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1 Introduction

Let u : (M™,g) — (N™, h) be a smooth map between Riemannian manifolds (M™, g)
and (N", h). Recently, Kawai and Nakauchi [1] introduced a functional related to the pull-

back metric u*h as follows:
w(w) = [ Iwhlpa,
(see [2-5]), where u*h is the symmetric 2-tensor defined by
(u*h)(X,Y) = h(du(X),du(Y))

for any vector fields X, Y on M and ||u*h|| is given by

m

[[uhl* =) [A(du(e;), dule;)))?

i,7=1

with respect to a local orthonormal frame (e, -+ ,e,) on (M, g). The map u is stationary
for ® if it is a critical point of ®(u) with respect to any compact supported variation of w.

Asserda [6] introduced the following functional @ by

u*hl[?
erw) = [ P,
M
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where F : [0,00) — [0,00) is a C? function such that F(0

map u is F-stationary for @ if it is a critical point of ®(u

) =0and F'(t) > 0 on [0,00). The
) with respect to any compact sup-
ported variation of u. Following [6], Han and Feng in [5] introduced the following functional
q)f by

[|uh”

Py(u) = Mf(x)74 dvg, (1.1)

where f: (M, g) — (0,400) is a smooth function. They derived the first variation formula
of ®; and introduced the f-stress energy tensor Sg, associated to ®;. Then, by using the
f-stress energy tensor, they obtained the monotonicity formula and vanishing theorems for
stationary map for the functional ®;(u) under some conditions on f.

The theory of harmonic maps was developed by many researchers so far, and a lot
of results were obtained (see [7, 8]). Lichnerowicz in [9] (also see [7]) introduced the f-
harmonic maps, generalizing harmonic maps. Since then, there were many results for f-
harmonic maps such as [10-14]. Ara [15] introduced the notion of F-harmonic map, which is
a special f-harmonic map and also is a generalization of harmonic maps, p-harmonic maps
or exponentially harmonic maps. Since then, there were many results for F-harmonic maps
such as [16-19].

On the other hand, Fardon and Ratto in [20] introduced generalized harmonic maps
of a certain kind, harmonic maps with potential, which had its own mathematical and
physical background, for example, the static Landu-Lifschitz equation. They discovered
some properties quite different from those of ordinary harmonic maps due to the presence of
the potential. After this, there were many results for harmonic map with potential such as
[21, 22], p-harmonic map with potential such as [23], F-harmonic map with potential such

s [24], f-harmonic map with potential such as [25] and F-stationary maps with potential
such as [4].
In this paper, we generalize and unify the concept of critical point of the functional ®.

For this, we define the functional ®; y by
u*h||?
O p(u)= / [f(sc)u — H o u|dvy, (1.2)
M 4
where H is a smooth function on N". If H = 0, then we have ®; 5 = ®;. If H = 0 and
f =1, then we have ®; y = ®. Let

u: (M™,g) — (N™,h) (—e <t <e¢)

be a variation of u, i.e., uy = U(t,.) with ug = u, where ¥ : (—¢,¢) x M — N is a smooth
map. Let To(u"'TN) be a subset of I'(u=1TN) consisting of all elements with compact
supports contained in the interior of M. For each 1 € T'o(u"'TN), there exists a variation
uy(z) = exp,,)(ty) (for ¢ small enough) of u, which has the variational field ¢. Such a

variation is said to have a compact support. Let

dd U
qu)ﬁH(u) = 7f§f( t) |t:0-
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Definition 1.1 A smooth map w is called f-stationary map with potential H for the

functional ®; g (u), if
_ d@ﬁH(’U,t)

Dy®s p(u) = g 0= 0
for V€ To(u™'TN).

It is known that du(X) € T'(u~'TN) for any vector field X of M. If X has a compact
support which is contained in the interior of M, then du(X) € To(u"'TN).

Definition 1.2 A smooth map u is called weakly f-stationary map with potential H
for the functional ®y g (u) if Dayx)®Psa(u) =0 for all X € I'y(TM).

Remark 1.1 From Definition 1.1 and Definition 1.2, we know that f-stationary maps
with potential H must be weakly f-stationary maps with potential H, that is, the weakly
f-stationary maps with potential H are the generalization of the f-stationary maps with
potential H.

In this paper, we investigate weakly f-stationary maps with potential H. By using the
stress-energy tensor, we obtain some Liouville type theorems for weakly f-stationary maps

with potential under some conditions on H.

2 Preliminaries

Let V and V'V always denote the Levi-Civita connections of M and N respectively. Let
V be the induced connection on u~'T'N defined by VxW =N Vaux)W, where X € I'(TM)
and W € I'(u"'TN). We choose a local orthonormal frame field {e;} on M. We define the

tension field 74, , (u) of u by
Tq>fyH(u) = —(fou) +NVHou= To, (u) +NVHou, (2.1)

where o, = ), h(du(.), du(e;))du(e;), which was defined in [1].
Under the notation above we have the following:
Lemma 2.1 [5] (The first variation formula) Let u: M — N be a C? map. Then

d

@q)f,H(UtNt:o = —/Mh(ﬂbf,H(u)aV)dUga (2.2)

where V = %uthzo.
Let u : M — N be a weakly f-stationary map with potential H and X € T'q(TM).
Then from Lemma 2.1 and the definition of weakly f-stationary maps with potential H, we

have

Ddu(x)@fﬂ(u) = — /A/[ h(T@f,H(u),du(X))dvg = 0 (23)

Recall that for a 2-tensor field T € T' (T*M ® T*M), its divergence divI’ € I (T* M) is
defined by

m

(divT)(X) =Y (Ve T)(es X), (2.4)

i=1
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where X is any smooth vector field on M. For two 2-tensors Ty, Ty € I'(T*M @ T* M), their
inner product is defined as follows:

m

<T1,T2> = Z T(ei,ej)Tg(ei, ej), (25)

i,j=1

where {e;} is an orthonormal basis with respect to g. For a vector field X € I'(T'M), we
denote by 0y its dual one form, i.e., Ox(Y) = ¢g(X,Y), where Y € I'(TM). The covariant
derivative of fx gives a 2-tensor field Vfx:

(VOx)(Y,Z) = (Vy0x)(Z) = g(Vy X, Z). (2.6)

If X = Vy is the gradient field of some C? function ¢ on M, then fx = dp and VOx = Hessyp.
Lemma 2.2 (see [26, 27]) Let T be a symmetric (0, 2)-type tensor field and let X be
a vector field, then

div(ixT) = (divT)(X) + (T, Vox) = (divT)(X) + %(T, Lxg), (2.7)

where Lx is the Lie derivative of the metric g in the direction of X. Indeed, let {e1, -, e, }

be a local orthonormal frame field on M. Then

m

1

BT Ixa) = D (T(ewe) Lyoleoc)

4,j=1

= Z T(ei7ej)g<V€iX’ ej) = <T7 Vex>.

4,J=1

Let D be any bounded domain of M with C! boundary. By using the Stokes’ theorem,
we immediately have the following integral formula

/aD T(X,v)ds, = /D[(T, %LX9> + div(T)(X)]dv,, (2.8)

where v is the unit outward normal vector field along 0D.

From equation (2.8), we have

Lemma 2.3 If X is a smooth vector field with a compact support contained in the
interior of M, then

1 .
/ (T, §LXg> + div(7T')(X)]dv, = 0. (2.9)
M
Han and Feng in [5] introduced a symmetric 2-tensor Sg, to the functional ®(u) by

[l bl
9

1 — h(oy(.), du(.))], (2.10)

Ss, = f|

which is called the f-stress-energy tensor.



No. 2 Some results of weakly f-stationary maps with potential 305

Lemma 2.4 [5] Let u: (M, g) — (N, h) be a smooth map, then for all x € M and for
each vector X € T, M,

IIU*hII2

(divSs,)(X) = —h(7e, (u), du(X)) + df (X), (2.11)

where
7o, (u) = fdive, + o, (gradf).

By using equations (2.3), (2.9) and (2.11), we know that if u : M — N is a weakly

f-stationary map with potential H, then we have

0 = /(Séf, Lxg)dv, — /h(7'<1>f(u) +NVHou -~ VH ou,du(X))dv,

u*h|]?
iy
*h 2
= [ (S0, 5Exadv, + /M pOVH o du(X))dv, + [ P,

ie.,

1 *hl|?
0= / (Se,, iLXg>dvg + / h(NVH o, du(X))dv, + / wdf()()dvg (2.12)
M M M

for any X € I'o(TM).
On the other hand, we may introduce the stress-energy tensor with potential Sg, ,, by
the following

Se, = Sa, — Houg = [f ”“Z‘HZ Houlg — fh(ou(.), du(.)). (2.13)
Then
(divSs, ,)(X) = (divSs,)(X) — (div(H o ug))(X)
IIU*hH2

= —h(re,(u), du(X)) +

df(X) =Y (Ve (Hg))(e:, X)

%

IIU*hH2

= —h(7e,(u), du(X)) + df(X) N VxHou (2.14)

= —h(re, (u),du(X)) + [[wnl[® h”2

df (X) = (" VH, du(X))

Hu h||2

= —h(7a,,(u),du(X)) + df (X).

By using equations (2.3), (2.9) and (2.14), we know that if u : M — N is a weakly f-
stationary map with potential H, then we have

1 u*h 2
/ [<S<I>f,H7§LXg> || H
M

——df(X)]dvy =0 (2.15)
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for any X € I'o(T'M).

3 Liouville Type Theorems

Let (M, go) be a complete Riemannian manifold with a pole zy. Denote by r(x) the

go-distance function relative to the pole xo, that is r(x) = disty, (z,zo). Set
B(r)={ze M™ :r(z) <r}.

It is known that % is always an eigenvector of Hess,, (r?) associated to eigenvalue 2. Denote
by Amax (r€Sp. Amin) the maximum (resp. minimal) eigenvalues of Hess,, (r?) — 2dr ® dr at
each point of M —{x}. Let (N", h) be a Riemannian manifold, and H be a smooth function
on N.

From now on, we suppose that v : (M™,g) — (N,h) is an f-stationary map with
potential H, where

g =g, 0 < @ € C®(M).

Clearly the vector field v = ¢~'-Z is an outer normal vector field along dB(r) C (M, g).
The following conditions that we will assume for ¢ are as follows:
(1)
dlog ¢ >0
or

(p2) There is a constant Cy > 0 such that

a1 _1
(m — 4)r ;f“o n m2 Amin + 1 — 2max{2, Amax} > Co.

Remark If o(r) = 77, conditions (¢;) and () turn into the following

1 -1
(m—4)7+ mTAmm 41— 2max{2, Amax} > Co. (3.1)

Now we set

log f

0
p=supr| | < +oo.
M 87‘

Theorem 3.1 Let u : (M, p?gy) — (N, h) be a weakly f-stationary map with potential
H where 0 < ¢ € C*(M). If ¢ satisfies (¢1)(¢2), H <0 (or Hyy <0), Co — > 0 and

[|uh||?
/M[f4 — H o uldvy < o0,

then u is constant.
Proof We take
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where VY denotes the covariant derivative determined by gy and ¢(r) is a nonnegative func-
tion determined later. By a direct computation, we have

= or)r T8E

(3.2)

1 1
(Sas 45 §Lxg> (Sa; 1> 9) + 2% (w1 Lo(ryr2.90)-

Let {e;}™,
Hess,, (r?) becomes a diagonal matrix with respect to {e;}7;.

be an orthonormal basis with respect to gg and e, = 5. We may assume that

Then {e; = ¢ le;} is an
orthonormal basis with respect to g.

Now we compute
902<S<I>f,H7 L¢(7‘)r%go>
= 2 S0y (6 ) Ly 2. 90) ()

i,J
u*h||? S -~
= SDQ{Z[]C% — H oulg(e;, 6j)(L¢(T)r5%90)(€i; €;)

= 2 FPou(@), du(@)) Loy 5.90) @, €5)) (3:3)

_ oyl

= oY

1) Y fh(ou(@), dul))Hessy, (r*) (i e5) = 2f7¢ () h(ou(En), du(en))

th 0u(@

[|uhlf?
4

u](L¢>(7 )T 5= 8 9o (61, du 6]))(‘[’(15(7)7 £ go)(e“ej)}

— H o ulHess,, (r%)(e;, e;) + 2[f — Houlrg/(r)

> 60T 0wl 4 (m )] — 007 max(2 A} 3 bl (80, (@)
ol o) — 2710 oG, ()

= oMM o2 4 (m - D] — 60 fmax(2 Al
ol PPE ot () — 20 (r)h(oEr). du(Er)

> oA o+ om - D) — 4600 o a2, M)
2l MR o ujrg(r) — 2frf (rh(oE), du(er)

> oA A o2 + 0 1Ay — 4 max(2, A
2l IR o et () — 246 (o @), du(e).

From (3.2), (2.14), (3.3), (¢1) and (g3), we have
(o slxa) > oD 0w, + (I g o)

= fré'(r)h(ou(en), du(em)).

(3.4)
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From (3.4), we have

(o, 2 Lxa) + P g )
> oM oy + ()~ pr o wretr)
— frd (M)h(ou(@n), du(en)) +f|u*4h||2¢(r)ral§ff
> o M g oy + oMM o ugrerr
P hGou@n)du(@) - ol D) h o (35)
= oMM rouicy -+ (R o wrer)

= fré'(rh(ou(en), du(en)).

For any fixed R > 0, we take a smooth function ¢(r) which takes value 1 on B(%), 0 outside
B(R) and 0 < ¢(r) < 1 on T(R) = B(R) — B(%). And ¢(r) also satisfies the condition
lo'(r)] < % on M, where C is a positive constant.

From (2.15) and (3.5), we have

*h 2 *h 2
0 = [~ wrouco- o+ 1A - a o e e,
M
- [ o htonE). du@)as,
* 2 * 2
> [ o - wany+ [ AR S H o ian,
B(&) T(R)
— [ (el En), dulen))de,
T(R)
> / [fHUZLH—HOU](CQ—/L)d’Ug—Cl/ [fM—Hou]dvg
B(&) T(R)
o [ flnpa,
T(R)
* 2 * 2
> [ Mmoo pas, - cia e [ - o,
B(&) T(R)
= / [fo”—Hou](Co—u)dvg—5C1/ [f%—]{ou]dvg. (3.6)
B(%) T(R)

*h 2
From/ [fM — H o u]dv, < oo, we have
M 4

*h 2
lim / [fw — H o uldv, = 0. (3.7)
T(R)

R—o0
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From (3.6) and (3.7), we have we have

*h 2 *h 2
0z 1Co—u [ (P mrowan, > 00— [ M as,
M M

So we know that v is a constant.

Remark Let (M™,g) be a complete Riemannian manifold with a pole zy. Assume
that the radial curvature K, of M satisfies the following conditions: —a? < K, < —f3?2
with @ >  and (m — 1) — 4a > 0. From the equation (3.1) and Lemma 4.4 in [5],
we have (m — 4)i + %Amin + 1 —2max{2, \pax} > (m 4) +m — %0‘ > 2 = (). Let
f(z) = f(r(z)) = r¥ be a smooth function on (M™, g), we have y = % and Co—ﬂ =% >0

Theorem 3.2 Let u : (M, p?gy) — (N, h) be a weakly f-stationary map with potential
H where 0 < ¢ € C>(M). If @ satisfies (p1)(2), 254 >0, Co—p > O and [, f%dvg <

00, then u is constant.

Proof By using the similar method in the proof in Theorem 3.1, we can obtain the
following

e h||2 || h||2

(S0, 5 Lxg) 2 S Co ot S 76! () = frof (h(ou(en). du(@n). (39)

From 22°¢ > ( and (3.8), we have

(o, Lxg) + LM () ¥V H o w,du(x)
> o >f"“ h”200+f"“ ) - oo imtouten). duten)) + I gr )
> ¢><r>f%<co )+ fww’(r) P (o), dul@n)). (3.9)

For any fixed R > 0, we take a smooth function ¢(r) which takes value 1 on B(£), 0 outside
B(R) and 0 < ¢(r) < 1 on T(R) = B(R) — B(£). And ¢(r) also satisfies the condition:
|¢'(r)| < € on M, where C) is a positive constant.

From (2.12) and (3.9), we have
0 > [ st - o+ e,

_ /M Jfre' (r)h(ou(em), du(en,))dv,

u*hl|? u*hl|?
Z / || 4:|| ( o*M)dUng fll 4:|| T¢/(7’)dvg
B(%) T(R)
- / 116/ (Mh(ou(Em), du(@n))dv,
u*h||? u h 2 .
> [ (Co—u)dvg—cz/ Rl / a2,
B(%) T(R)

= G | e [ f”“*h” (310)
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*h 2
From / f”u I dvy < oo, we have
4 E

M

* 2
i [l

dv, = 0. (3.11)
R— o0 T(R) 4 g

From (3.10) and (3.11), we have

w*hl|?
i [ I,
M

So we know that u is a constant.

We say the functional ®; ;7 (u) (or ®¢(u)) of u is slowly divergent if there exists a positive
> dr

Ry TO(r)

y [Jcllu*4h\|2 —Ho u]d - (or 1 do, < o) (3.12)
im v, < oo (or lim — 2 _dv, < 00). .
R—o0 Jp(R) Y(r(z)) ! R—oo [ () Y(r(z)) !

Theorem 3.3 Suppose u : (M, p?gy) — (N,h) is a smooth map which satisfies the

/M<dw5q>fH /'“*h”Qdf X)dv (3.13)

for any X € T'(T'M). If ¢ satisfies (¢1)(p2), H <0 (or Hyy < 0), Co — > 0 and Py g (u)
of u is slowly divergent, then w is constant.
Proof From the inequality (3.5) for ¢(r) = 1, we have

(o, 5Lx0) + P 00) > (0 - i p o)

On the other hand, taking D = B(r) and T'= Ss, ,, in (2.8), we have

o

2
_/ IIu hH — Houlg(X, y)dvg—/ Fh(du(X), ou(v))du,

OB(r) OB(r)

v h\|2 2 0 0 / L 9 9
— H oul|p“go(r—, ¢ dv fo " rh(du(=—),0u.(=))dv
L Pl gy [ T ) oy
||7~L*h||2 / -1 ~ 9 \\2

=7 f — H o ulpdv, — fo r h(du(e;), du(=))*dv

/m[ . fpdog = [ o7t BT (@) dut)Pdey

*h 2
ST/ [f”u I — H o u]pdu,. (3.15)
oB(r) 4

function v (r) with = 400 (Rp > 0), such that

llw=hll?
f—

following

(3.14)

<Sq>fH, LXg>dvq / (divSe, , )(X)dv, :/ Se, (X, v)ds,
B(r) 0B(r)

~

Now suppose that v is a nonconstant map, so there exists a constant R; > 0 such that for
R Z R17

*h 2 *h, 2
/ [fw — H o u]dv, > / f”“4 v, > ¢, (3.16)
B(R) B(R)
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where C3 is a positive constant.
From (3.13), we have

lim (divSs, , )(X)dvy = lim

R—o0 B(R) ’ R—o0

/ B iy (3.17)
B(R)

so we know that there exists a positive constant R, > R; such that for R > R,, we have

_ * 2 —
_(Go— G < / (divSe, ,, ) (X)dv, —/ Mdf(X)dvg < M' (3.18)
2 B(R) B(R) 4 2

From (3.14) (3.15) and (3.18), we have for R > Ry,

u*hl|?
R/ [f” 4” — H o u]pdu,
9B(R)

1
> / < S<I>f,H7 §LXg > d’Ug +/ (diVScpfyH)<X)d?)g
B(R) B(R)
1 2 Co—n)C
> / < Sq>f,H,§Lxg>+” " a0 ja %
B(R)
uw*h||? Co — p)C:
> - [ Uﬂqi—ﬂmww—Llflﬁ
B(R)
> M_ (3.19)
2
From (3.19) and |Vr| = ¢!, we have
lw Bl _ gy o g —_
lim L °ul dv, = / It / P g s,
R—oo JB(R) p(r(z)) o P(R) Jopr) 4
') * 2
= / i / [fM—Hou]cpdsg
o PR OB(R) 4
oo * 2
> / dr / [fHu i — H o ujpds,
Ry o(R) OB(R) 4
* (Co — p)CsdR
= = +o0. 3.20
|, e (3:20)

This contradicts (3.12), therefore u is a constant.
Theorem 3.4 Suppose u : (M, p?gy) — (N,h) is a smooth map which satisfies the
following

/M(dws@f) / [Ju” hH2df( X)dv, +/ h(NVH o u, du(X))dv, (3.21)

for any X € I'(T'M). If ¢ satisfies (¢1)(¢2), % >0Cy—p>0and ®¢(u) of u is slowly
divergent (see (3.12)), then w is constant.

Proof From inequality (3.9) for ¢(r) = 1, we have

||u || h||?

il T df(X) + h(NVH ou,du(X)) > (Co — p) f 1

1
(Sa;, 5Lxg) + (3.22)
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On the other hand, taking D = B(r) and T'= S3, in (2.8), we have

1 .
/ <S<pf,2LXg>dvg—|—/ (leSq>f)(X)dvg:/ Se, (X, v)ds,
B(r) B(r) d9B(r)
_ fw (X, v)dv, — hdu(X d
- Mg vydv, — [ (), o, )y
9B(r) 0B(r)
[lu*h|]* , g _,0 1, 0 0
= f——090(r+=, ¢~ 5-)dv, — feom rh(du(5-), 0u(57))dv
/BB(T) 4 or’ or’ Y OB () or or g

[lu*h|[? / 1 ~ 0 \\2
= 7 f———pdv, — for h(du(€;), du(=))*dv
/63(r) 4 ! aB(r) Z or J

* 2
7"/ f%gpdvg. (3.23)
9B(r)

Now suppose that u is a nonconstant map, so there exists a constant R3 > 0 such that for
R 2 RS)

IN

*h 2
P g, > o, (3.24)
B(R)
where Cy is a positive constant.
From (3.21), we have
h 2

lim (divSs, ,,)(X)dv, = lim [”“ I df (X) + h(NVH ou,du(X))]dv,, (3.25)
R—o0 B(R) R—o0 B(R)

so we know that there exists a positive constant R4 > R3 such that for R > R4, we have

—7(00 _ M)C4 v Vg —

' [, e o= [ |
(Co - M)C4
(Co - )Cy

[|uh]f?

IN

df (X) +h(NVH ou,du(X))]dv,
< (3.26)

From (3.22), (3.23) and (3.26), we have for R > Ry,

u*h 2 1 .
R/ f” 1 I edv, / (Se,, 5 Lxg)dvy "‘/ (divSe, ) (X)dvg
dB(R) B(R) B(R)

AV

1 *h!|?
> / (S, 3 Exg) + () 4 BV H o u, (X)),
B(R) 2
_(Co—p)C4
2
*h||2 Cy—u)C
s (G [ AR, (G
B(R)
> M, (3.27)

2
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From (3.27) and |Vr| = ¢!, we have

M S * 2
lim fiﬁldvg = / ﬂ / fM/|Vr|dsg
R—co [ () ¢(r(z)) o P(R) Jonmr 4

> dR / |u*h||?
= | | e eds
/o ¢(R) OB(R) 4 !

> dR / [|w*hl[?
> — f——ds
/R4 ¢(R) OB(R) 4 !

> /OO (Co — pn)CydR _
~ Jr,  2Re(R)

This contradicts (3.12), therefore u is a constant.

ERS)

ey
=2

=
)

(13]
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