beta} d\sigma = \frac{1}{4^{n - \frac{1}{2}}} \frac{\pi^{\frac{n + m}{2}} \Gamma(\frac{m + \beta}{4})}{\Gamma(\frac{m}{2}) \Gamma(\frac{Q + \beta}{4})} > 0.$$
 (2.6)

A function f on G is said to be radial if $f(x,t) = \widetilde{f}(\rho)$. If f is radial, it is easy to check

$$|\nabla_G f| = |f'(\rho)| \cdot |\nabla_G \rho| = |f'(\rho)| \frac{|x|}{\rho}$$
(2.7)

and

$$\Delta_G f = |\nabla_G \rho|^2 \left(f'' + \frac{Q - 1}{\rho} f' \right) = \frac{|x|^2}{\rho^2} \left(f'' + \frac{Q - 1}{\rho} f' \right). \tag{2.8}$$

3 The Proof

Before the proof of main results, we need the following lemma.

Lemma 3.1 Let $f \in C^{\infty}(G)$ be a radial function. There holds

(1)
$$|\nabla_G(t_n f)|^2 = t_n^2 |f'|^2 |\nabla_G \rho|^2 + \frac{|x|^2}{4} f^2 + \frac{t_n |x|^2}{4} \cdot \frac{\partial f^2}{\partial t_n};$$

(2)
$$\Delta_G(t_n f) = t_n (f'' + \frac{Q+3}{\rho} f') |\nabla_G \rho|^2$$
.

Proof (1) Since f is radial, we get, by (2.5),

$$\begin{aligned} |\nabla_{G}(t_{n}f)|^{2} &= |\nabla_{x}(t_{n}f)|^{2} + \frac{1}{4}|x|^{2}|\nabla_{t}(t_{n}f)|^{2} \\ &= t_{n}^{2}|\nabla_{x}f|^{2} + \frac{|x|^{2}}{4}\left(t_{n}^{2}|\nabla_{t}f|^{2} + f^{2}|\nabla_{t}t_{n}|^{2} + 2t_{n}f\langle\nabla_{t}t_{n},\nabla_{t}f\rangle\right) \\ &= t_{n}^{2}\left(|\nabla_{x}f|^{2} + \frac{|x|^{2}}{4}|\nabla_{t}f|^{2}\right) + \frac{|x|^{2}}{4}f^{2} + \frac{t_{n}|x|^{2}}{2} \cdot f\frac{\partial f}{\partial t_{n}} \\ &= t_{n}^{2}|\nabla_{G}f|^{2} + \frac{|x|^{2}}{4}f^{2} + \frac{t_{n}|x|^{2}}{4} \cdot \frac{\partial f^{2}}{\partial t}. \end{aligned}$$

It remains to use (2.7) and the desired result follows.

(2) By (2.3) and (2.8), we have

$$\begin{split} \Delta_G(t_n f) = & \Delta_x(t_n f) + \frac{|x|^2}{4} \Delta_t(t_n f) = t_n \Delta_x f + \frac{|x|^2}{4} \left(t_n \Delta_t f + 2 \frac{\partial f}{\partial t_n} \right) \\ = & t_n \left(\Delta_x f + \frac{|x|^2}{4} \Delta_t f \right) + \frac{|x|^2}{4} f' \cdot \frac{\partial \rho}{\partial t_n} = t_n \Delta_G f + 4 t_n \frac{|x|^2}{\rho^2} \cdot \frac{f'}{\rho} \\ = & t_n \left(f'' + \frac{Q-1}{\rho} f' \right) |\nabla_G \rho|^2 + t_n |\nabla_G \rho|^2 \cdot \frac{4f'}{\rho} \\ = & t_n \left(f'' + \frac{Q+3}{\rho} f' \right) |\nabla_G \rho|^2. \end{split}$$

Now we can prove Theorem 1.1.

Proof of Theorem 1.1 First, we consider the case $\alpha = 0$. Using the substitution $u = t_n \rho^{-\frac{Q+2}{2}} f$, we get

$$\int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}} |\nabla_{G} u|^{2} = \int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}} \left[|\nabla_{G} (t_{n} \rho^{-\frac{Q+2}{2}})|^{2} f^{2} + |\nabla_{G} f|^{2} \frac{t_{n}^{2}}{\rho^{Q+2}} + \frac{\langle \nabla_{G} (t_{n}^{2} \rho^{-(Q+2)}, \nabla_{G} f^{2} \rangle)}{2} \right] \\
\geq \int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}} \left(|\nabla_{G} (t_{n} \rho^{-\frac{Q+2}{2}})|^{2} f^{2} + \frac{1}{2} \langle \nabla_{G} (t_{n}^{2} \rho^{-(Q+2)}, \nabla_{G} f^{2} \rangle) \right) \\
= \int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}} f^{2} \left(|\nabla_{G} (t_{n} \rho^{-\frac{Q+2}{2}})|^{2} - \frac{1}{2} \Delta_{G} (t_{n}^{2} \rho^{-(Q+2)}) \right).$$

Notice that, for $g \in C^{\infty}(G)$,

$$\Delta_G g^2 = \sum_{j=1}^m X_j^2 g^2 = 2g \sum_{j=1}^m X_j^2 g + 2 \sum_{j=1}^m |X_j g|^2 = 2g \Delta_G g + 2|\nabla_G g|^2.$$

We have, by Lemma 3.1(2),

$$\begin{split} |\nabla_G(t_n\rho^{-\frac{Q+2}{2}})|^2 &- \frac{1}{2}\Delta_G(t_n^2\rho^{-(Q+2)}) = -t_n\rho^{-\frac{Q+2}{2}}\Delta_G(t_n\rho^{-\frac{Q+2}{2}}) \\ &= -t_n\rho^{-\frac{Q+2}{2}} \cdot t_n \left(\frac{(Q+2)(Q+4)}{4} - \frac{(Q+2)(Q+3)}{2}\right)\rho^{-\frac{Q+6}{2}} |\nabla_G\rho|^2 \\ &= \frac{(Q+2)^2}{4} t_n^2 \rho^{-(Q+4)} |\nabla_G\rho|^2. \end{split}$$

Therefore

$$\int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}} |\nabla_{G} u|^{2} \geq \int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}} f^{2} \left(|\nabla_{G} (t_{n} \rho^{-\frac{Q+2}{2}})|^{2} - \frac{1}{2} \Delta_{G} (t_{n}^{2} \rho^{-(Q+2)}) \right)
= \frac{(Q+2)^{2}}{4} \int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}} f^{2} t_{n}^{2} \rho^{-(Q+4)} |\nabla_{G} \rho|^{2}
= \frac{(Q+2)^{2}}{4} \int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}} \frac{u^{2}}{\rho^{2}} |\nabla_{G} \rho|^{2}.$$
(3.1)

Now we show the constant $\frac{(Q+2)^2}{4}$ in (3.1) is sharp. Consider the family of function $g_{\varepsilon} = t_n f_{\varepsilon}(\rho)$, where

$$f_{\varepsilon}(\rho) = \left\{ \begin{array}{ll} \varepsilon^{-(Q+2)/2}, & \rho \leq \varepsilon \ ; \\ \rho^{-(Q+2)/2}, & \rho > \varepsilon \ . \end{array} \right.$$

We take g_{ε} as the test function. By (2.5) and symmetry,

$$\begin{split} 2\int_{\mathbb{R}^m \times \mathbb{R}^n_+} |\nabla_G g_{\varepsilon}|^2 &= 2\int_{\mathbb{R}^m \times \mathbb{R}^n_+} \left(|\nabla_x g_{\varepsilon}|^2 + \frac{|x|^2}{4} |\nabla_t g_{\varepsilon}|^2 \right) \\ &= \int_{\mathbb{R}^m \times \mathbb{R}^n} \left(|\nabla_x g_{\varepsilon}|^2 + \frac{|x|^2}{4} |\nabla_t g_{\varepsilon}|^2 \right) \\ &= \int_{G \setminus B_{\varepsilon}} \left(|\nabla_x g_{\varepsilon}|^2 + \frac{|x|^2}{4} |\nabla_t g_{\varepsilon}|^2 \right) dx dt + \varepsilon^{-Q-2} \int_{B_{\varepsilon}} \frac{|x|^2}{4} dx dt \end{split}$$

and

$$2\int_{\mathbb{R}^m \times \mathbb{R}^n} \frac{g_{\varepsilon}^2}{\rho^2} |\nabla_G \rho|^2 = \int_{\mathbb{R}^m \times \mathbb{R}^n} \frac{g_{\varepsilon}^2}{\rho^2} |\nabla_G \rho|^2 \ge \int_{G \setminus B_{\varepsilon}} \frac{g_{\varepsilon}^2}{\rho^2} |\nabla_G \rho|^2.$$

By Lemma 3.1 (1), we have, for $\rho > \varepsilon$,

$$\begin{split} |\nabla_G g_{\varepsilon}|^2 = & \frac{(Q+2)^2}{4} t_n^2 \rho^{-(Q+4)} |\nabla_G \rho|^2 + \frac{|x|^2}{4} \rho^{-(Q+2)} + \frac{|x|^2}{4} \cdot t_n \frac{\partial \rho^{-(Q+2)}}{\partial t_n} \\ = & \frac{(Q+2)^2}{4} t_n^2 \rho^{-(Q+4)} |\nabla_G \rho|^2 + \frac{|x|^2}{4} \rho^{-(Q+2)} - 2(Q+2) \frac{|x|^2 t_n^2}{\rho^{Q+6}}. \end{split}$$

Since
$$\int_{G\setminus B_{\varepsilon}} \left(\frac{|x|^2}{4} \rho^{-(Q+2)} - 2(Q+2) \frac{|x|^2 t_n^2}{\rho^{Q+6}}\right) dx dt = 0$$
, we have
$$2 \int_{\mathbb{R}^m \times \mathbb{R}^n} |\nabla_G g_{\varepsilon}|^2 = \frac{(Q+2)^2}{4} \int_{G\setminus B} t_n^2 \rho^{-(Q+4)} |\nabla_G \rho|^2 + \varepsilon^{-Q-2} \int_{B} \frac{|x|^2}{4} dx dt.$$

Therefore

$$\inf_{u \in C_0^{\infty}(\mathbb{R}^m \times \mathbb{R}^n_+) \setminus \{0\}} \frac{\int_{\mathbb{R}^m \times \mathbb{R}^n_+} |\nabla_G u|^2 dx dt}{\int_{\mathbb{R}^m \times \mathbb{R}^n_+} |\nabla_G g_{\varepsilon}|^2 dx dt} \leq \frac{\int_{\mathbb{R}^m \times \mathbb{R}^n_+} |\nabla_G g_{\varepsilon}|^2 dx dt}{\int_{\mathbb{R}^m \times \mathbb{R}^n_+} |\nabla_G g_{\varepsilon}|^2 dx dt} = \frac{\int_{\mathbb{R}^m \times \mathbb{R}^n_+} |\nabla_G g_{\varepsilon}|^2 dx dt}{\int_{\mathbb{R}^m \times \mathbb{R}^n_+} |\nabla_G g_{\varepsilon}|^2 dx dt} \leq \frac{\int_{G} |\nabla_G g_{\varepsilon}|^2 dx dt}{\int_{G \setminus B_{\varepsilon}} \frac{g_{\varepsilon}^2}{\rho^2} |\nabla_G \rho|^2 dx dt}$$

$$= \frac{(Q+2)^2}{4} + \varepsilon^{-Q-2} \frac{\int_{B_{\varepsilon}} \frac{|x|^2}{4} dx dt}{\int_{G \setminus B_{\varepsilon}} t_n^2 \rho^{-(Q+4)} |\nabla_G \rho|^2} \to \frac{(Q+2)^2}{4}, \quad \varepsilon \to 0.$$

This completes the proof.

References

- [1] Bonfiglioli A, Uguzzoni F. Nonlinear Liouville theorems for some critical problems on H-type groups[J]. J. Funct. Anal., 2004, 207: 161–215.
- [2] Caldiroli P, Musina R. Stationary states for a two-dimensional singular Schröinger equation[J]. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 2001, 4(3): 609–33.
- [3] Cazacu C. On Hardy inequalities with singularities on the boundary[J]. C. R. Acad. Sci. Paris, Ser. I, 2011, 349: 273–277.
- [4] Cohn W, Lu G. Best constants for Moser-Trudinger inequalities, fundamental solutions and one parameter representation formulars on groups of Heisenberg type[J]. Acta Math. Sinica, 2002, 18(2): 375–390.
- [5] D'Ambrosio L. Some hardy inequalities on the Heisenberg group[J]. Diff. Equ., 2004, 40: 552–564.
- [6] Filippas S, Tertikas A, Tidblom J. On the structure of Hardy-Sobolev-Maz'ya inequalities[J]. J. Eur. Math. Soc., 2009, 11(6): 1165–1185.
- [7] Folland G B, Stein E M. Hardy spaces on homogeneous groups[M]. Princeton, NJ: Princeton University Press, 1982.
- [8] Garofalo N, Lanconelli E. Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation[J]. Ann. Inst. Fourier (Grenoble), 1990, 40: 313–356.
- [9] Goldsteinand J A, Zhang Q S. On a degenerate heat equation with a singular potential[J]. J. Func. Anal., 2001, 186: 342–359.
- [10] Han Y, Niu P. Hardy-Sobolev type inequalities on the H-type group[J]. Manuscripta Math., 2005, 118: 235–252.
- [11] Kaplan A. Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms[J]. Trans. Amer. Math. Soc., 1980, 258(1): 147–153.
- [12] Nazarov A I. Hardy-Sobolev inequalities in a cone[J]. J. Math. Sci., 2006, 132(4): 419–427.
- [13] Niu P, Zhang H, Wang Y. Hardy type and Rellich type inequalities on the Heisenberg group[J]. Proc. Amer. Math. Soc., 2001, 129: 3623–3630.
- [14] Su D, Yang Q H. On the best constants of Hardy inequality in $\mathbb{R}^{n-k} \times (\mathbb{R}_+)^k$ and related improvements[J]. J. Math. Anal. Appl., 2012, 389: 48–53.

H型群内上半空间Hardy不等式的最佳常数问题

连保胜, 沈小羽, 徐岩冰

(武汉科技大学理学院, 湖北 武汉 430065)

摘要: 本文研究了H型幂零李群上Hardy不等式的问题. 利用基本解的方法, 获得了相关李群上的Hardy不等式, 并且所得到的相关Hardy常数是最佳的.

关键词: Hardy不等式; H型群; 最佳常数

MR(2010)主题分类号: 26D10; 22E25 中图分类号: O152.5