ON THE BEST CONSTANTS OF HARDY INEQUALITIES ON HALF SPACES IN H－TYPE GROUPS

LIAN Bao－sheng，SHEN Xiao－yu，XU Yan－bing
（College of Science，Wuhan University of Science and Technology，Wuhan 430065，China）

Abstract

In this paper，using the corresponding fundamental solution，we obtain some Hardy inequalities on half spaces for Kohn＇s sublaplacian in H－type groups．Furthermore，the constants we obtain are sharp．

Keywords：Hardy inequality；H－type group；best constant
2010 MR Subject Classification：26D10；22E25
Document code：A Article ID：0255－7797（2017）03－0591－07

1 Introduction

The Hardy inequality in \mathbb{R}^{N} reads that，for all $u \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ and $N \geq 3$ ，

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\nabla u|^{2} d x \geq \frac{(N-2)^{2}}{4} \int_{\mathbb{R}^{N}} \frac{u^{2}}{|x|^{2}} d x \tag{1.1}
\end{equation*}
$$

and the constant $\frac{(N-2)^{2}}{4}$ in（1．1）is sharp．Recently，it was proved by Nazarov（see［12］， Proposition 4.1 and［6］）that the following Hardy inequality is valid for $f \in C_{0}^{\infty}\left(\mathbb{R}_{+}^{N}\right)$ ，

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{N}}|\nabla u(x)|^{2} d x \geq \frac{N^{2}}{4} \int_{\mathbb{R}_{+}^{N}} \frac{u(x)^{2}}{|x|^{2}} d x \tag{1.2}
\end{equation*}
$$

where $\mathbb{R}_{+}^{N}=\left\{\left(x_{1}, \cdots, x_{n}\right) \mid x_{N}>0\right\}$ ，and the constant $\frac{N^{2}}{4}$ is sharp．This shows that the Hardy constant jumps from $\frac{(N-2)^{2}}{4}$ to $\frac{N^{2}}{4}$ ，when the singularity of the potential reaches the boundary．Inequality（1．2）was generalized by Su and Yang［14］to the cone $\mathbb{R}_{k_{+}}^{N}:=$ $\mathbb{R}^{N-k} \times\left(\mathbb{R}_{+}\right)^{k}=\left\{\left(x_{1}, \cdots, x_{N}\right) \mid x_{N-k+1}>0, \cdots, x_{N}>0\right\}$ ．For more information about this inequality and its applications，we refer to $[2,3]$ and the references therein．

The aim of this note is to prove similar Hardy type inequality on half spaces for Kohn＇s sublaplacian in H－type groups G ，a remarkable class of stratified groups of step two intro－ duced by Kaplan［11］．Let $G=\left(\mathbb{R}^{m} \times \mathbb{R}^{n}, \circ\right)$ with group law defined in Section 2．It was

[^0]proved by Han et al. (see [10] and [5, 8, 9, 13] for analogous inequalities on Heisenberg group) that for $u \in C_{0}^{\infty}(G)$, there holds
\[

$$
\begin{equation*}
\int_{\mathbb{R}^{m} \times \mathbb{R}^{n}}\left|\nabla_{G} u\right|^{2} d x d t \geq \frac{(Q-2)^{2}}{4} \int_{\mathbb{R}^{m} \times \mathbb{R}^{n}} \frac{u^{2}}{\rho^{2}}\left|\nabla_{G} \rho\right|^{2} d x d t \tag{1.3}
\end{equation*}
$$

\]

and the constant $\frac{(Q-2)^{2}}{4}$ is sharp, where $Q=m+2 n, \rho(x, y)=\left(|x|^{4}+16|t|^{2}\right)^{\frac{1}{4}}$ and ∇_{G} is the the horizontal gradient associated with the Kohn's sublaplacian on G (for details, see Section 2). In this note we shall show when the singularity is on the boundary, the Hardy constant also jumps. In fact, we have the following:

Theorem 1.1 Let $\alpha<Q-2$. There holds, for all $u \in C_{0}^{\infty}\left(\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}\right)$,

$$
\begin{equation*}
\left.\int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}} \frac{\left|\nabla_{G} u\right|^{2}}{\rho^{\alpha}} d x d t \geq\left(\frac{(Q+2-\alpha)^{2}}{4}+2 \alpha\right)\right) \int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}} \frac{u^{2}}{\rho^{2+\alpha}}\left|\nabla_{G} \rho\right|^{2} d x d t \tag{1.4}
\end{equation*}
$$

and the constant $\frac{(Q+2-\alpha)^{2}}{4}+2 \alpha$ in (1.4) is sharp.

2 Notation and Preliminaries

We begin by describing the Lie groups and Lie algebras under consideration. For more information about H-type groups, we refer to $[1,11]$ and references therein. A H-type group G is a Carnot group of step two with the following properties: the Lie algebra \mathfrak{g} of G is endowed with an inner product \langle,$\rangle such that, if \mathfrak{z}$ is the center of \mathfrak{g}, then $\left[\mathfrak{z}^{\perp}, \mathfrak{z}^{\perp}\right]=\mathfrak{z}$ and moreover, for every fixed $z \in \mathfrak{z}$, the map $J_{z}: \mathfrak{z}^{\perp} \rightarrow \mathfrak{z}^{\perp}$ defined by

$$
\left\langle J_{z}(v), \omega\right\rangle=\langle z,[v, \omega]\rangle, \quad \forall \omega \in \mathfrak{z}^{\perp}
$$

is an orthogonal map whenever $\langle z, z\rangle=1$. Set $m=\operatorname{dim} \mathfrak{z}^{\perp}$ and $n=\operatorname{dim} \mathfrak{z}$. In the sequel we shall fix on G a system of coordinates (x, t) and that the group law has the form

$$
\begin{equation*}
(x, t) \circ\left(x^{\prime}, t^{\prime}\right)=\binom{x_{i}+x_{i}^{\prime}, \quad i=1,2, \cdots, m}{t_{j}+t_{j}^{\prime}+\frac{1}{2}<x, U^{(j)} x^{\prime}>, \quad j=1,2, \cdots, n} \tag{2.1}
\end{equation*}
$$

where the matrices $\left\{U^{(j)}\right\}_{j=1}^{n}$ have the following two properties (see [1])
(1) $U^{(j)}$ is a $m \times m$ Skew symmetric and orthogonal matrix, for every $j=1,2, \cdots, n$;
(2) $U^{(i)} U^{(j)}+U^{(j)} U^{(i)}=0$ for every $i, j \in\{1,2, \cdots, n\}$ with $i \neq j$.

A easy computation shows that the vector field in the algebra \mathfrak{g} of $N=\left(\mathbb{R}^{m+n}, \circ\right)$ that agrees at the origin with $\frac{\partial}{\partial x_{j}}(j=1, \cdots, m)$ is given by

$$
X_{j}=\frac{\partial}{\partial x_{j}}+\frac{1}{2} \sum_{k=1}^{n}\left(\sum_{i=1}^{m} U_{i, j}^{(k)} x_{i}\right) \frac{\partial}{\partial t_{k}}
$$

and that \mathfrak{g} is spanned by the left-invariant vector fields $X_{1}, \cdots, X_{m}, \frac{\partial}{\partial t_{1}}, \cdots, \frac{\partial}{\partial t_{n}}$. We use the notation $\nabla_{G}=\left(X_{1}, \cdots, X_{m}\right)$ and call it the horizontal gradient. The horizontal gradient can be written in the form

$$
\begin{equation*}
\nabla_{G}=\nabla_{x}-\frac{1}{2} U^{(1)} x \frac{\partial}{\partial t_{1}}-\cdots-\frac{1}{2} U^{(n)} x \frac{\partial}{\partial t_{n}} \tag{2.2}
\end{equation*}
$$

with $x=\left(x_{1}, \cdots, x_{m}\right)$ and $\nabla_{x}=\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{m}}\right)$. The Kohn's sublaplacian on the H-type group G is given by

$$
\begin{aligned}
\Delta_{G} & =\sum_{j=1}^{m} X_{j}^{2}=\sum_{j=1}^{m}\left(\frac{\partial}{\partial x_{j}}+\frac{1}{2} \sum_{k=1}^{n}\left(\sum_{i=1}^{m} U_{i, j}^{(k)} x_{i}\right) \frac{\partial}{\partial t_{k}}\right)^{2} \\
& =\Delta_{x}+\frac{1}{4}|x|^{2} \Delta_{t}+\sum_{k=1}^{n}\left\langle x, U^{(k)} \nabla_{x}\right\rangle \frac{\partial}{\partial t_{k}}
\end{aligned}
$$

where $\Delta_{x}=\sum_{j=1}^{m}\left(\frac{\partial}{\partial x_{j}}\right)^{2}$ and $\Delta_{t}=\sum_{k=1}^{n}\left(\frac{\partial}{\partial t_{k}}\right)^{2}$. Moreover, on functions $f(x, t)=\widetilde{f}(|x|, t)$, we have

$$
\left\langle x, U^{(k)} \nabla_{x}\right\rangle \widetilde{f}(|x|, t)=0, \quad k=1,2, \cdots, n
$$

Hence

$$
\begin{equation*}
\Delta_{G} \widetilde{f}(|x|, t)=\Delta_{x} \widetilde{f}(|x|, t)+\frac{1}{4}|x|^{2} \Delta_{t} \widetilde{f}(|x|, t) \tag{2.3}
\end{equation*}
$$

We also have

$$
\begin{align*}
\left|\nabla_{G} \widetilde{f}(|x|, t)\right|^{2} & =\left|\nabla_{x} \widetilde{f}-\frac{1}{2} \sum_{j=1}^{n} U^{(j)} x \frac{\partial \widetilde{f}}{\partial t_{j}}\right|^{2} \\
& =\left|\nabla_{x} \widetilde{f}\right|^{2}+\frac{1}{4}\left|\sum_{j=1}^{n} U^{(j)} x \frac{\partial \widetilde{f}}{\partial t_{j}}\right|^{2}-\sum_{j=1}^{n}\left\langle U^{(j)} x, \nabla_{x} \widetilde{f}(|x|, t)\right\rangle \frac{\partial \widetilde{f}}{\partial t_{j}} \tag{2.4}\\
& =\left|\nabla_{x} \widetilde{f}\right|^{2}+\frac{1}{4}|x|^{2}\left|\nabla_{t} \widetilde{f}(|x|, t)\right|^{2}
\end{align*}
$$

To get the last inequality, we use the fact ($r=|x|$ in the equality below)

$$
\left\langle U^{(j)} x, \nabla_{x} \widetilde{f}(|x|, t)\right\rangle=\left\langle U^{(j)} x, \frac{x}{|x|}\right\rangle \frac{\partial \tilde{f}}{\partial r}=0
$$

since $U^{(j)}(1 \leq j \leq n)$ is a skew-symmetric matric and

$$
\begin{aligned}
\left|\sum_{j=1}^{n} U^{(j)} x \frac{\partial \widetilde{f}}{\partial t_{j}}\right|^{2} & =\sum_{j=1}^{n}\left|U^{(j)} x \frac{\partial \widetilde{f}}{\partial t_{j}}\right|^{2}+2 \sum_{i<j}\left\langle U^{(i)} x, U^{(j)} x\right\rangle \frac{\partial \widetilde{f}}{\partial t_{i}} \frac{\partial \widetilde{f}}{\partial t_{j}} \\
& =|x|^{2}\left|\nabla_{t} \widetilde{f}(|x|, t)\right|^{2}+2 \sum_{i<j}\left\langle\left(U^{(j)}\right)^{T} U^{(i)} x, x\right\rangle \frac{\partial \widetilde{f}}{\partial t_{i}} \frac{\partial \widetilde{f}}{\partial t_{j}} \\
& =|x|^{2}\left|\nabla_{t} \widetilde{f}(|x|, t)\right|^{2}-2 \sum_{i<j}\left\langle U^{(j)} U^{(i)} x, x\right\rangle \frac{\partial \widetilde{f}}{\partial t_{i}} \frac{\partial \widetilde{f}}{\partial t_{j}} \\
& =|x|^{2}\left|\nabla_{t} \widetilde{f}(|x|, t)\right|^{2}
\end{aligned}
$$

since $U^{(j)} U^{(i)}$ is also skew-symmetric for every $i \neq j$, for

$$
\left(U^{(j)} U^{(i)}\right)^{T}=\left(U^{(i)}\right)^{T}\left(U^{(j)}\right)^{T}=\left(-U^{(i)}\right)\left(-U^{(j)}\right)=U^{(i)} U^{(j)}=-U^{(j)} U^{(i)}
$$

For each real number $\lambda>0$, there is a dilation naturally associated with the group structure which is usually denoted as $\delta_{\lambda}(\xi)=\delta_{\lambda}(x, t)=\left(\lambda x, \lambda^{2} t\right), \xi=(x, t) \in G$. However, for simplicity we will write $\lambda \xi$ to denote $\delta_{\lambda}(\xi)$. The Jacobian determinant of δ_{λ} is λ^{Q}, where $Q=m+2 n$ is the homogeneous dimension of G. The anisotropic dilation structure on G introduces homogeneous norm $\rho(\xi)=\rho(x, t)=\left(|x|^{4}+16|t|^{2}\right)^{\frac{1}{4}}$. With this norm, we can define the Heisenberg ball centered at $\xi=(x, t)$ with radius R,

$$
B(\xi, R)=\left\{v \in G: \rho\left(\xi^{-1} \circ v\right)<R\right\}
$$

For simplicity, we set

$$
\begin{equation*}
B_{R}=B(0, R)=\{v \in G: \rho(v)<R\} \tag{2.5}
\end{equation*}
$$

Given any $\xi=(x, t) \neq \mathbf{0}$, set $x^{*}=\frac{x}{\rho(\xi)}, t^{*}=\frac{t}{\rho(\xi)^{2}}$ and $\xi^{*}=\left(x^{*}, t^{*}\right)$. Then $\xi^{*} \in \Sigma=$ $\{v \in G, \rho(v)=1\}$, the Heisenberg unit sphere. Furthermore, we have the following polar coordinates on G (see [7]):

$$
\int_{G} f(\xi) d x d t=\int_{0}^{\infty} \int_{\Sigma} f\left(\lambda \xi^{*}\right) \lambda^{Q-1} d \sigma d r
$$

for all $f \in L^{1}(G)$ and for $\beta>-m$ (see [4]),

$$
\begin{equation*}
C_{\beta}:=\int_{\Sigma}\left|x^{*}\right|^{\beta} d \sigma=\frac{1}{4^{n-\frac{1}{2}}} \frac{\pi^{\frac{n+m}{2}} \Gamma\left(\frac{m+\beta}{4}\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{Q+\beta}{4}\right)}>0 \tag{2.6}
\end{equation*}
$$

A function f on G is said to be radial if $f(x, t)=\widetilde{f}(\rho)$. If f is radial, it is easy to check

$$
\begin{equation*}
\left|\nabla_{G} f\right|=\left|f^{\prime}(\rho)\right| \cdot\left|\nabla_{G} \rho\right|=\left|f^{\prime}(\rho)\right| \frac{|x|}{\rho} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{G} f=\left|\nabla_{G} \rho\right|^{2}\left(f^{\prime \prime}+\frac{Q-1}{\rho} f^{\prime}\right)=\frac{|x|^{2}}{\rho^{2}}\left(f^{\prime \prime}+\frac{Q-1}{\rho} f^{\prime}\right) \tag{2.8}
\end{equation*}
$$

3 The Proof

Before the proof of main results, we need the following lemma.
Lemma 3.1 Let $f \in C^{\infty}(G)$ be a radial function. There holds
(1) $\left|\nabla_{G}\left(t_{n} f\right)\right|^{2}=t_{n}^{2}\left|f^{\prime}\right|^{2}\left|\nabla_{G} \rho\right|^{2}+\frac{|x|^{2}}{4} f^{2}+\frac{t_{n}|x|^{2}}{4} \cdot \frac{\partial f^{2}}{\partial t_{n}}$;
(2) $\Delta_{G}\left(t_{n} f\right)=t_{n}\left(f^{\prime \prime}+\frac{Q+3}{\rho} f^{\prime}\right)\left|\nabla_{G} \rho\right|^{2}$.

Proof (1) Since f is radial, we get, by (2.5),

$$
\begin{aligned}
\left|\nabla_{G}\left(t_{n} f\right)\right|^{2} & =\left|\nabla_{x}\left(t_{n} f\right)\right|^{2}+\frac{1}{4}|x|^{2}\left|\nabla_{t}\left(t_{n} f\right)\right|^{2} \\
& =t_{n}^{2}\left|\nabla_{x} f\right|^{2}+\frac{|x|^{2}}{4}\left(t_{n}^{2}\left|\nabla_{t} f\right|^{2}+f^{2}\left|\nabla_{t} t_{n}\right|^{2}+2 t_{n} f\left\langle\nabla_{t} t_{n}, \nabla_{t} f\right\rangle\right) \\
& =t_{n}^{2}\left(\left|\nabla_{x} f\right|^{2}+\frac{|x|^{2}}{4}\left|\nabla_{t} f\right|^{2}\right)+\frac{|x|^{2}}{4} f^{2}+\frac{t_{n}|x|^{2}}{2} \cdot f \frac{\partial f}{\partial t_{n}} \\
& =t_{n}^{2}\left|\nabla_{G} f\right|^{2}+\frac{|x|^{2}}{4} f^{2}+\frac{t_{n}|x|^{2}}{4} \cdot \frac{\partial f^{2}}{\partial t_{n}}
\end{aligned}
$$

It remains to use (2.7) and the desired result follows.
(2) By (2.3) and (2.8), we have

$$
\begin{aligned}
\Delta_{G}\left(t_{n} f\right) & =\Delta_{x}\left(t_{n} f\right)+\frac{|x|^{2}}{4} \Delta_{t}\left(t_{n} f\right)=t_{n} \Delta_{x} f+\frac{|x|^{2}}{4}\left(t_{n} \Delta_{t} f+2 \frac{\partial f}{\partial t_{n}}\right) \\
& =t_{n}\left(\Delta_{x} f+\frac{|x|^{2}}{4} \Delta_{t} f\right)+\frac{|x|^{2}}{4} f^{\prime} \cdot \frac{\partial \rho}{\partial t_{n}}=t_{n} \Delta_{G} f+4 t_{n} \frac{|x|^{2}}{\rho^{2}} \cdot \frac{f^{\prime}}{\rho} \\
& =t_{n}\left(f^{\prime \prime}+\frac{Q-1}{\rho} f^{\prime}\right)\left|\nabla_{G} \rho\right|^{2}+t_{n}\left|\nabla_{G} \rho\right|^{2} \cdot \frac{4 f^{\prime}}{\rho} \\
& =t_{n}\left(f^{\prime \prime}+\frac{Q+3}{\rho} f^{\prime}\right)\left|\nabla_{G} \rho\right|^{2} .
\end{aligned}
$$

Now we can prove Theorem 1.1.
Proof of Theorem 1.1 First, we consider the case $\alpha=0$. Using the substitution $u=t_{n} \rho^{-\frac{Q+2}{2}} f$, we get

$$
\begin{aligned}
\int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}}\left|\nabla_{G} u\right|^{2} & =\int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}}\left[\left|\nabla_{G}\left(t_{n} \rho^{-\frac{Q+2}{2}}\right)\right|^{2} f^{2}+\left|\nabla_{G} f\right|^{2} \frac{t_{n}^{2}}{\rho^{Q+2}}+\frac{\left\langle\nabla_{G}\left(t_{n}^{2} \rho^{-(Q+2)}, \nabla_{G} f^{2}\right\rangle\right.}{2}\right] \\
& \geq \int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}}\left(\left|\nabla_{G}\left(t_{n} \rho^{-\frac{Q+2}{2}}\right)\right|^{2} f^{2}+\frac{1}{2}\left\langle\nabla_{G}\left(t_{n}^{2} \rho^{-(Q+2)}, \nabla_{G} f^{2}\right\rangle\right)\right. \\
& =\int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}} f^{2}\left(\left|\nabla_{G}\left(t_{n} \rho^{-\frac{Q+2}{2}}\right)\right|^{2}-\frac{1}{2} \Delta_{G}\left(t_{n}^{2} \rho^{-(Q+2)}\right)\right)
\end{aligned}
$$

Notice that, for $g \in C^{\infty}(G)$,

$$
\Delta_{G} g^{2}=\sum_{j=1}^{m} X_{j}^{2} g^{2}=2 g \sum_{j=1}^{m} X_{j}^{2} g+2 \sum_{j=1}^{m}\left|X_{j} g\right|^{2}=2 g \Delta_{G} g+2\left|\nabla_{G} g\right|^{2}
$$

We have, by Lemma 3.1 (2),

$$
\begin{aligned}
& \left|\nabla_{G}\left(t_{n} \rho^{-\frac{Q+2}{2}}\right)\right|^{2}-\frac{1}{2} \Delta_{G}\left(t_{n}^{2} \rho^{-(Q+2)}=-t_{n} \rho^{-\frac{Q+2}{2}} \Delta_{G}\left(t_{n} \rho^{-\frac{Q+2}{2}}\right)\right. \\
= & \left.-t_{n} \rho^{-\frac{Q+2}{2}} \cdot t_{n}\left(\frac{(Q+2)(Q+4)}{4}-\frac{(Q+2)(Q+3)}{2}\right) \rho^{-\frac{Q+6}{2}} \right\rvert\, \nabla_{G} \rho^{2} \\
= & \frac{(Q+2)^{2}}{4} t_{n}^{2} \rho^{-(Q+4)}\left|\nabla_{G} \rho\right|^{2} .
\end{aligned}
$$

Therefore

$$
\begin{align*}
\int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}}\left|\nabla_{G} u\right|^{2} & \geq \int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}} f^{2}\left(\left|\nabla_{G}\left(t_{n} \rho^{-\frac{Q+2}{2}}\right)\right|^{2}-\frac{1}{2} \Delta_{G}\left(t_{n}^{2} \rho^{-(Q+2)}\right)\right) \\
& =\frac{(Q+2)^{2}}{4} \int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}} f^{2} t_{n}^{2} \rho^{-(Q+4)}\left|\nabla_{G} \rho\right|^{2} \tag{3.1}\\
& =\frac{(Q+2)^{2}}{4} \int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}} \frac{u^{2}}{\rho^{2}}\left|\nabla_{G} \rho\right|^{2} .
\end{align*}
$$

Now we show the constant $\frac{(Q+2)^{2}}{4}$ in (3.1) is sharp. Consider the family of function $g_{\varepsilon}=t_{n} f_{\varepsilon}(\rho)$, where

$$
f_{\varepsilon}(\rho)= \begin{cases}\varepsilon^{-(Q+2) / 2}, & \rho \leq \varepsilon \\ \rho^{-(Q+2) / 2}, & \rho>\varepsilon\end{cases}
$$

We take g_{ε} as the test function. By (2.5) and symmetry,

$$
\begin{aligned}
2 \int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}}\left|\nabla_{G} g_{\varepsilon}\right|^{2} & =2 \int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}}\left(\left|\nabla_{x} g_{\varepsilon}\right|^{2}+\frac{|x|^{2}}{4}\left|\nabla_{t} g_{\varepsilon}\right|^{2}\right) \\
& =\int_{\mathbb{R}^{m} \times \mathbb{R}^{n}}\left(\left|\nabla_{x} g_{\varepsilon}\right|^{2}+\frac{|x|^{2}}{4}\left|\nabla_{t} g_{\varepsilon}\right|^{2}\right) \\
& =\int_{G \backslash B_{\varepsilon}}\left(\left|\nabla_{x} g_{\varepsilon}\right|^{2}+\frac{|x|^{2}}{4}\left|\nabla_{t} g_{\varepsilon}\right|^{2}\right) d x d t+\varepsilon^{-Q-2} \int_{B_{\varepsilon}} \frac{|x|^{2}}{4} d x d t
\end{aligned}
$$

and

$$
2 \int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}} \frac{g_{\varepsilon}^{2}}{\rho^{2}}\left|\nabla_{G} \rho\right|^{2}=\int_{\mathbb{R}^{m} \times \mathbb{R}^{n}} \frac{g_{\varepsilon}^{2}}{\rho^{2}}\left|\nabla_{G} \rho\right|^{2} \geq \int_{G \backslash B_{\varepsilon}} \frac{g_{\varepsilon}^{2}}{\rho^{2}}\left|\nabla_{G} \rho\right|^{2} .
$$

By Lemma 3.1 (1), we have, for $\rho>\varepsilon$,

$$
\begin{aligned}
\left|\nabla_{G} g_{\varepsilon}\right|^{2} & =\frac{(Q+2)^{2}}{4} t_{n}^{2} \rho^{-(Q+4)}\left|\nabla_{G} \rho\right|^{2}+\frac{|x|^{2}}{4} \rho^{-(Q+2)}+\frac{|x|^{2}}{4} \cdot t_{n} \frac{\partial \rho^{-(Q+2)}}{\partial t_{n}} \\
& =\frac{(Q+2)^{2}}{4} t_{n}^{2} \rho^{-(Q+4)}\left|\nabla_{G} \rho\right|^{2}+\frac{|x|^{2}}{4} \rho^{-(Q+2)}-2(Q+2) \frac{|x|^{2} t_{n}^{2}}{\rho^{Q+6}}
\end{aligned}
$$

Since $\int_{G \backslash B_{\varepsilon}}\left(\frac{|x|^{2}}{4} \rho^{-(Q+2)}-2(Q+2) \frac{|x|^{2} t_{n}^{2}}{\rho^{Q+6}}\right) d x d t=0$, we have

$$
2 \int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}}\left|\nabla_{G} g_{\varepsilon}\right|^{2}=\frac{(Q+2)^{2}}{4} \int_{G \backslash B_{\varepsilon}} t_{n}^{2} \rho^{-(Q+4)}\left|\nabla_{G} \rho\right|^{2}+\varepsilon^{-Q-2} \int_{B_{\varepsilon}} \frac{|x|^{2}}{4} d x d t .
$$

Therefore

$$
\begin{aligned}
& \inf _{u \in C_{0}^{\infty}\left(\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}\right) \backslash\{0\}} \frac{\int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}}\left|\nabla_{G} u\right|^{2} d x d t}{\int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}} \frac{u^{2}}{\rho^{2}}\left|\nabla_{G} \rho\right|^{2} d x d t} \leq \frac{\int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}}\left|\nabla_{G} g_{\varepsilon}\right|^{2} d x d t}{\int_{\mathbb{R}^{m} \times \mathbb{R}_{+}^{n}} \frac{g_{\varepsilon}^{2}}{\rho^{2}}\left|\nabla_{G} \rho\right|^{2} d x d t} \\
= & \frac{\int_{\mathbb{R}^{m} \times \mathbb{R}^{n}}\left|\nabla_{G} g_{\varepsilon}\right|^{2} d x d t}{\int_{\mathbb{R}^{m} \times \mathbb{R}^{n}} \frac{g_{\varepsilon}^{2}}{\rho^{2}}\left|\nabla_{G} \rho\right|^{2} d x d t} \leq \frac{\int_{G}\left|\nabla_{G} g_{\varepsilon}\right|^{2} d x d t}{\int_{G \backslash B_{\varepsilon}} \frac{g_{\varepsilon}^{2}}{\rho^{2}}\left|\nabla_{G} \rho\right|^{2} d x d t} \\
= & \frac{(Q+2)^{2}}{4}+\varepsilon^{-Q-2} \frac{\int_{B_{\varepsilon}} \frac{|x|^{2}}{4} d x d t}{\int_{G \backslash B_{\varepsilon}} t_{n}^{2} \rho^{-(Q+4)}\left|\nabla_{G} \rho\right|^{2}} \rightarrow \frac{(Q+2)^{2}}{4}, \varepsilon \rightarrow 0 .
\end{aligned}
$$

This completes the proof.

References

［1］Bonfiglioli A，Uguzzoni F．Nonlinear Liouville theorems for some critical problems on H－type groups［J］．J．Funct．Anal．，2004，207：161－215．
［2］Caldiroli P，Musina R．Stationary states for a two－dimensional singular Schröinger equation［J］．Boll． Unione Mat．Ital．Sez．B Artic．Ric．Mat．，2001，4（3）：609－33．
［3］Cazacu C．On Hardy inequalities with singularities on the boundary［J］．C．R．Acad．Sci．Paris，Ser． I，2011，349：273－277．
［4］Cohn W，Lu G．Best constants for Moser－Trudinger inequalities，fundamental solutions and one parameter representation formulars on groups of Heisenberg type［J］．Acta Math．Sinica，2002，18（2）： 375－390．
［5］D＇Ambrosio L．Some hardy inequalities on the Heisenberg group［J］．Diff．Equ．，2004，40：552－564．
［6］Filippas S，Tertikas A，Tidblom J．On the structure of Hardy－Sobolev－Maz＇ya inequalities［J］．J．Eur． Math．Soc．，2009，11（6）：1165－1185．
［7］Folland G B，Stein E M．Hardy spaces on homogeneous groups［M］．Princeton，NJ：Princeton Uni－ versity Press， 1982.
［8］Garofalo N，Lanconelli E．Frequency functions on the Heisenberg group，the uncertainty principle and unique continuation［J］．Ann．Inst．Fourier（Grenoble），1990，40：313－356．
［9］Goldsteinand J A，Zhang Q S．On a degenerate heat equation with a singular potential［J］．J．Func． Anal．，2001，186：342－359．
［10］Han Y，Niu P．Hardy－Sobolev type inequalities on the H－type group［J］．Manuscripta Math．，2005， 118：235－252．
［11］Kaplan A．Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms［J］．Trans．Amer．Math．Soc．，1980，258（1）：147－153．
［12］Nazarov A I．Hardy－Sobolev inequalities in a cone［J］．J．Math．Sci．，2006，132（4）：419－427．
［13］Niu P，Zhang H，Wang Y．Hardy type and Rellich type inequalities on the Heisenberg group［J］． Proc．Amer．Math．Soc．，2001，129：3623－3630．
［14］ Su D ，Yang Q H．On the best constants of Hardy inequality in $\mathbb{R}^{n-k} \times\left(\mathbb{R}_{+}\right)^{k}$ and related improve－ ments［J］．J．Math．Anal．Appl．，2012，389：48－53．

H型群内上半空间Hardy不等式的最佳常数问题

连保胜，沈小羽，徐岩冰
（武汉科技大学理学院，湖北武汉 430065）

[^1]
[^0]: ${ }^{*}$ Received date：2014－09－16 Accepted date：2015－07－06
 Foundation item：Supported by the Education Department of Hubei province science and tech－ nology research project（D20131108）．

 Biography：Lian Baosheng（1973－），male，born at Xiaogan，Hubei，associated professor，major in harmornic analysis．

[^1]: 摘要：本文研究了H型幕零李群上Hardy不等式的问题．利用基本解的方法，获得了相关李群上的Hardy不等式，并且所得到的相关Hardy常数是最佳的．

 关键词：Hardy不等式；H型群；最佳常数
 $\operatorname{MR}(2010)$ 主题分类号：26D10；22E25 中图分类号：O152．5

