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Abstract: This paper investigates the construction of dually flat Finsler metrics. By

analysing the solution of the spherically symmetric dually flat equation, we construct new ex-

amples of dually flat Finsler metrics, obtain necessary and sufficient conditions of the solution to

be dually flat.
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1 Introduction

The notion of dually flat Riemannian metrics was initially introduced by Amari and
Nagaoka [1] when they studied information geometry in 2000. A Finsler metric F = F (x, y)
on an m-dimensional manifold M is called locally dually flat if at every point there is a
coordinate system (xi) in which the spray coefficients are in the following form

Gi = −1
2
gijHyj ,

where H = H(x, y) is a local scalar function on the tangent bundle TM of M . Such
a coordinate system is called an adapted coordinate system. Subsequently, without the
quadratic restriction, the notion of dually flatness was extend to Finsler metrics by Shen
when he studied Finsler information geometry [2]. In [2], Shen proved that a Finsler metric
F = F (x, y) on an open subset U ⊂ Rm is dually flat if and only if it satisfies the following
equations

(F 2)xiyj yi = 2(F 2)xj . (1.1)

In this case, H = − 1
6
[F 2]xlyl. The dually flatness of Randers metrics was studied by Cheng et

al. [3]. Xia gave a characterization of locally dually flat (α, β)-metrics on an m-dimensional
manifold M (m ≥ 3) [4]. Li found a new method to construct locally dually flat Finsler
metrics by using a projectively flat Finsler metric under the condition that the projective
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factor is also a Finsler metric [5]. Huang and Mo manufactured new examples of dually
flat spherically symmetric Finsler metrics [6]. From the relation between the sprays of two
dually flat and conformally flat (α, β)-metrics, Cheng obtained that locally dually flat and
conformally flat Randers metrics are Minkowskian [7]. By using a new kind of deforma-
tion technique, Yu constructed many non-trivial explicit dually flat general (α, β)-metrics
and showed us that the dual flatness of an (α, β)-metric always arises from that of some
Riemannian metric in dimensional m ≥ 3 [8–9].

On the other hand, the study of spherically symmetric Finsler metrics attracted a lot of
attention. Many known Finsler metrics are spherically symmetric [5–6, 8]. A Finsler metric
F is said to be spherically symmetric (orthogonally invariant in an alternative terminology
in [10]) if F satisfies

F (Ax,Ay) = F (x, y) (1.2)

for all A ∈ O(m), equivalently, if the orthogonal group O(m) acts as isometrics of F . Such
metrics were first introduced by Rutz [11].

It was pointed out in [10] that a Finsler metric F on Bm(µ) is a spherically symmetric
if and only if there is a function φ : [0, µ)× R→ R such that

F (x, y) =| y | φ(| x |, 〈x, y〉
| y | ), (1.3)

where (x, y) ∈ TRm(µ)\{0}, | · | and 〈·, ·〉 denote the standard Euclidean norm and inner
product respectively. The spherically symmetric Finsler metric of form (1.3) can be rewritten
as the following form [6]

F =| y |
√

f(
| x |2

2
,
〈x, y〉
| y | ). (1.4)

Spherically symmetric Finsler metrics are the simplest and most important general
(α, β)-metrics [12]. Mo, Zhou and Zhu classified the projective spherically symmetric Finsler
metrics with constant flag curvature in [13–15]. A lot of spherically symmetric Finsler metrics
with nice curvature properties was investigated by Mo, Huang et al. [10, 13–16].

An important example of non-Riemmannian dually flat Finsler metrics is the Funk
metric

Θ =

√
(1− | x |2) | y |2 +〈x, y〉2

1− | x |2 +
〈x, y〉

1− | x |2 (1.5)

on the unit ball Bm(µ), where y ∈ TxBm ⊂ Rm. Huang and Mo in [6] decomposed the Funk
metric Θ in the form

Θ =
√

Θ2
1 + Θ2

2,

where
Θ1 =| y |

√
g(t) + g′(t)s2, Θ2 =| y | [h(t)s2 +

1
6
h′(t)s4]

1
4 ,

where

g(t) =
1

1− 2t
, h(t) = g(t)3, t =

| x |2
2

, s =
〈x, y〉
| y | ,



No. 1 A class of dually flat spherically symmetric Finsler metrics 109

here Θ1 and Θ2 satisfy (1.1) by straightforward calculations. It’s easy to see that if Θ1

and Θ2 satisfy (1.1) then
√

aΘ2
1 + bΘ2

2 is also a solution of (1.1) where a, b are non-negative
constants. After noting this interesting fact, the two authors discussed the solution of dually
flat Eq.(1.1) in the following forms

F (x, y) =| y |

√√√√
l∑

j=0

fj(
| x |2

2
)
〈x, y〉j
| y |j

and

F (x, y) =| y | [
l∑

j=0

fj(
| x |2

2
)
〈x, y〉j
| y |j ]

1
4 .

On the other hand, there is a new example of non-Riemmannian dually flat Finsler
metrics given in [5, 8],

F =

√
(
√

(1− | x |2) | y |2 +〈x, y〉2 + 〈x, y〉)3
(1− | x |2)3

√
(1− | x |2) | y |2 +〈x, y〉2

(1.6)

on the unit ball Bm(µ), where y ∈ TxBm ⊂ Rm. The metric F can be expressed in the form

F =
√

F 2
1 + F 2

2 ,

where
F1 =| y |

√
f(t) + f ′(t)s2, F2 = (1− 2t + s2)−

1
4

√
g(t)s + h(t)s3,

where

f(t) =
1

(1− 2t)2
, g(t) = 3f(t), h(t) =

1
6
g′(t) +

2
3

1
1− 2t

g(t),

t =
| x |2

2
, s =

〈x, y〉
| y | .

We can verify that F1 and F2 satisfy (1.1) by direct calculations.
Inspired by the results achieved in [6], the fundamental property of the dually flat

eq.(1,1) and the metric given in (1.6), in this papar, we try to find the solution of the dually
flat eq.(1.1) in the following forms

F (x, y) =| y |
∑

r∈N−{0,1}
[

l∑
j=0

fj(
| x |2

2
)
〈x, y〉j
| y |j ]

1
2r

and

F (x, y) =| y |
∑

r∈N∗

(1− 2t + s2)−
1
2r

√√√√
l∑

j=0

fj(
| x |2

2
)
〈x, y〉j
| y |j .

By the solutions we find, a lot of new dually flat Finsler metrics can be constructed. Through
caculations, we have the following conclusions.
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Theorem 1.1 Let f(t, s) be a function defined by

f(t, s) = g(t) + h(t)s + g′(t)s2 + 1
6
h′(t)s3 +

n∑
j=2

(−1)j−1 (2j−3)!!
(2j+1)!

h(j)(t)s2j+1

+b
∑
r≥2

(λ(t) + λ′(t)s2 + r−1
2r

(λ′(t))2

λ(t)
s4)

1
r , n ∈ N∗, r ∈ N,

where b is a constant and g(t) and λ(t) are any differentiable functions. h(t) is an any
polynomial function of N degree where N ≤ n and h(j) denotes the j-order derivative for
h(t). Then the following spherically symmetric Finsler metric on Bm(µ),

F = |y|
√

f(
|x|2
2

,
〈x, y〉
|y| )

is dually flat if and only if r = 2.
Theorem 1.2 Let f(t, s) be a function defined by

f(t, s) = g(t) + h(t)s + g′(t)s2 + 1
6
h′(t)s3 +

n∑
j=2

(−1)j−1 (2j−3)!!
(2j+1)!

h(j)(t)s2j+1

+b
∑
r

(1− 2t + s2)−
1
r [λ(t)s + ( 1

6
λ′(t) + 4

3
1

(1−2t)r
λ(t))s3], n ∈ N∗, r ∈ N∗,

where b is a constant and g(t) and λ(t) are any differentiable functions, h(t) is an any
polynomial function of N degree where N ≤ n and h(j) denotes the j-order derivative for
h(t). Then the following spherically symmetric Finsler metric on Bm(µ),

F = |y|
√

f(
|x|2
2

,
〈x, y〉
|y| )

is dually flat if and only if r = 2, at this time,

λ(t) =
C1

t− 1
2

+
C2

(t− 1
2
)2

,

where C1, C2 are constants.
Remark 1 Let us take a look at a special case b = 1, C1 = 0, C2 = 3, setting

g(t) = 1
(1−2t)2

, h(t) = 0, the metric in Theorem 1.2 is given by

F =

√
(
√

(1− | x |2) | y |2 +〈x, y〉2 + 〈x, y〉)3
(1− | x |2)3

√
(1− | x |2) | y |2 +〈x, y〉2

.

It is also obtained by Li [5] and Yu [8] in other different ways.

2 Proof of Theorem 1.1

Lemma 2.1 [6] F =| y |
√

f( |x|
2

2
, 〈x,y〉
|y| ) is a solution of (1.1) if and only if f satisfies

sfts + fss − 2ft = 0, (2.1)
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where t = |x|2
2

and s = 〈x,y〉
|y| .

The solution f of (2.1) where f = f(t, s) given by f(t, s) =
l∑

j=0

fj(t)sj and f(t, s) =
√

l∑
j=0

fj(t)sj was discussed in [6]. Meanwhile, the following propositions were obtained.

Proposition 2.1 F =| y |
√

f( |x|
2

2
, 〈x,y〉
|y| ) in the form

f(
| x |2

2
,
〈x, y〉
| y | ) =

n∑
j=0

fj(
| x |2

2
)
〈x, y〉j
| y |j

is a solution of the dually flat eq.(2.1) if and only if f(t, s) satisfies

f(t, s) = g(t) + h(t)s + g′(t)s2 +
1
6
h′(t)s3 +

n∑
j=2

(−1)j−1 (2j − 3)!!
(2j + 1)!

h(j)(t)s2j+1

and

h(n)(t) = constant.

Proposition 2.2 We have the following solutions of (2.1),

F =| y |
√

f(
| x |2

2
,
〈x, y〉
| y | ), f(t, s) =

√
c2s2

(c + t)3
− c2s4

2(c + t)4
;

F =| y |
√

f(
| x |2

2
,
〈x, y〉
| y | ), f(t, s) =

√
λ(t) + λ′(t)s2 +

(λ′(t))2

4λ(t)
s4,

where λ(t) is an any differentiable function.
Now let us consider the solution given by

f(t, s) = (
l∑

j=0

fj(t)sj)
1
r , fl 6= 0, r ∈ N − {0, 1}.

By a direct calculation,

rf r−1ft =
l∑

j=0

f ′j(t)s
j , (2.2)

rf r−1fs =
l∑

j=0

jfj(t)sj−1, (2.3)

r(r − 1)f r−2fsft + rf r−1fts =
l∑

j=0

jf ′j(t)s
j−1. (2.4)
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Putting together (2.2), (2.3), (2.4), we have

rf2r−1fts = f r
l∑

j=0

jf ′j(t)s
j−1 − (1− 1

r
)(

l∑
j=0

f ′j(t)s
j)(

l∑
i=0

ifi(t)si−1)

= (
l∑

i=0

fi(t)si)(
l∑

j=0

jf ′j(t)s
j−1)− (1− 1

r
)(

l∑
j=0

f ′j(t)s
j)(

l∑
i=0

ifi(t)si−1)

=
2l∑

k=1

∑
i+j=k

[j − (1− 1
r
)i]fi(t)f ′j(t)s

k−1,

(2.5)

here we use of the following lemma.

Lemma 2.2 We have the following equations

m∑
i=1

ai

m∑
j=1

bj =
2m∑
k=1

∑
i+j=k

aibj ,

m∑
i=1

ai

m∑
j=1

bj −
m∑

i=1

ci

m∑
j=1

dj =
2m∑
k=1

∑
i+j=k

aibj .

Differentiating (2.3), we get

r(r − 1)f r−2(fs)2 + rf r−1fss =
l∑

j=0

j(j − 1)fj(t)sj−2.

Similarity, by using Lemma 2.2, we have

rf2r−1fss = f r
l∑

j=0

j(j − 1)fj(t)sj−2 − r(r − 1)f2r−2(fs)2

= (
l∑

i=0

fi(t)si)(
l∑

j=0

j(j − 1)fj(t)sj−2)− (1− 1
r
)(

l∑
i=0

ifi(t)si−1)(
l∑

j=0

jfj(t)sj−1)

=
2l∑

k=2

∑
i+j=k

j[j − 1− (1− 1
r
)i]fi(t)fj(t)sk−2

=
2l−2∑
k=0

∑
i+j=k

(j + 1)[j − (1− 1
r
)(i + 1)]fi+1(t)fj+1(t)sk.

(2.6)
By using (2.2) and Lemma 2.2, we obtain

rf2r−1ft = f r
l∑

j=0

f ′j(t)s
j

= (
l∑

i=0

fi(t)si)(
l∑

j=0

f ′j(t)s
j)

=
2l∑

k=0

∑
i+j=k

fi(t)f ′j(t)s
k.

(2.7)
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Putting together (2.5), (2.6), (2.7), we have the following

rf2r−1(sfts + fss − 2ft) =
2l−2∑
k=0

∑
i+j=k

[j − (1− 1
r
)i− 2]fi(t)f ′j(t)s

k

+
2l−2∑
k=0

∑
i+j=k

(j + 1)[j − (1− 1
r
)(i + 1)]fi+1(t)fj+1(t)sk

+
2l∑

k=2l−1

∑
i+j=k

[j − (1− 1
r
)i− 2]fi(t)f ′j(t)s

k.

(2.8)

As F = |y|f( |x|
2

2
, 〈x,y〉
|y| ) on Bm(µ) is dually flat, by using (2.1), we obtain the following

equations




[j − (1− 1
r
)i− 2]fi(t)f ′j(t) + (j + 1)[j − (1− 1

r
)(i + 1)]fi+1(t)fj+1(t) = 0,

k = 0, 1, · · · , 2l − 2,

(j − i + i
r
− 2)fi(t)f ′j(t) = 0, k = 2l − 1, 2l.

Let us focus on a special case l = 4 and f1(t) = f3(t) = 0, then

f0(t)f ′0(t)− f0(t)f2(t) = 0, (2.9)

6f0(t)f4(t) + (−1 +
2
r
)f2

2 (t) + (−2 +
1
r
)f2(t)f ′0(t) = 0, (2.10)

2f0(t)f ′4(t) + (−2 +
16
r

)f2(t)f4(t)

+(−2 +
2
r
)f2(t)f ′2(t) + (−6 +

4
r
)f4(t)f ′0(t) = 0, (2.11)

2
r
f2(t)f ′4(t) + (−4 +

16
r

)f2
4 (t) + (−4 +

4
r
)f4(t)f ′2(t) = 0. (2.12)

From (2.9), we know

f0(t) = 0 (2.13)

or

f0(t) 6= 0, f ′0(t) = f2(t). (2.14)

Case 1 Plugging (2.14) to (2.10) we get

f4(t) =
r − 1
2r

(f ′0(t))
2

f0(t)
. (2.15)

Substituting (2.14), (2.15) into (2.11) yields

r − 1
r

(
2
r
− 1)

(f ′0(t))
3

f0(t)
= 0. (2.16)

If f ′0(t) = 0, f(t, s) = 0. As f0(t) 6= 0, f ′0(t) 6= 0 and r 6= 1, we obtain

r = 2. (2.17)
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Putting (2.14), (2.15), (2.17) into (2.12), the equality holds. Then

f(t, s) =

√
λ0(t) + λ′0(t)s2 +

(λ′0(t))2

4λ0(t)
s4. (2.18)

Case 2 Plugging (2.13) to (2.10) we know

(
2
r
− 1)f2

2 (t) = 0. (2.19)

If r = 2, the results are the same as Mo’s in [9]. If r 6= 2, r 6= 4, then f(t, s) = 0. If r = 4,

f0 = f2 = 0, f4 is an arbitrary function.
Combine Propositions 2.1, 2.2, (2.17), (2.18) and the fundamental property of the dually

flat eq.(1.1), Theorem 1.1 can be achieved.

3 Proof of Theorem 1.2

In this section, we are going to construct more dually flat Finsler metrics. Consider the

spherically symmetric Finsler metric F =| y |
√

f( |x|
2

2
, 〈x,y〉
|y| ) on Bm(µ) where f = f(t, s) is

given by

f(t, s) = (1− 2t + s2)−
1
r (

l∑
j=0

fj(t)sj), r ∈ N∗. (3.1)

Suppose that g(t, s) = (1− 2t + s2)−
1
r , (3.1) can be written as

f(t, s) = g(t, s)(
l∑

j=0

fj(t)sj).

Thus
gt :=

∂g

∂t
=

2
r
gr+1, gs :=

∂g

∂s
= −2

r
gr+1s. (3.2)

Differentiating (3.1), by using (3.2), we get

ft(t, s) =
2
r
gr+1(

l∑
j=0

fj(t)sj) + g(
l∑

j=0

f ′j(t)s
j), (3.3)

fs(t, s) = −2
r
gr+1s(

l∑
j=0

fj(t)sj) + g(
l∑

j=0

jfj(t)sj−1), (3.4)

fts(t, s) = −2
r
gr+1(

l∑
j=0

f ′j(t)s
j+1) + g(

l∑
j=0

jf ′j(t)s
j−1)

− 4
r2

(r + 1)g2r+1(
l∑

j=0

fj(t)sj+1) +
2
r
gr+1(

l∑
j=0

jfj(t)sj−1), (3.5)

fss(t, s) =
4
r2

(r + 1)g2r+1(
l∑

j=0

fj(t)sj+2)− 2
r
gr+1(

l∑
j=0

(j + 1)fj(t)sj)

−2
r
gr+1(

l∑
j=0

jfj(t)sj) + g[
l∑

j=0

j(j − 1)fj(t)sj−2]. (3.6)
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Plugging (3.3), (3.5), (3.6) into the dually flat eq.(2.1) we get the following

−2
r
gr(

l∑
j=0

f ′j(t)s
j+2)− 2

r
gr[

l∑
j=0

(j + 3)fj(t)sj ] +
l∑

j=0

(j − 2)f ′j(t)s
j +

l∑
j=0

j(j − 1)fj(t)sj−2 = 0.

Multiplying g−r on the above equation, then

0 = − 2
r
[

l∑
j=0

(j + 3)fj(t)sj ]− 2
r
(

l∑
j=0

f ′j(t)s
j+2) + g−r[

l∑
j=0

(j − 2)f ′j(t)s
j ]

+g−r[
l∑

j=0

j(j − 1)fj(t)sj−2]

= [
l∑

j=0

(j2 − j(1 + 2
r
)− 6

r
)fj(t)sj ] +

l∑
j=0

(j − 2− 2
r
)f ′j(t)s

j+2 +
l∑

j=0

(j − 2)(1− 2t)f ′j(t)s
j

+
l∑

j=0

j(j − 1)(1− 2t)fj(t)sj−2

=
l∑

j=0

[j2 − (1 + 2
r
)j − 6

r
]fj(t)sj +

l+2∑
j=2

(j − 4− 2
r
)f ′j−2(t)s

j +
l∑

j=0

(j − 2)(1− 2t)f ′j(t)s
j

+
l−2∑
j=0

(j + 2)(j + 1)(1− 2t)fj+2(t)sj .

(3.7)
From (3.7), we obtain the following equations

[j2 − (1 +
2
r
)j − 6

r
]fj(t) + (j − 4− 2

r
)f ′j−2(t) + (j − 2)(1− 2t)f ′j(t)

+(j + 2)(j + 1)(1− 2t)fj+2(t) = 0, j = 2, · · · , l − 2, (3.8)

[j2 − (1 +
2
r
)j − 6

r
]fj(t) + (j − 2)(1− 2t)f ′j(t)

+(j + 2)(j + 1)(1− 2t)fj+2(t) = 0, j = 0, 1, (3.9)

[j2 − (1 +
2
r
)j − 6

r
]fj(t) + (j − 4− 2

r
)f ′j−2(t)

+(j − 2)(1− 2t)f ′j(t) = 0, j = l − 1, l, (3.10)

(j − 4− 2
r
)f ′j−2(t) = 0, j = l + 1, l + 2. (3.11)

Let us take a look at a special case l = 4, f2(t) = f4(t) = 0, then

(−2− 2
r
)f ′0(t) = 0, (3.12)

−6
r
f0(t)− 2(1− 2t)f ′0(t) = 0, (3.13)

−8
r
f1(t)− (1− 2t)f ′1(t) + 6(1− 2t)f3(t) = 0, (3.14)

(6− 12
r

)f3(t) + (−1− 2
r
)f ′1(t) + (1− 2t)f ′3(t) = 0, (3.15)

(1− 2
r
)f ′3(t) = 0. (3.16)

From (3.12), we know that
f ′0(t) = 0. (3.17)
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Plugging (3.17) into (3.13),

f0(t) = 0. (3.18)

From (3.14), we obtain

f3(t) =
1
6
f ′1(t) +

4
3

1
(1− 2t)r

f1(t). (3.19)

Differentiating (3.19),

f ′3(t) =
1
6
f ′′1 (t) +

8
3

f1(t)
(1− 2t)2r

+
4
3

f ′1(t)
(1− 2t)r

. (3.20)

Substituting (3.19), (3.20) into (3.15) yields

f1(t) = C1(t− 1
2
)
−8+r+

√
160−80r+r2
2r + C2(t− 1

2
)
−8+r−

√
160−80r+r2
2r , (3.21)

where C1, C2 are constants. Plugging (3.20) into (3.16), if r 6= 2,

f1(t) = C3(t− 1
2
) + C4(t− 1

2
)

4
r , (3.22)

where C3, C4 are constants. Obviously, f1(t) in (3.21) and f1(t) in (3.22) are not the same.
Thus

r = 2. (3.23)

Meanwhile, substituting (3.23) into (3.21), we obtain

f1(t) = C1(t− 1
2
)−1 + C2(t− 1

2
)−2.

Though the above analysis, we get the following proposition.

Proposition 3.1 We have the following solutions of (2.1),

F =| y |
√

f(
| x |2

2
,
〈x, y〉
| y | ), f(t, s) =

1√
1− 2t + s2

[λ(t)s + (
1
6
λ′(t) +

2
3

1
1− 2t

λ(t))s3],

where λ(t) satisfies

λ(t) = C1(t− 1
2
)−1 + C2(t− 1

2
)−2.

Combine Propositions 2.1, 3.1, (3.23) and the fundamental property of the dually flat
eq.(1.1), Theorem 1.2 can be achieved.

Acknowledgements We would like to take this opportunity to thank Professor Mo
Xiaohua for the discussions held on this topic.



No. 1 A class of dually flat spherically symmetric Finsler metrics 117

References

[1] Amari S I, Nagaoka H. Methods of information geometry[M]. Oxford: American Math. Soc., 2001.

[2] Shen Zhongmin. Riemann-Finsler geometry with applications to information geometry[J]. Chinese

Ann. Math., Series B, 2006, 27(1): 73–94.

[3] Cheng Xinyue, Shen Zhongmin, Zhou Yusheng. On locally dually flat Finsler metrics[J]. Intern. J.

Math., 2010, 21(11): 1531–1543.

[4] Xia Qiaoling. On locally dually flat (α, β)-metrics[J]. Differ. Geo. Appl., 2011, 29(2): 233–243.

[5] Li Benling. On dually flat Finsler metrics[J]. Differ. Geo. Appl., 2013, 31(6): 718–724.

[6] Huang Libing, Mo Xiaohuan. On some explicit constructions of dually flat Finsler metrics[J]. J.

Math. Anal. Appl., 2013, 405(2): 565–573.

[7] Cheng Xinyue, Zhang Ting, Yuan Mingao. On dually flat and conformally flat (α, β)-metrics[J]. J.

Math., 2014, 34(3): 417–422.

[8] Yu Changtao. On dually flat general (α, β)-metrics[J]. arXiv preprint, arXiv: 1401.0061, 2013.

[9] Yu Changtao. On dually flat (α, β)-metrics[J]. J. Math. Anal. Appl., 2014, 412(2): 664–675.

[10] Huang Libing, Mo Xiaohuan. Projectively flat Finsler metrics with orthogonal invariance[J]. Ann.

Pol. Math., 107 (2013): 259–270.

[11] Rutz S. Symmetry in Finsler spaces[J]. Contem. Math., 1996, 196: 289–300.

[12] Yu Changtao, Zhu Hongmei. On a new class of Finsler metrics[J]. Differ. Geo. Appl., 2011, 29(2):

244–254.

[13] Mo Xiaohuan, Zhou Linfeng. The curvatures of spherically symmetric Finsler metrics in Rn[J].

arXiv: 1202.4543.

[14] Zhou Linfeng. Projective spherically symmetric Finsler metrics with constant flag curvature in Rn[J].

Geo. Dedicata, 2012, 158(1): 353–364.

[15] Mo Xiaohuan, Zhu Hongmei. On a class of projectively flat Finsler metrics of negative constant flag

curvature[J]. Intern. J. Math., 2012, 23(08): 125008.p.14.

[16] Guo Enli, Liu Huaifu, Mo Xiaohuan. On spherically symmetric Finsler metrics with isotropic

Berwald curvature[J]. Intern. J. Geo. Meth. Modern Phy., 2013, 10(10): 603–610.

[17] Yu Changtao. On dually flat Randers metrics[J]. Nonl. Anal.: The., Meth. Appl., 2014, 95: 146–155.

一类对偶平坦的球对称的芬斯勒度量

陈亚力,宋卫东

(安徽师范大学数学计算机科学学院, 安徽芜湖 241000)

摘要: 本文研究了对偶平坦的芬斯勒度量的构造问题. 通过分析球对称的对偶平坦的芬斯勒度量的方

程的解, 我们构造了一类新的对偶平坦的芬斯勒度量, 并得到了球对称的芬斯勒度量成为对偶平坦的充分必

要条件.
关键词: 对偶平坦; 芬斯勒度量; 球对称
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