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Abstract: The paper is concerned with extension modules for weak Hopf-Galois extensions.

By using faithfully flat weak Hopf-Galois extension theory, we investigative the Militaru-Stefan

lifting theorem over weak Hopf algebras, which extends the corresponding result given in [10].

Moreover, we characterizer weak stable modules by a weak cleft extension of endomorphism rings

of induced modules.
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1 Introduction and Preliminaries

Let H be a Hopf algebra, A a faithfully flat Hopf-Galois extension over its subalgebra
of coinvariants B and M a B-module. Generalizing a result due to Dade [7] on strongly
graded rings, Militaru and Stefan checked the following classical result: the B-action on
M can be extended to an A-action if and only if there exists a total integral and algebra
map φ : H → ENDA(M ⊗B A), where ENDA(M ⊗B A), consisting of the rational space
of EndA(M ⊗B A), was introduced by Ulbrich [17]. Moreover, Caenepeel also studied and
obtained this result using isomorphisms of small categories in [4].

The purpose of the present paper is to investigate the above result in the case of weak
Hopf algebras. But this is not a direct promotion, we give a new simple proof.

Weak bialgebras (or weak Hopf algebras), as a generalization of ordinary bialgebras (or
Hopf algebras) and groupoid algebras, were introduced by Böhm and Szlachányi in [3] (see
also their joint work with Nill in [2]). The main difference between ordinary and weak Hopf
algebras comes from the fact that the comultiplication of the latter is no longer required to
preserve the unit (equivalently, the counit is not required to be an algebra homomorphism).
Consequently, there are two canonical subalgebras (HL and HR) playing the role of “non-
commutative bases” in a weak Hopf algebra H. Moreover, the well known examples of weak
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Hopf algebras are groupoid algebras, face algebras and generalized Kac algebras (see [8, 20]).
The main motivation for studying weak Hopf algebras comes from quantum field theory and
operator algebras. It turned out that many results of classical Hopf algebra theory can be
generalized to weak Hopf algebras.

This paper is organized as follows. In Section 1, we recall some basic definitions and
give a summary of the fundamental properties concerning weak Hopf algebras. In Section
2, based on the work of [19], we obtain the main result of this paper by a new method, that
is, the Militaru-Stefan lifting theorem over weak Hopf algebras. As an application, we check
that if A/B is a weak right H-Galois extension, then the weak smash product EndB(M)#H

is isomorphic to ENDA(M ⊗B A) as an algebra for any M ∈ MA, which extends Theorem
2.3 in [18], given for a finite dimensional Hopf algebra. Moreover, for any B-module M ,
we prove that there exists a one-to-one correspondence between all A-isomorphism classes
of extensions of M to a right A-module and the conjugation classes of total integrals and
algebra maps t : H → ENDA(M ⊗B A). In Section 3, under the condition “faithfully flat
weak Hopf-Galois extensions”, we mainly prove that a right B-module M is weak H-stable if
and only if ENDA(M ⊗B A)/EndB(M) is a weak cleft extension, which generalizes Theorem
3.6 in [15].

We always work over a fixed field k and follow Montgomery’s book [11] for terminologies
on algebras, coalgebras and comodules, but omit the usual summation indices and summation
symbols.

In what follows, we recall some concepts and results used in this paper.
Definition 1.1 [2] Let H be both an algebra and a coalgebra. If H satisfies conditions

(1.1)–(1.3) below, then it is called a weak bialgebra. If it satisfies conditions (1.1)–(1.4)
below, then it is called a weak Hopf algebra with antipode S.

For any x, y, z ∈ H,

∆(xy) = ∆(x)∆(y), (1.1)

∆2(1) = (∆(1)⊗ 1)(1⊗∆(1)); ∆2(1) = (1⊗∆(1))(∆(1H)⊗ 1), (1.2)

where ∆2 = (∆⊗ id)∆.

ε(xyz) = ε(xy1)ε(y2z); ε(xyz) = ε(xy2)ε(y1z), (1.3)

x1S(x2) = ε(11x)12; S(x1)x2 = 11ε(x12); S(x1)x2S(x3) = S(x), (1.4)

where ∆(1) = 11 ⊗ 12.

For any weak bialgebra H, define the maps uL,uR : H → H by the formulas

uL(h) = ε(11h)12, uR(h) = 11ε(h12).

We have that HL = Im(uL) and HR = Im(uR) (see [2, 5]).
By [2], the antipode S of a weak Hopf algebra H is anti-multiplicative and anti-

comultiplicative, that is, for any h, g ∈ H,

S(hg) = S(g)S(h), S(h)1 ⊗ S(h)2 = S(h2)⊗ S(h1).
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The unit and counit are S-invariants, that is, S(1H) = 1H , ε ◦ S = ε.

H is always considered as a weak Hopf algebra. The following results (W1)− (W9) are
given in [2]. For any x ∈ HL, y ∈ HR and h, g ∈ H,

∆(1H) = 11 ⊗ 12 ∈ HR ⊗HL, xy = yx; (W1)

∆(x) = 11x⊗ 12, ∆(y) = 11 ⊗ y12; (W2)

xS(11)⊗ 12 = S(11)⊗ 12x, y11 ⊗ S(12) = 11 ⊗ S(12)y; (W3)

uL ◦ uL = uL, uR ◦ uR = uR; (W4)

S ◦ uR = uL ◦ S = uL ◦ uR, S ◦ uL = uR ◦ S = uR ◦ uL; (W5)

ε(h uL (g)) = ε(hg), ε(uR(h)g) = ε(hg); (W6)

h1 ⊗ uR(h2) = h11 ⊗ S(12), uL(h1)⊗ h2 = S(11)⊗ 12h; (W7)

uR(h1)⊗ h2 = 11 ⊗ h12, h1 ⊗ uL(h2) = 11h⊗ 12; (W8)

h1 uR (g)⊗ h2 = h1 ⊗ h2S ◦ uR(g). (W9)

Let H be a weak Hopf algebra with bijective antipode S. Then it is clear that S−1 is
anti-multiplicative and anti-comultiplicative such that

εS−1 = ε, S−1(1H) = 1H ; (W10)

S−1(h2)h1 = uL(S−1(h)) = 12ε(h11), h2S
−1(h1) = uR(S−1(h)) = 11ε(12h); (W11)

S−1 ◦ uR = uL ◦ S−1, S−1 ◦ uL = uR ◦ S−1. (W12)

The following results (W13)− (W14) are given in [12].

S2|HL = idHL , S2|HR = idHR . (W13)

If the antipode S is bijective, then for any h ∈ H,

uL(h1)⊗ h2 = S−1(11)⊗ 12h. (W14)

Definition 1.2 [5] Let H be a weak bialgebra, and A a right H-comodule, which is
also an algebra, such that

ρA(ab) = ρA(a)ρA(b), (1.5)

ρA(1A)(a⊗ 1H) = (id⊗ uL)ρA(a) (1.6)

for any a, b ∈ A. In this case we call A a weak right H-comodule algebra.
Definition 1.3 [5] Let H be a weak Hopf algebra and A a weak right H-comodule

algebra. If M is both a right A-module and a right H-comodule such that for any m ∈
M, a ∈ A,

ρM (m · a) = m(0) · a(0) ⊗m(1)a(1), (1.7)
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then M is called a weak right (A,H)-Hopf module.
Similarly, we can define the weak left right (A,H)-Hopf modules. We denote by MH

A

the category of weak right (A,H)-Hopf modules, and right A-linear H-colinear maps, and

AMH the category of weak left right (A,H)-Hopf modules, and left A-linear right H-colinear
maps.

Definition 1.4 [12] Let H be a weak bialgebra. The algebra A is called a weak left
H-module algebra if A is a left H-module via h ⊗ a 7→ h · a such that for any a, b ∈ A and
h ∈ H,

h · (ab) = (h1 · a)(h2 · b), (1.8)

h · 1A = uL(h) · 1A. (1.9)

Definition 1.5 [12] Let H be a weak Hopf algebra and A a weak left H-module algebra.
A weak smash product A#H of A with H is defined on a k-vector space A ⊗HL H, where
H is a left HL-module via its multiplication and A is a right HL-module via

a · x = S−1(x) · a = a(x · 1A), a ∈ A, x ∈ HL.

Its multiplication is given by the familiar formula: for any a, b ∈ A and h, g ∈ H,

(a#h)(b#g) = a(h1 · b)#h2g. (1.10)

Then by [12], A#H is an associative algebra with unit 1A#1H .
Definition 1.6 [1] Let H be a weak Hopf algebra and A a weak right H-comodule

algebra. A map φ : H → A is called a total integral if φ is a right H-comodule map and
φ(1H) = 1A.

2 The Militaru-Stefan Lifting Theorem

In this section, we always assume that H is a weak Hopf algebra with bijective antipode
S and A a weak right H-comodule algebra.

Denote B = AcoH = {a ∈ A|ρ(a) = a(0) ⊗ uL(a(1))}. Then by [9, 23], we know that B

is a subalgebra of A, M coH = {m ∈ M |ρ(m) = m(0) ⊗ uL(m(1))} is a right B-submodule of
M for any M ∈MH

A . Set

A £ H = (A⊗H)ρ(1A) = {a1(0) ⊗ h1(1)|a ∈ A, h ∈ H},
N £ H = (N ⊗H)ρ(1A) = {n · 1(0) ⊗ h1(1)|n ∈ N, h ∈ H}

for any N ∈MA. Then by [19], N £ H ∈MH
A , whose action and coaction are given by

(n £ h) · a = n · a(0) £ ha(1), ρ(n £ h) = n £ h1 ⊗ h2. (2.1)

Definition 2.1 [9] If the given map

β : A⊗B A → A £ H, a⊗B b 7→ ab(0) £ b(1)
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is a bijection, we say that A/B is a weak right H-Galois extension, where A is a left and
right B-module via its multiplication.

We will write for any h ∈ H, β−1(1A £ h) = h[1] ⊗B h[2] ∈ A⊗B A.

Lemma 2.2 Let N ∈MA. If A/B is a weak right H-Galois extension, then N £H ∼=
N ⊗B A as weak right (A,H)-Hopf modules, where the A-action and H-coaction on N ⊗B A

are given by
(n⊗B a) · b = n⊗B ab, ρ(n⊗B a) = n⊗B a(0) ⊗ a(1) (2.2)

for any a, b ∈ A,n ∈ N.

Proof Define a map ϕ to be the composite

N £ H
∼= // N ⊗A A £ H

idN⊗Aβ−1
// N ⊗A A⊗B A

∼= // N ⊗B A ,

that is, ϕ(n£h) = n ·h[1]⊗B h[2]. This implies ϕ is a bijection. Additionally, by Lemma 2.2
in [13], we can easily check that ϕ is both a right A-module map and a right H-comodule
map. Thus N £ H ∼= N ⊗B A as weak right (A,H)-Hopf modules.

Lemma 2.3 The following assertions are equivalent.
(1) There exists a total integral and algebra map φ : H → A.

(2) B#H ∼= A as weak right H-comodule algebras.
If these assertions hold then B is a weak left H-module algebra via the adjoint action

h · b = φ(h1)bφ(S(h2)).
Proof Define a map τ : H → B#H, h 7→ 1#h. For any h, g ∈ H, (1#h)(1#g) = 1#hg.

This implies that τ is an algebra map. Obviously, τ is a total integral. Hence the map
φ = λ ◦ τ : H → A is also a total integral and algebra map, where the map λ : B#H → A

is an isomorphism of right H-comodule algebras.
Conversely, assume that there exists a total integral and algebra map φ : H → A. Then

B is a weak left H-module algebra via the adjoint action h · b = φ(h1)bφ(S(h2)).
In fact, since φ is a right H-comodule map, (φ⊗ idH)∆(1H) = ρAφ(1H), that is, φ(11)⊗

12 = 1(0) ⊗ 1(1). Hence

1H · b = φ(11)bφ(S(12)) = 1(0)bφ(S(1(1)))

= b1(0)φ(S(1(1))) = bφ(11)φ(S(12))

= bφ(11S(12)) = b.

In view of Theorem 3.3 in [22], we know that the rest is true.
Take M, N ∈MH

A . Consider ρ(f) ∈ HomA(M, N ⊗H) as

ρ(f)(m) = f(m(0))(0) ⊗ f(m(0))(1)S(m(1)) (2.3)

for any f ∈ HomA(M, N),m ∈ M, where the A-action on N ⊗H is induced by the A-action
on N . Then by [19], ρ(f) is right A-linear. In addition, by [19], we know that HomA(M, N)
becomes a right HR-module via

(f ← y)(m) = f(y •m) (2.4)
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for any f ∈ HomA(M, N) and y ∈ HR, where M is a left HR-module via

y •m = m(0)ε(ym(1)). (2.5)

Recall from [19], we say that a map f ∈ HomA(M, N) is rational if there is an element
fi ⊗ fj ∈ HomA(M, N)⊗H such that

(fi ← 11)(m)⊗ fj12 = f(m(0))(0) ⊗ f(m(0))(1)S(m(1)) (2.6)

for any m ∈ M, where ∆(1H) = 11 ⊗ 12. Set HOMA(M, N) = {f ∈ HomA(M, N)|f is
rational}. Then by (2.3) and (2.6), for any f ∈ HOMA(M, N),

ρ(f) = (fi ← 11)⊗ fj12. (2.7)

By [19], we know that HOMA(M, N) is a right H-comodule via (2.7), ENDA(M) =
HOMA(M, M) is a weak right H-comodule algebra, ENDA(M)coH = EndH

A (M), and (2.6)
is equivalent to that

ρ(f(m)) = f(0)(m(0))⊗ f(1)m(1) (2.8)

for any m ∈ M and f ∈ HOMA(M, N).
From (2.8), for any M ∈MH

A , we can easily check that M ∈ ENDA(M)MH the category
of weak left right (ENDA(M),H)-Hopf modules, and left ENDA(M)-linear right H-colinear
maps, where M is a left ENDA(M)-module via f ·m = f(m) for any f ∈ ENDA(M),m ∈ M.

Let M ∈MH
A . Consider the induction functor −⊗HR M and the functor HOMA(M,−)

between MH and MH
A :

−⊗HR M : MH →MH
A , P 7→ P ⊗HR M,

HOMA(M,−) : MH
A →MH , N 7→ HOMA(M, N),

where for a right H-comodule P , it is a right HR-module via p · y = p(0)ε(p(1)y) for any
p ∈ P, y ∈ HR, M is a left HR-module via (2.5), and the A-action and H-coaction on
P ⊗HR M are given by

(p⊗HR m) · a = p⊗HR m · a, ρ(p⊗HR m) = p(0) ⊗HR m(0) ⊗ p(1)m(1). (2.9)

With notation as above, the following assertion holds.
Lemma 2.4 Let M ∈MH

A . Then (−⊗HR M, HOMA(M,−)) is an adjoint pair.
Proof To show that (− ⊗HR M, HOMA(M,−)) is an adjoint pair, it suffices to prove

that HomH(P, HOMA(M, N)) ∼= HomH
A (P ⊗HR M, N) for any P ∈MH ,M,N ∈MH

A .

Define a map F : HomH
A (P ⊗HR M, N) → HomH(P, HOMA(M, N)) by

F (f)(p)(m) = f(p⊗HR m).
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The map F is well defined. In fact, for any f ∈ HomH
A (P ⊗HR M, N), p ∈ P, m ∈ M ,

ρ(F (f)(p))(m) = F (f)(p)(m(0))(0) ⊗ F (f)(p)(m(0))(1)S(m(1))

= f(p⊗HR m(0))(0) ⊗ f(p⊗HR m(0))(1)S(m(1))

= f(p(0) ⊗HR m(0))⊗ p(1)m(1)1S(m(1)2)

= f(p(0) ⊗HR m(0))⊗ p(1)ε(11m(1))12

= F (f)(p(0))(m(0))⊗ p(1)ε(11m(1))12

= F (f)(p(0))(11 •m)⊗ p(1)12

= (F (f)(p(0)) ← 11)(m)⊗ p(1)12,

that is, ρ(F (f)(p)) = F (f)(p(0)) ← 11 ⊗ p(1)12. The right A-linearity of f implies that
F (f)(p) is also a right A-linear map. Hence F (f)(p) ∈ HOMA(M, N). Moreover, in the light
of the right H-colinearity of f , we can easily show that F (f) is also a right H-colinear map.

Now, we define a map G : HomH(P, HOMA(M, N)) → HomH
A (P ⊗HR M, N) by

G(T )(p⊗HR m) = T (p)(m).

Obviously, G is well defined, and F is a bijection with inverse G. Hence HomH(P, HOMA(M, N))
∼= HomH

A (P ⊗HR M, N).
Consider H as a right H-comodule via its comultiplication, hence by (2.9), H⊗HR M ∈

MH
A . Then the following assertion holds.

Lemma 2.5 Let M ∈ MH
A . Then H ⊗HR M ∼= M £ H as weak right (A,H)-Hopf

modules, where M £ H is a weak right (A,H)-Hopf module via (2.1).
Proof Define a map

δ : H ⊗HR M → M £ H, h⊗HR m 7→ m(0) £ hm(1).

Using (W2), we can check that δ is well defined. It is easy to see that δ is both a right
A-module map and a right H-comodule map.

In what follows, we show that δ is a bijection with inverse

γ : M £ H → H ⊗HR M, m £ h 7→ hS−1(m(1))⊗HR m(0).

The map γ is well defined, since for any m ∈ M, h ∈ H, y ∈ HR,

hS−1(m(1))⊗ y •m(0) = hS−1(m(1)2)⊗m(0)ε(ym(1)1)
(W6)
= hS−1(m(1)2)⊗m(0)ε(y uL (m(1)1))

(W14)
= hS−1(12m(1))⊗m(0)ε(yS−1(11))

= hS−1(m(1))11 ⊗m(0)ε(y12)
(W4)
= hS−1(m(1))y ⊗m(0),

that is, Imγ ⊆ H ⊗HR M .
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Now we calculate that

γδ(h⊗HR m) = γ(m(0) £ hm(1)) = hm(1)2S
−1(m(1)1)⊗HR m(0)

(W11)
= h11ε(12m(1))⊗HR m(0) = h⊗HR 11 •m(0)ε(12m(1))

= h⊗HR m(0)ε(11m(1)1)ε(12m(1)2) = h⊗HR m

for any h⊗HR m ∈ H ⊗HR M , and

δγ(m £ h) = δ(hS−1(m(1))⊗HR m(0)) = m(0) £ hS−1(m(1)2)m(1)1

= m(0) £ h uL S−1(m(1))
(W12)

= m(0) £ hS−1 uR (m(1))

= m(0) · 1(0) £ hS−1(S(1(1))) = m £ h,

where the fifth equality follows by the fact that m(0) ⊗uR(m(1)) = m · 1(0) ⊗ S(1(1)) for any
m ∈ M (see [19]). Therefore H ⊗HR M ∼= M £ H as weak right (A,H)-Hopf modules.

In what follows, we obtain the Militaru-Stefan lifting theorem over weak Hopf algebras,
which extends Theorem 2.3 in [10].

Theorem 2.6 Let A/B be a weak right H-Galois extension and A faithfully flat as a
left B-module. Assume that (M,≺) is a right B-module. Then the following assertions are
equivalent.

(1) M can be extended to a right A-module.
(2) There exists a total integral and algebra map φ : H → ENDA(M ⊗B A), where

M ⊗B A is a weak right (A,H)-Hopf module via (2.2).
(3) There is a weak left H-module algebra structure on EndB(M) such that

EndB(M)#H ∼= ENDA(M ⊗B A)

as weak right H-comodule algebras.
Proof (1) ⇔ (2) Since A/B is a weak right H-Galois extension and A is faithfully flat

as a left B-module, the functor −⊗B A is an equivalence between MB and MH
A according

to [6]. Hence we have a sequence of isomorphisms:

HomH(H, ENDA(M ⊗B A)) ∼= HomH
A (H ⊗HR (M ⊗B A),M ⊗B A)

∼= HomH
A ((M ⊗B A) £ H, M ⊗B A)

∼= HomH
A (M ⊗B A⊗B A,M ⊗B A)

∼= HomB(M ⊗B A,M),

where the first isomorphism follows by Lemma 2.4, the second one by Lemma 2.5 and the
third one by Lemma 2.2. This resulting isomorphism relates the desired A-action ↼ on M

to the multiplicative total integral φ on ENDA(M ⊗B A).
In fact, the associativity and unitality of the action ↼ are equivalent to the multiplica-

tivity and unitality of φ, respectively. Indeed, there are further similar isomorphisms:

HomH(H ⊗HR H, ENDA(M ⊗B A)) ∼= HomB(M ⊗B A⊗B A,M)
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and
HomH(k,ENDA(M ⊗B A)) ∼= EndB(M).

They relate, respectively,

H ⊗HR H
multiplication // H

φ // ENDA(M ⊗B A)

with
M ⊗B A⊗B A

idM⊗Bmultiplication // M ⊗B A
↼ // M

and

H ⊗HR H
φ⊗HR φ

// ENDA(M ⊗B A)⊗HR ENDA(M ⊗B A)
multiplication // ENDA(M ⊗B A)

with
M ⊗B A⊗B A

↼⊗BidA // M ⊗B A
↼ // M

while

k
unit // H

φ // ENDA(M ⊗B A)

with (−) ↼ 1A : M → M ; furthermore the unit of ENDA(M ⊗B A) with the identity map
on M . So (1) ⇔ (2) holds.

(2)⇔ (3) Since A/B is a weak right H-Galois extension and A is faithfully flat as a left
B-module, the functor − ⊗B A is an equivalence between MB and MH

A according to [6],
hence

ENDA(M ⊗B A)coH = EndH
A (M ⊗B A) ∼= EndB(M).

So by Lemma 2.3, (2)⇔ (3) holds.
The following conclusion extends Theorem 3.5 in [16].
Proposition 2.7 Let A/B be a weak right H-Galois extension and A faithfully flat

as a left B-module. Assume that (M,≺) is a right B-module. Then the following assertions
are equivalent.

(1) ι : M → M ⊗B A,m 7→ m⊗B 1A is a B-split monomorphism.
(2) ENDA(M ⊗B A) is a relative injective H-comodule.
Proof We only sketch the proof. This result can be derived from the isomorphism

HomH(H, ENDA(M ⊗B A)) ∼= HomB(M ⊗B A,M) together with Theorem 1.7 in [1] and the
observation in the proof of Theorem 2.6 about the simultaneous unitality of the corresponding
morphisms κ ∈ HomB(M ⊗B A,M) and φ ∈ HomH(H, ENDA(M ⊗B A)).

Remark (1) Let A/B be a weak right H-Galois extension and A faithfully flat as a left
B-module. Assume that (M, ↼) is a right A-module. Then (M, ↼) is also a right B-module,
which can be extended to a right A-module. Therefore, by Theorem 2.6, EndB(M)#H ∼=
ENDA(M ⊗B A) as weak right H-comodule algebras, which extends Theorem 2.3 in [18],
given for a finite dimensional Hopf algebra.

(2) By [6, 21], we know that H is a weak right H-Galois extension of HL, hence, by (1),
EndHL(H)#H ∼= ENDH(H ⊗HL H) as algebras. In particular, if H is a finite dimensional
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weak Hopf algebra, then by Corollary 3.4 in [12], we have H#H∗ ∼= EndHL(H) as algebras.
Then there exists an algebra isomorphism (H#H∗)#H ∼= ENDH(H ⊗HL H).

Set

ΩE = {φ ∈ HomH(H, ENDA(M ⊗B A))|φ is an algebra map}.

For any φ1, φ2 ∈ ΩE , if there exists ψ ∈ AutB(M) such that

φ2(h) = (ψ ⊗B idA) ◦ φ1(h) ◦ (ψ−1 ⊗B idA) (2.10)

for any h ∈ H, we say that φ1, φ2 are conjugate, denoted by φ1 ∼ φ2. It is obvious that ∼
is an equivalence relation on ΩE . We denote by ΩE the quotient set of ΩE relative to this
equivalence relation ∼.

With notation as above, the following assertion holds.
Theorem 2.8 Let A/B be a weak right H-Galois extension and A faithfully flat as

a left B-module. Consider M as a right B-module. Then there is a bijection between all
A-isomorphism classes of extensions of M to a right A-module and ΩE .

Proof By the proof of Theorem 2.6, we know that HomH(H, ENDA(M ⊗B A)) ∼=
HomB(M ⊗B A,M). This isomorphism relates

(ψ ⊗B idA) ◦ φ(−) ◦ (ψ−1 ⊗B idA) : H → ENDA(M ⊗B A)

with the map
f : M ⊗B A → M, m⊗B a 7→ ψ(ψ−1(m) ↼ a),

where ψ ∈ AutB(M). Therefore, the bijection between ΩE and the set of extensions of M ,
induces a bijection between ΩE and the set of A-isomorphism classes of extensions of M .

Recall from Remark 2.8(1) in [19], we know that ENDA(A) ∼= A as weak right H-
comodule algebras. Hence ENDA(B ⊗B A) ∼= ENDA(A) ∼= A as weak right H-comodule
algebras. Let M = B, then ΩE = ΩA = {φ ∈ HomH(H, A)|φ is an algebra map}. At the
same time, it is easy to see that equation (2.10) is replaced by the equation

φ2(h) = bφ1(h)b−1, (2.11)

where b ∈ U(B) = {b ∈ B|b is invertible}. That is, for any φ1, φ2 ∈ ΩA, φ1, φ2 are conjugate
if there exists b ∈ U(B) such that for any h ∈ H, (2.11) holds. Denote by ΩA the quotient
set of ΩA relative to this conjugate relation. Then by Theorem 2.6 and Theorem 2.8, the
following assertion holds.

Corollary 2.9 Let A/B be a weak right H-Galois extension and A faithfully flat
as a left B-module. Consider M as a right B-module. Then the following assertions are
equivalent.

(1) B can be extended to a right A-module.
(2) ΩA 6= ∅.
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(3) There exists a weak left H-module algebra structure on B such that B#H ∼= A as
weak right H-comodule algebras.

Furthermore, there exists a one-to-one correspondence between the set of isomorphism
classes of extensions of B and ΩA.

3 Weak Stable Modules

In this section, we always assume that H is a weak Hopf algebra with bijective antipode
S, A a weak right H-comodule algebra and B = AcoH .

Definition 3.1 If there exists a right H-comodule map φ : H → A, called a weak
cleaving map, and a map ψ : H → A that satisfy the following conditions

(1) ψ(h1)φ(h2) = 1(0)ε(h1(1)),
(2) ψ(h2)(0) ⊗ h1ψ(h2)(1) = ψ(h)1(0) ⊗ 1(1)

for any h ∈ H. Then we say that A/B is a weak cleft extension (see [14]).
Definition 3.2 Let M be both a right B-module and a left HL-module. M is called

weak H-stable if M ⊗B A and H ⊗HL M are isomorphic as right H-comodules and right
B-modules, where H is a right HL-module via

h · x = S(x)h (3.1)

for any h ∈ H, x ∈ HL, and the actions and coactions are given by

(m⊗B a) · b = m⊗B ab, ρ(m⊗B a) = m⊗B a(0) ⊗ a(1),

(h⊗HL m) · b = h⊗HL m · b, ρ(h⊗HL m) = h2 ⊗HL m⊗ S−1(h1)

for any b ∈ B,m⊗B a ∈ M ⊗B A, h⊗HL m ∈ H ⊗HL M.

Lemma 3.3 Let M ∈MH
A . Then H⊗HL M is a weak right (A,H)-Hopf module, where

H is a right HL-module as in (3.1), M is a left HL-module via x ·m = m(0)ε(m(1)S(x)) for
any x ∈ HL,m ∈ M , and the A-action and H-coaction on H ⊗HL M are given by

(h⊗HL m) · a = S(a(1))h⊗HL m · a(0), ρ(h⊗HL m) = h2 ⊗HL m⊗ S−1(h1)

for any h⊗HL m ∈ H ⊗HL M, a ∈ A.

Proof The A-action on H⊗HLM is well defined, since for any x ∈ HL, a ∈ A, h⊗HLm ∈
H ⊗HL M ,

(h⊗HL x ·m) · a = S(a(1))h⊗HL m(0) · a(0)ε(m(1)S(x))
(W6)
= S(a(1))h⊗HL m(0) · a(0)ε(uR(m(1))S(x))

= S(a(1))h⊗HL m(0) · 1(0)a(0)ε(S(1(1))S(x))

= S(a(1))h⊗HL m(0) · 1(0)a(0)ε(x1(1))
(1.6)
= S(a(1)2)h⊗HL m(0) · a(0)ε(x uL (a(1)1))

(W7)
= S(12a(1))h⊗HL m(0) · a(0)ε(xS(11))

(W3)
= S(xa(1))h⊗HL m(0) · a(0) = (h · x⊗HL m) · a,
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where the third equality follows by the fact that m(0)⊗uR(m(1)) = m · 1(0)⊗S(1(1)) for any
m ∈ M . Using (W2) and the fact that S(HL) ⊆ HR, we can easily show that the H-coaction
on H ⊗HL M is also well defined. What is more, it is easy to see that H ⊗HL M is a weak
right (A,H)-Hopf module.

Let M ∈ MH
A . By Lemma 2.5, we know that H ⊗HR M is a weak right (A,H)-Hopf

module. In view of Lemma 3.3, we obtain the following result.
Lemma 3.4 Let M ∈ MH

A . Then H ⊗HR M ∼= H ⊗HL M as weak right (A,H)-Hopf
modules.

Proof We first have a well defined map

θ : H ⊗HL M → H ⊗HR M, h⊗HL m 7→ S−1(m(1)h)⊗HR m(0).

In fact, for any h⊗HL m ∈ H ⊗HL M, x ∈ HL,

θ(h⊗HL x ·m) = S−1(m(1)1h)⊗HR m(0)ε(m(1)2S(x))

= S−1(m(1)1h)⊗HR m(0)ε(uR(m(1)2)S(x))
(W7)
= S−1(m(1)11h)⊗HR m(0)ε(S(12)S(x))

= S−1(m(1)S(x)11h)⊗HR m(0)ε(S(12))

= S−1(m(1)S(x)h)⊗HR m(0)

= θ(h · x⊗HL m),

where the fourth equality follows by (W3) and the fact that S(HL) ⊆ HR. And for any
h ∈ H, m ∈ M, y ∈ HR,

S−1(m(1)h)⊗ y ·m(0) = S−1(m(1)2h)⊗m(0)ε(ym(1)1)
(W6)
= S−1(m(1)2h)⊗m(0)ε(y uL (m(1)1))

(W14)
= S−1(12m(1)h)⊗m(0)ε(yS−1(11))

= S−1(m(1)h)11 ⊗m(0)ε(y12)

= S−1(m(1)h)y ⊗m(0),

that is, Imθ ⊆ H⊗HR M . Moreover, from (1.6), we can easily show that θ is a right A-module
map, and θ is a right H-comodule map, because

θ(h⊗HL m)(0) ⊗ θ(h⊗HL m)(1)

= S−1(m(1)2h)1 ⊗HR m(0) ⊗ S−1(m(1)2h)2m(1)1

= S−1(h2)S−1(m(1)3)⊗HR m(0) ⊗ S−1(h1)S−1(m(1)2)m(1)1

= S−1(h2)S−1(m(1)2)⊗HR m(0) ⊗ S−1(h1)S−1 uR (m(1)1)
(W8)
= S−1(h2)S−1(m(1)12)⊗HR m(0) ⊗ S−1(h1)S−1(11)

= S−1(12h2)S−1(m(1))⊗HR m(0) ⊗ S−1(11h1)

= S−1(h2)S−1(m(1))⊗HR m(0) ⊗ S−1(h1)

= θ(h2 ⊗HL m)⊗ S−1(h1).
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Next, we show that θ is a bijection with inverse

ϑ : H ⊗HR M → H ⊗HL M, h⊗HR m 7→ S(hm(1))⊗HL m(0).

The map ϑ is well defined, since for any y ∈ HR, h⊗HL m ∈ H ⊗HL M,

ϑ(h⊗HR y ·m) = S(hm(1)1)⊗HL m(0)ε(ym(1)2) = S(hm(1)1)⊗HL m(0)ε(y uL (m(1)2))

= S(h11m(1))⊗HL m(0)ε(y12) = S(hym(1))⊗HL m(0)

= ϑ(hy ⊗HR m),

and for any h ∈ H, m ∈ M, x ∈ HL,

S(hm(1))⊗ x ·m(0) = S(hm(1)2)⊗m(0)ε(m(1)1S(x)) = S(hm(1)2S
2(x))⊗m(0)ε(m(1)1)

(W13)
= S(hm(1)x)⊗m(0) = S(x)S(hm(1))⊗m(0)

= S(hm(1)) · x⊗m(0),

where the second equality follows by (W9) and the fact that S(HL) ⊆ HR. This implies
Imϑ ⊆ H ⊗HL M.

Now we calculate that

ϑθ(h⊗HL m) = S(m(1)1)m(1)2h⊗HL m(0) = 11h⊗HL m(0)ε(m(1)12)

= S(12)h⊗HL m(0)ε(m(1)S(11)) = h⊗HL 12 ·m(0)ε(m(1)S(11))

= h⊗HL m(0)ε(m(1)1S(12))ε(m(1)2S(11))

= h⊗HL m(0)ε(m(1)111)ε(m(1)212) = h⊗HL m,

θϑ(h⊗HR m) = θ(S(hm(1))⊗HL m(0)) = hm(1)2S
−1(m(1)1)⊗HR m(0)

= h11 ⊗HR m(0)ε(12m(1)) = h⊗HR 11 ·m(0)ε(12m(1))

= h⊗HR m(0)ε(11m(1)1)ε(12m(1)2) = h⊗HR m,

that is, θ is a bijection with inverse ϑ.
Therefore, H ⊗HR M ∼= H ⊗HL M as weak right (A,H)-Hopf modules.
With notation as above, we obtain the following result which extends Theorem 3.6 in

[15].
Theorem 3.5 Let A/B be a weak right H-Galois extension and A faithfully flat as a

left B-module. Let M be both a right B-module and a left HL-module. Then the following
assertions are equivalent.

(1) M is weak H-stable.
(2) ENDA(M ⊗B A)/EndB(M) is a weak cleft extension.
Proof By the proof of Theorem 2.6, we have a sequence of isomorphisms

HomH(H, ENDA(M ⊗B A)) ∼= HomB(M ⊗B A,M)
∼= HomH

B (M ⊗B A,H ⊗HL M),
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where the second isomorphism is given by

χ(f)(m⊗B a) = S(a(1))⊗HL f(m⊗B a(0)),

χ−1(g)(m⊗B a) = (ε⊗ idM )g(m⊗B a)

for any f ∈ HomB(M⊗B A,M), g ∈ HomH
B (M⊗B A,H⊗HL M). This resulting isomorphism

relates Φ ∈ HomH
B (M ⊗B A,H⊗HL M) with φ ∈ HomH(H, ENDA (M ⊗B A)) which is given

by
φ(h)(m⊗B a) = (ε⊗ idM )Φ(m⊗B h[1])⊗B h[2]a.

Moreover, by Theorem 2.6 and Lemma 3.4, we have the following sequence of isomor-
phisms

HomH(H, ENDA(M ⊗B A)) ∼= HomH
A (H ⊗HR (M ⊗B A),M ⊗B A)

∼= HomH
A (H ⊗HL (M ⊗B A),M ⊗B A)

∼= HomH
B (H ⊗HL M, M ⊗B A).

This resulting isomorphism relates Ψ ∈ HomH
B (H⊗HL M, M⊗B A) with ψ◦S−1 ∈ HomH(H,

ENDA(M ⊗B A)) which is given by

ψ ◦ S−1(h)(m⊗B a) = Ψ(h⊗HL m) · a.

Therefore, φ and ψ ◦ S−1 satisfy conditions (1) and (2) in Definition 3.1 if and only if
Φ is a bijection with inverse Ψ, that is, ENDA(M ⊗B A)/EndB(M) is a weak cleft extension
if and only if M is weak H-stable.
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弱Hopf代数上的Militaru-Stefan提升定理

王 勇

(南京晓庄学院信息工程学院, 江苏南京 211171)

摘要: 本文研究了弱Hopf-Galois扩张的扩张模. 利用忠实平坦的弱Hopf-Galois扩张理论, 研究了

弱Hopf代数上的Militaru-Stefan提升定理, 推广了文献[10]中的相应结果. 进一步地, 通过诱导模的自同态环

的cleft扩张刻画了弱稳定模.
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