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1 Introduction

The self-similarity has become an important aspect of stochastic models in various
scientific areas including hydrology, telecommunication, turbulence, image processing and
finance. The best known and most widely used process that exhibits the self-similarity
property is the fractional Brownian motion (fBm in short). The fBm with Hurst index
H ∈ (0, 1) is a zero mean Gaussian process {BH(t), t ≥ 0} with BH(0) = 0 and covariance

E[BH(t)BH(s)] =
1
2
[t2H + s2H − |t− s|2H ]

for all s, t ≥ 0. Some surveys about the fBm could be found in Biagini et al. [4], Chen
and Xiao [5], Mishura [10], Nualart [11], Wang and Wang [15], Yan [16] and the references
therein.

By Decreusefond and Üstünel [6], BH has the following integral representation with
respect to the standard Brownian motion B (H > 1

2
):

BH(t) =
∫ t

0

KH(t, s)dB(s), t ≥ 0,

where the kernel KH is given by

KH(t, s) = cHs
1
2−H

∫ t

s

|u− s|H− 3
2 uH− 1

2 du
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with the normalizing constant cH > 0 given by

cH = [
H(2H − 1)

β(2− 2H, H − 1
2
)
]
1
2 .

Many authors studied the approximation of the fBm. For example, Delgado and Jolis [7]
proved that BH can be approximated in law by means of some processes constructed from the
standard Poisson process. In Li and Dai [8], a special approximation to the one-parameter
fractional Brownian motion is constructed using a two-parameter Poisson process. Mishura
and Banna [12] found an approximation of fractional Brownian motion by wiener integrals.

On the other hand, many authors proposed to use more general self-similar Gaussian
processes and random fields as stochastic models. Such applications raised many interesting
theoretical questions about self-similar Gaussian processes and fields in general. Therefore,
some generalizations of the fBm were introduced such as fractional Brownian sheet.

Recall that the fractional Brownian sheet can also be defined by a Wiener integral with
respect to the Brownian sheet {B(t, s), (t, s) ∈ [0, T ] × [0, S]} (see, for example, Bardina et
al. [1])

W α,β(t, s) =
∫ t

0

∫ s

0

Kα(t, u)Kβ(s, v)B(du, dv), (1.1)

where α, β ∈ ( 1
2
, 1), and the kernels Kα,Kβ are defined above. Note that this process is a

two-parameters centered Gaussian process, starting from (0, 0), and its covariance is given
by

E[W α,β(t, s)W α,β(t′, s′)] =
1
2
[t2α + t′2α − |t′ − t|2α] · 1

2
[s2α + s′2α − |s′ − s|2α].

It was proved in Bardina et al. [1] that the fractional Brownian sheet can be weakly approx-
imated by discrete processes constructed from the Poisson process in the space of continuous
functions. Tudor [9] generalized this approximation in the Besov space. Wang et al. [13, 14]
showed that the fractional Brownian sheet can be approximated in distribution by the ran-
dom walks and martingale differences sequence in the Skorohord space, respectively. We
refer to Bardina and Florit [3], Bardina and Jolis [2], and the references therein for more in-
formation about weak approximation for the fractional Brownian sheet and multidimensional
parameter process.

Motivated by all above results, in this paper, we will consider the approximation of the
fractional Brownian sheet with α, β ∈ ( 1

2
, 1) from wiener integrals.

More precisely, we consider the following problem. Let T > 0, S > 0 be two fixed
number and consider the plane [0, T ]×[0, S]. Now, let the mapping a : [0, T ]×[0, S] → R be a
nonrandom measurable function of the square integral space L2([0, T ]× [0, S]), that is, a(t, s)

is a function such that the stochastic integral
∫ t

0

∫ s

0

a(u, v)B(du, dv), (t, s) ∈ [0, T ]× [0, S] is

well defined with respect to the Brownian sheet {B(t, s), (t, s) ∈ [0, T ]× [0, S]}. The problem
is to find

min
a∈L2([0,T ]×[0,S])

max
0≤t≤T
0≤s≤S

E

[
W α,β(t, s)−

∫ t

0

∫ s

0

a(u, v)B(du, dv)
]2

.
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The paper is organized as follows. In Section 2, we obtain an approximation of a
fractional Brownian sheet by power function with a positive index. In Section 3, we construct
an approximation of a fractional Brownian sheet by power function with a negative index,
i.e., a(t, s) = kt

1
2−αs

1
2−β, where k > 0, α, β ∈ ( 1

2
, 1), and find the point where the function

attains its the minimum value.

2 An Approximation of A Fractional Brownian Sheet by Power Function

with A Positive Index

Let W α,β = {W α,β(t, s), (t, s) ∈ R2
+} be a fractional Brownian sheet with Hurst index

α, β ∈ ( 1
2
, 1), the number T, S > 0 be fixed, a(t, s) ∈ L2([0, T ] × [0, S]) is a measurable

function. M(t, s), (t, s) ∈ [0, T ]× [0, S] is a square integrable martingale which have the
form

M(t, s) =
∫ t

0

∫ s

0

a(u, v)B(du, dv).

In this section, we will evaluate

min
a∈A

max
0≤t≤T
0≤s≤S

E
[
W α,β(t, s)−M(t, s)

]2
, (2.1)

where A ⊂ L2([0, T ]× [0, S]) is some class of functions.
Lemma 2.1 If the Lebasgue measure of the set A = {(t, s) ∈ [0, T ]× [0, S] : a(t, s) < 0}

is positive, then we cannot attained the minimum in (2.1) at a function a ∈ A.
Proof

E
[
W α,β(t, s)−M(t, s)

]2

=
∫ t

0

∫ s

0

K2
α(t, u)K2

β(s, v)dudv − 2
∫ t

0

∫ s

0

Kα(t, u)Kβ(s, v)a(u, v)dvdu

+
∫ t

0

∫ s

0

a2(u, v)dvdu

=t2αs2β − 2
∫ t

0

∫ s

0

Kα(t, u)Kβ(s, v)a(u, v)dvdu +
∫ t

0

∫ s

0

a2(u, v)dvdu.

(2.2)

This makes it clear that if one changes a(u, v) for −a(u, v), at the points (u, v) where
a(u, v) < 0, then the right hand side of (2.2) does not increase. This completes the proof.

Theorem 2.2 Among all function a ∈ L2([0, T ] × [0, S]) such that a(t, s)t
1
2−αs

1
2−β is

nondecreasing with respect to t and s , then the minimum in (2.1) is attained at the function

a(t, s) = cαcβtα− 1
2 sβ− 1

2 , where cα, cβ is given by cα =
√

2αΓ( 3
2−α)

Γ(α+ 1
2 )Γ(2−2α)

, cβ =
√

2βΓ( 3
2−β)

Γ(β+ 1
2 )Γ(2−2β)

,

α, β ∈ ( 1
2
, 1).

Proof Let ϕ(t, s) be the right hand of the equation (2.2), that is,

ϕ(t, s) = t2αs2β − 2
∫ t

0

∫ s

0

Kα(t, u)Kβ(s, v)a(u, v)dvdu +
∫ t

0

∫ s

0

a2(u, v)dvdu. (2.3)
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Partial differentiating the right hand of (2.3) with respect to t, we get

∂ϕ

∂t
= −2(α− 1

2
)cαtα− 1

2

∫ t

0

u
1
2−α(t− u)α− 3

2

[∫ s

0

Kβ(s, v)a(u, v)dv

]
du

+2αt2α−1s2β +
∫ s

0

a2(t, v)dv. (2.4)

Next, partial differentiating the right hand of (2.4) with respect to s, we get

∂2ϕ

∂t∂s
= −2(α− 1

2
)(β − 1

2
)cαcβtα− 1

2 sβ− 1
2

∫ t

0

u
1
2−α(t− u)α− 3

2

×
[ ∫ s

0

v
1
2−β(s− v)β− 3

2 a(u, v)dv
]
du + 2αt2α−12βs2β−1 + a2(t, s). (2.5)

Changing the variable u = tx, v = sy in the integral, we obtain

∂2ϕ

∂t∂s
= −2(α− 1

2
)(β − 1

2
)cαcβtα− 1

2 sβ− 1
2

∫ 1

0

x
1
2−α(1− x)α− 3

2

×
[ ∫ 1

0

y
1
2−β(1− y)β− 3

2 a(tx, sy)dy
]
dx + 2αt2α−12βs2β−1 + a2(t, s). (2.6)

Let t
1
2−αs

1
2−βa(t, s) = b(t, s), then a(t, s) = tα− 1

2 sβ− 1
2 b(t, s), and ∂2ϕ

∂t∂s
becomes of the form

∂2ϕ

∂t∂s
= t2α−1s2β−1 · ψ(t, s), (2.7)

where

ψ(t, s) = 2α · 2β − 2(α− 1
2
)(β − 1

2
)cαcβ

∫ 1

0

(1− x)α− 3
2

×
∫ 1

0

(1− y)β− 3
2 b(tx, sy)dydx + b2(t, s). (2.8)

Similarly, if we differentiate (2.3) with respect to s and then t, the equation (2.5) can
also be attained, because the variable s and the variable t are symmetry in (2.5). So we
don’t need to consider the precedence of the partial differential about t and s.

If the function b(t, s) is nondecreasing with respect to t and s, i.e., b(tx, sy) ≤ b(t, sy) ≤
b(t, s), where x, y ∈ (0, 1). Thus

ψ(t, s) ≥ 2α · 2β − 2(α− 1
2
)(β − 1

2
)cαcβ

∫ 1

0

(1− x)α− 3
2

∫ 1

0

(1− y)β− 3
2 dydxb(t, s) + b2(t, s) (2.9)

or
ψ(t, s) ≥ 2α · 2β − 2cαcβb(t, s) + b2(t, s).



78 Journal of Mathematics Vol. 37

Next, we consider the discriminant of the quadratic polynomial x2 − 2cαcβx + 2α · 2β,
so the discriminant is represented as follows:

D

4
= c2

αc2
β − 2α · 2β.

The bound c2
H < 2H is easy, since

Γ(
3
2
−H) < Γ(H +

1
2
)Γ(2− 2H),H ∈ (

1
2
, 1). (2.10)

Thus the discriminant D is negative, whence ψ(t, s) ≥ 0, and the minimal value of ψ(t, s) is
attained at b(t, s) = cαcβ.

Now, we show that the b(t, s) = cαcβ can also make ϕ(t, s) a minimal value. Further,
we obtain

a(t, s) = cαcβtα− 1
2 sβ− 1

2 .

Following the assumption of the b(t, s), we have the form of the function a(t, s) =
tα− 1

2 sβ− 1
2 b(t, s). Because b(t, s) = cαcβ is a constant, so we let a(t, s) = ktα− 1

2 sβ− 1
2 , and

substituting it to (2.3).

ϕ(t, s) = t2αs2β − 2
∫ t

0

∫ s

0

Kα(t, u)Kβ(s, v)a(u, v)dvdu +
∫ t

0

∫ s

0

a2(u, v)dvdu

= t2αs2β − 2k
t2αs2β

2α2β
cαcβ + k2 t2αs2β

2α2β

=
t2αs2β

2α2β
[k2 − 2kcαcβ + 2α2β], (2.11)

since
∫ t

0

∫ s

0

Kα(t, u)Kβ(s, v)a(u, v)dvdu = k

∫ t

0

Kα(t, u)uα− 1
2 du

∫ s

0

Kβ(s, v)vα− 1
2 dv

= k
t2αs2β

2α2β
cαcβ

and ∫ t

0

∫ s

0

a2(u, v)dvdu = k2

∫ t

0

∫ s

0

u2α−1v2β−1dvdu = k2 t2αs2β

2α2β
.

Hence, when k = cαcβ, ϕ(t, s) have a minimal value 2α·2β−c2
αc2

β. Thus the minimum among
all a(t, s) such that b(t, s) = a(t, s)t

1
2−αs

1
2−β is nondecreasing is attained at b(t, s) = cαcβ.

3 An Approximation of a Fractional Brownian Sheet by Power Function

with A Negative Index

From Lemma 2.1, we obtain that the square integral function a(t, s) is positive, and
we get an approximation of a fractional Brownian sheet by power function with a positive
index in Theorem 2.2. In this section, we try to construct an approximation of a fractional
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Brownian sheet by power function with a negative index, that is, a(t, s) = kt
1
2−αs

1
2−β, where

k > 0, α, β ∈ ( 1
2
, 1). In fact, if k ≤ 0, then a(t, s) ≤ 0, while the kernel of a fractional

Brownian sheet is positive number. So, it is unreasonable to use a(t, s) ≤ 0 to approximate
the kernel of a fractional Brownian sheet.

Let

f(t, s, k) = E

[
W α,β(t, s)− k

∫ t

0

∫ s

0

u
1
2−αv

1
2−βB(du, dv)

]2

,

then we need to evaluate

min
a∈A

max
0≤t≤T
0≤s≤S

E

[
W α,β(t, s)−

∫ t

0

∫ s

0

a(u, v)B(du, dv)
]2

= min
k∈R+

max
0≤t≤T
0≤s≤S

f(t, s, k), (3.1)

where A = {a(t, s) = kt
1
2−αs

1
2−β, k > 0} ⊂ L2([0, T ]× [0, S]) is some class of functions.

Lemma 3.1 (1) The function f(t, s, k) admits the following representation:

f(t, s, k) = t2αs2β − 8k
αβ

cαcβ

ts + k2 t2−2α

2− 2α
· s2−2β

2− 2β
.

(2) For all k ∈ R+,

max
0≤t≤T
0≤s≤S

f(t, s, k) = f(T, S, k).

Proof By the straightforward calculations, we have

f(t, s, k) =t2αs2β − 2kE

[
W α,β(t, s)

∫ t

0

∫ s

0

u
1
2−αv

1
2−βB(du, dv)

]

+ k2

∫ t

0

∫ s

0

u1−2αv1−2βdvdu

=t2αs2β − 2kE

[
W α,β(t, s)

∫ t

0

∫ s

0

u
1
2−αv

1
2−βB(du, dv)

]

+ k2 t2−2α

2− 2α
· s2−2β

2− 2β
.

According to representation (1.1), we have

E

[
W α,β(t, s)

∫ t

0

∫ s

0

u
1
2−αv

1
2−βB(du, dv)

]

=
∫ t

0

∫ s

0

Kα(t, u)Kβ(s, v)u
1
2−αv

1
2−βdvdu

=
∫ t

0

Kα(t, u)u
1
2−αdu

∫ s

0

Kβ(s, v)v
1
2−βdv

=4
αβ

cαcβ

ts, (3.2)
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since
∫ t

0

Kα(t, u)u
1
2−αdu =

∫ t

0

u
1
2−α(α− 1

2
)cαu

1
2−α

∫ u

t

xα− 1
2 (x− u)α− 3

2 dxdu

= (α− 1
2
)cα

∫ t

0

xα− 1
2

[∫ x

0

u1−2α(x− u)α− 3
2 du

]
dx

= (α− 1
2
)cα

∫ t

0

xα− 1
2

[∫ 1

0

(xs)1−2α(x− xs)α− 3
2 xds

]
dx

= (α− 1
2
)cαt

∫ 1

0

s1−2α(1− s)α− 3
2 ds

= (α− 1
2
)cαtB(2− 2α, α− 1

2
)

= (α− 1
2
)cαt

Γ(2− 2α)Γ(α− 1
2
)

Γ( 3
2
− α)

= cαt
Γ(2− 2α)Γ(α + 1

2
)

Γ( 3
2
− α)

= 2
α

cα

t (3.3)

and ∫ s

0

Kβ(s, v)v
1
2−βdv = 2

β

cβ

s.

This completes the proof of assertion (1).
Assertion (2). Differentiating the function f with respect to t, we have

∂f

∂t
= t2α−1

[
2αs2β − 8kt1−2α αβ

cαcβ

s + k2(t1−2α)2
s2−2β

2− 2β

]
.

Let x = kt1−2α, we consider the discriminant

D

4
= s2

[
(
2α

cα

)2 · (2β

cβ

)2 − 2α

2− 2β

]
= s2

2α(2α · (2β)2(2− 2β)− c2
αc2

β)
c2
αc2

β(2− 2β)
(3.4)

of the follow equation

x2 s2−2β

2− 2β
− 8

αβ

cαcβ

sx + 2αs2β = 0. (3.5)

Because the denominator c2
αc2

β(2 − 2β) of the right hand of equation (3.4) is positive.
So we need to consider the numerator. We have

2α · (2β)2(2− 2β)− c2
αc2

β < 0,

since (2β)2(2 − 2β) < c2
β < 2β, and the distance between (2β)2(2 − 2β) and c2

β is longer
than the distance of c2

β and 2β. Hence D
4

< 0. So the roots of equation (3.5) is not exist
with respect t in R+. We obtain that ∂f

∂t
is positive. Hence, f(t, s, k) is nondecreasing for

all t. Similarly, we also obtain that f(t, s, k) is nondecreasing for all s. Following the above
discussion, we get

max
0≤t≤T
0≤s≤S

f(t, s, k) = f(T, S, k).
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Now, from Lemma 3.1, we easily obtain the following main result.
Theorem 3.2 Let A = {a(t, s) = kt

1
2−αs

1
2−β, k > 0, α, β ∈ ( 1

2
, 1)}, then

min
a∈A

max
0≤t≤T
0≤s≤S

E

[
W α,β(t, s)−

∫ t

0

∫ s

0

a(u, v)B(du, dv)
]2

= f(T, S, k∗),

where k∗ = 4(2−2α)(2−2β)·α·β
T 1−2αS1−2βcαcβ

.
Proof First of all, we calculate the value of the constant k which makes max

0≤t≤T
0≤s≤S

f(t, s, k)

a minimal value.
Following assertion (2) of Lemma 3.1, we have

max
0≤t≤T
0≤s≤S

f(t, s, k) = f(T, S, k).

So we need evaluate the k such that the minimum of f(T, S, k) can be attained at the k in
the next work, that is,

min
k∈R+

max
0≤t≤T
0≤s≤S

f(t, s, k) = min
k∈R+

f(T, S, k).

Now, differentiating f(T, S, k) with respect to k,

∂f

∂k
= −8

αβ

cαcβ

TS + 2k
T 2−2α

2− 2α
· S2−2β

2− 2β
.

Then we have
k∗ =

4(2− 2α)(2− 2β) · α · β
T 1−2αS1−2βcαcβ

,

which makes the derivative ∂f
∂k

is zero. So, if k > k∗, then ∂f
∂k

> 0, that is, f(T, S, k) is
increasing; if k < k∗, then ∂f

∂k
< 0, that is, f(T, S, k) is decreasing. Thus the minimum of

f(T, S, k) is attained at k = k∗. Hence

min
k∈R+

max
0≤t≤T
0≤s≤S

f(t, s, k) = f(T, S, k∗).

This completes the proof.
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分数布朗单的幂函数随机积分逼近
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摘要: 本文研究了分数布朗单的逼近问题. 利用Wiener积分, 得到了分数布朗单的幂函数型随机积分

逼近.
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