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1 Introduction

The Hardy inequality in RY reads that, for all u € C5°(RY) and N > 3,

N —2 2 2
Vutdr > V=2 [, (1.1)
RN 4 gy |Z[?

and the constant % in (1.1) is sharp. Recently, it was proved by Nazarov (see [12],

Proposition 4.1 and [6]) that the following Hardy inequality is valid for f € C§°(RY),

/RN \Vu(z)2de > JY/R GO (1.2)

v |zl
+ +

where RY = {(z1, -+ ,2z,)|zy > 0}, and the constant M s sharp. This shows that the

4
% to NTQ, when the singularity of the potential reaches

the boundary. Inequality (1.2) was generalized by Su and Yang [14] to the cone ]R{CV+ =

Hardy constant jumps from

RN=F x (Ry)* = {(z1, - ,zn)|®N_kt1 >0, -+ ,zx > 0}. For more information about this
inequality and its applications, we refer to [2, 3] and the references therein.

The aim of this note is to prove similar Hardy type inequality on half spaces for Kohn’s
sublaplacian in H-type groups G, a remarkable class of stratified groups of step two intro-
duced by Kaplan [11]. Let G = (R™ x R", 0) with group law defined in Section 2. It was
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proved by Han et al. (see [10] and [5, 8, 9, 13] for analogous inequalities on Heisenberg
group) that for u € C§°(G), there holds

-9 2 2
/ \Vul*dzdt > (624)/ %|VGP|2dxdt, (1.3)
R™ xR™ R xR P

and the constant @ is sharp, where Q = m + 2n, p(z,y) = (Jz|* + 16[t|?)7 and Vg is
the the horizontal gradient associated with the Kohn’s sublaplacian on G (for details, see
Section 2). In this note we shall show when the singularity is on the boundary, the Hardy
constant also jumps. In fact, we have the following:

Theorem 1.1 Let a < @ — 2. There holds, for all u € C§°(R™ x R7}),

2 2 a)2 2
/ Vaul” g g > (M+2a))/ g+a\vcp|2dxdt, (1.4)
R™ xR": 4 R xR P

poé
and the constant M + 2a in (1.4) is sharp.

2 Notation and Preliminaries

We begin by describing the Lie groups and Lie algebras under consideration. For more
information about H-type groups, we refer to [1, 11] and references therein. A H-type group
G is a Carnot group of step two with the following properties: the Lie algebra g of G is
endowed with an inner product {,) such that, if 3 is the center of g, then [31,31] = 3 and

moreover, for every fixed z € 3, the map J, : 37 — 3 defined by
(J.(v),w) = (z,[v,0]), Vw e

is an orthogonal map whenever (z,z) = 1. Set m = dim3* and n = dim 3. In the sequel we

shall fix on G a system of coordinates (z,t) and that the group law has the form

[ /‘7 .:1725"'5
(1) 0 (&, 1) = N , (21)
tj+t;'+§ <3’J,U(])I‘, >, ) :1725"' ,
where the matrices {U)}"_; have the following two properties (see [1])
(1) UY) is a m x m Skew symmetric and orthogonal matrix, for every j = 1,2,--- ,n;

(2) UOUW 4+ UDU® =0 for every i,j € {1,2,--- ,n} with i # j.
A easy computation shows that the vector field in the algebra g of N = (R™*" o) that

agrees at the origin with %(j =1,---,m) is given by
J
9 1 n m *) 9
X4 = —_— — U . ; )
J 617j + 2 Z (Z ij Ti ot}
k=1 \i=1
and that g is spanned by the left-invariant vector fields Xi,---, X,,, 8%1, e ,%. We use

the notation Vg = (X1, -+, X,,) and call it the horizontal gradient. The horizontal gradient

can be written in the form

1 0 1 0
Vo=V UDp— ..y~ 2.2
¢ ) x@tl 2 x@tn (22)
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with x = (z1,-+- ,z,) and V, The Kohn’s sublaplacian on the H-type

(Bwl T Bz )
group G is given by

m m n m 2
AG_ZX2 Z( 0 43 ) (ZU}?@) af)

k=1 \i=1
=A, + f|x|2At + Z(x U(’“)VI>i
T 4 Y atkﬂ

k=1

m 2 n 2 ~

where A, = ) (%) and A, = > (%) . Moreover, on functions f(z,t) = f(|z|,t), we
=1 I k=1 \F

have

<ac,U(k)VI>f(|a:|,t) = 07 k= 1727' N

Hence

- - 1 -
Acf(lz|,t) = Asf(lz| ) + lelzﬁtf(lwli)- (2.3)
We also have

Ve f(lz],t))?

J

~12

~ I Of

— _ = G) .2
V.30

n

=Y UV, V. f(lal, )5

Jj=1

~ 12
o s LN, o 5f (2.4)
=|V.f] +4 ZU xat]—

Jj=1

~ 1 ~
=IVa f[* + 1l [Vef (2], ).

To get the last inequality, we use the fact (r = |z| in the equality below)

W92, 9. Fil.) = (00, 5 ) 5 =

since UY) (1 < j < n) is a skew-symmetric matric and

~12 ~
S 0. < S (000,00 \of of
(4) — U@y U@y
, v xatj‘ , 2 3t 3t
j=1 7j=1 1<j
S oL af
2 (J) @) g
1<J
af af
= _ E GOy,

1<j

=[x*|V.f (||, t)[*
since UVU® is also skew-symmetric for every i # j, for

(U(j)U(i))T — (U(i))T(U(J'))T _ (_U(i))(_U(J')) — Dyl = _yWhy®,
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For each real number A > 0, there is a dilation naturally associated with the group
structure which is usually denoted as 0,(&) = dx(x,t) = (\x, \*t), £ = (x,t) € G. However,
for simplicity we will write A¢ to denote ) (¢). The Jacobian determinant of &y is A%, where
Q = m + 2n is the homogeneous dimension of G. The anisotropic dilation structure on
G introduces homogeneous norm p(€) = p(z,t) = (|z|* + 16|t|?)7. With this norm, we can
define the Heisenberg ball centered at £ = (x,t) with radius R,

B, R)={veG:p(¢*tov) <R}

For simplicity, we set

Br =B(0,R) ={v e G:p(v) < R}. (2.5)
Given any & = (x,t) # 0, set z* = %, t* = @ and & = (x*,t*). Then & € ¥ =

{v € G, p(v) = 1}, the Heisenberg unit sphere. Furthermore, we have the following polar

coordinates on G (see [7]):

/f(f)dﬂ?dtZ/oo/f()xf*)AQ‘ldadr
G 0 b

for all f € L'(GQ) and for 8 > —m (see [4]),

i
1 7= T( e

Cjs —/ |z*|Pdo = T = > 0. (2.6)
4"z D(3)T(92)

2

m

A function f on G is said to be radial if f(x,t) = f(p) If f is radial, it is easy to check
||

IVafl =11 (o)l [Vapl = 1f ()Ip

(2.7)

and

_ 2 _
Acf=|vcm2(fﬂ+g?1f>::“ﬂ<ﬂﬂ+g?lf>. (2.8)
p p p

3 The Proof

Before the proof of main results, we need the following lemma.
Lemma 3.1 Let f € C°°(G) be a radial function. There holds
(1) [Valta)? = 221 2|V pl2 + 28 2 4 b o

(2) Baltnf) = talF" + L2 )|Vl

Proof (1) Since f is radial, we get, by (2.5),

1
Vot N)I? =IValta))” + 12 IVi(ta )

=t2 |V fI* + LIk | (E2IVLf 1P+ PPVt + 260 f(Vitn, Vi)
_ |3:|2 2|2 tolz|?> . Of
2 (19,174 B ) 4 ey WL 2T

2 to|z|? 3f2
—42 2, 2P s tn . .
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It remains to use (2.7) and the desired result follows.
(2) By (2.3) and (2.8), we have

Aoltnf) =Bt f) + oA (1) = 8,5 + L (t Atfmgtf)
|z, dp |z> f
tn<AT Af> 4f ot =t,Acf +4t, s
=t <f”+ /> IVapl? +ta|Vap|® - 45/

+ 3
o (174 L2 ) 1Vt
p
Now we can prove Theorem 1.1.

Proof of Theorem 1.1 First, we consider the case o = 0. Using the substitution
U= tnp_%f, we get

2 12 Vet p=@+2) v #2
[ var= | [wemp%ﬁfmvaﬂ? B Vel @, Vol)
R™ x ]Ri R™ xR™ p

2
- [ (WG(tnp
R™ XR?
_/ f* ('Vc(tnp_%”ﬂ —*AG( _(Q+2))>
]Rmx]Rj_

Notice that, for g € C>*(G),

YR+ HVG(lr @, Ve >)

Aag® = X7g°=29> X7g+2> |X;9]* =29Ac9 +2|Vag|*.
We have, by Lemma 3.1 (2),

_Q+2 1 _ _Qi2 _Qi2
Vetup™ )P = 586t~ @) = ~tap™ % Ag(tup™ )

ez, ((Q+2>(Q+4) (@+2)(@+3)

Q+6
=—t, - 2 |Vepl?
p 1 5 p~ 2 [Vapl

Q+2)?, _
:%tiﬂ (Q+4)|va|2.

Therefore

_Q+2 1 2
[ ez [P (Wattr R - At @)
R™ xR} R™ xRY

+2)? _
771>< 1

Q+2 2 U2
@ e
Rm xR7 P
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Now we show the constant % in (3.1) is sharp. Consider the family of function

Je = tnfc‘(p)v where
_ (r.:_(Q'i'z)/27 p S € ;
fs(p) - p_(Q_‘_Q)/Q’ o > e,

We take g. as the test function. By (2.5) and symmetry,

2
2/ Vege =2/ <|Vacgs|2 + |QCIVtgs|2>
R™ xR%Y R™ xR 4
T 2
:/ <|vwge|2 + 4||vtga|2>
R™ xRR™

2 2
:/ |nga|2+ﬁ\vtga|2 da:dt+aQ2/ ﬂdxdt
o\B. 4 4

2 2 2
g g g

2/ %|VGP|2 =/ %|VGP|2 2/ %|VGP|2~
R™xR7 P Rm xR P G\B. P

By Lemma 3.1 (1), we have, for p > ¢,

and

s (Q@+2)?, —(Q+4) o, |zl —(Q+2) || dp~(@+2)
x4y = Lt
Vel 1 P IVapl™ +=-p 3 ot
(@+2)°, _ jz? _ |z 45
=t CIVap + T = 2(Q 4 2) por
. > _ |z |22
Since / ('p @+2) _2(Q +2) 2 ) dxdt = 0, we have
G\B. 4 peTo
Q + 2 2 B o T 2
2/ IVagel? :% t2p= @Y pf? + 7972 %dazdt.
R™ xR7 G\B. B.

Therefore

/ |V qu|*dxdt / Vg |?drdt
R™ xR < RmxRY

inf
u€C® (R™ xR7)\{0} /

n
Rm x R+

u? 2 B gz 2
— |Vepl dzdt ?|VGP| dxdt

2 n
Rm XR+

/ Vg, [Pdvdt / Vg 2dudt
R™ xR™ < G

92 - 92
/ & \Vapdadt / = Vap|*dedt
Rm xR P G\B. P

€

||
Q-2 B. _)(Q+)’€_>

| teemwer
G\B.

_(@+2)
=4 Tt

This completes the proof.
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