DRINFELD DOUBLE FOR MONOIDAL HOM－HOPF GROUP－COALGEBRAS

YOU Mi－man ${ }^{1}$ ，ZHOU Nan ${ }^{2}$
（1．School of Mathematics and Information Science，North China University of Water Resource and Electric Power，Zhengzhou 450046，China）
（2．Department of Mathematics，Southeast University，Nanjing 211189，China）

Abstract

In this paper，Drinfeld double over monoidal Hom－Hopf group－coalgebras is in－ troduced．Via the definition of crossed monoidal Hom－Hopf T－coalgebras and the definition of quasitriangular monoidal Hom－Hopf group－coalgebras，we get the result that this Drinfeld double is a quasitriangular monoidal Hom－Hopf group－coalgebra．

Keywords：quasitriangular；Monoidal Hom－Hopf group－coalgebra；Drinfeld Double
2010 MR Subject Classification：16T05；16T15
Document code：A Article ID：0255－7797（2017）01－0063－11

1 Introduction

Braided T－categories introduced by Turaev［1］are of interest due to their applications in homotopy quantum field theories，which are generalizations of ordinary topological quantum field theories．Braided crossed categories based on a group G ，is braided monoidal categories in Freyd－Yetter categories of crossed G－sets（see［2］）play a key role in the construction of these homotopy invariants．In［3］，Zhou and Yang studied cotriangular weak Hopf group－ coalgebras and promoted Kegel theorem on the weak Hopf group－coalgebras．Motivated by this fact，Yang［4］introduced the notion of a monoidal Hom－group－coalgebra as a develop－ ment of the notion of monoidal Hom－coalgebras in sense of Caenepeel and Goyvaerts（see ［5］），and as a natural generalization of the notions of both the Hom－type Hopf algebras and the Hopf group－coalgebra in $[1,6]$ ，and constructed a new kind of braided T－categories．

Starting from a finite－dimensional Hopf algebra H ，Drinfeld［7］showed how to obtain a quasitriangular Hopf algebra $D(H)$ ，the quantum double of H ．It is now very natural to ask how to construct Drinfeld quantum double for finite－type monoidal Hom－Hopf group－ coalgebras．In this article，we essentially construct Drinfeld quantum double over monoidal Hom－Hopf group－coalgebras．

[^0]This article is organized as follows. In Section 1, we recall some notions and results about monoidal Hom-Hopf group-coalgebras. In Section 2, we construct the Drinfeld quantum double over monoidal Hom-Hopf group-coalgebras and study quasitriangular monoidal HomHopf group-coalgebras.

2 Preliminaries

In this section, we recall the definitions and properties of monoidal Hom-Hopf algebras and monoidal Hom-Hopf group-coalgebras. Throughout this paper, we always let G be a discrete group with a neutral element 1 and k a field. If U and V are k-spaces, $T_{U, V}$: $U \otimes V \rightarrow V \otimes U$ will denote the flip map defined by $T_{U, V}(u \otimes v)=v \otimes u$ for all $u \in U$ and $v \in V$.

Definition 2.1 (see [4]) A monoidal Hom- G-coalgebra is a family of k-spaces $C=$ $\left\{\left(C_{\alpha}, \xi_{C_{\alpha}}\right)\right\}_{\alpha \in G}$ together with a family of k-linear maps $\Delta=\left\{\Delta_{\alpha, \beta}: C_{\alpha \beta} \rightarrow C_{\alpha} \otimes C_{\beta}\right\}_{\alpha, \beta \in G}$ and a k-linear map $\varepsilon: C_{1} \rightarrow k$, such that Δ is coassociative in the sense that

$$
\begin{align*}
& \left(\Delta_{\alpha, \beta} \otimes \xi_{C_{\gamma}}^{-1}\right) \Delta_{\alpha \beta, \gamma}=\left(\xi_{C_{\alpha}}^{-1} \otimes \Delta_{\beta, \gamma}\right) \Delta_{\alpha, \beta \gamma} \quad \text { for any } \alpha, \beta, \gamma \in G \tag{2.1}\\
& \left(\varepsilon \otimes \xi_{C_{\alpha}}\right) \Delta_{1, \alpha}=\xi_{C_{\alpha}}^{-1}=\left(\xi_{C_{\alpha}} \otimes \varepsilon\right) \Delta_{\alpha, 1} \quad \text { for all } \alpha \in G \tag{2.2}
\end{align*}
$$

Remark $2.2\left(C_{1}, \xi_{C_{1}}, \Delta_{1,1}, \varepsilon\right)$ is a monoidal Hom-coaglegbra in the sense of Caenepeel and Goyvaerts [5].

Following the Sweedler's notation for G-coalgebras, for any $\alpha, \beta \in G$ and $c \in\left(C_{\alpha \beta}, \xi_{C_{\alpha \beta}}\right)$ one writes

$$
\Delta_{\alpha, \beta}(c)=c_{(1, \alpha)} \otimes c_{(2, \beta)} \in C_{\alpha} \otimes C_{\beta}
$$

The coassociativity axiom (2.1) gives that, for any $\alpha, \beta, \gamma \in G$ and $c \in\left(C_{\alpha \beta \gamma}, \xi_{C_{\alpha \beta \gamma}}\right)$,

$$
\begin{equation*}
\left(c_{(1, \alpha \beta)(1, \alpha)} \otimes c_{(1, \alpha \beta)(2, \beta)}\right) \otimes \xi_{C_{\gamma}}^{-1}\left(c_{(2, \gamma)}\right)=\xi_{C_{\alpha}}^{-1}\left(c_{(1, \alpha)}\right) \otimes\left(c_{(2, \beta \gamma)(1, \beta)} \otimes c_{(2, \beta \gamma)(2, \gamma)}\right) \tag{2.3}
\end{equation*}
$$

Definition 2.3 (see [4]) A monoidal Hom-Hopf G-coaglebra is a monoidal Hom- G coalgebra $H=\left(\left\{H_{\alpha}, \xi_{H_{\alpha}}\right\}, \Delta, \varepsilon\right)$ together with a family of k-linear maps $S=\left\{S_{\alpha}: H_{\alpha} \rightarrow\right.$ $\left.H_{\alpha^{-1}}\right\}_{\alpha \in G}$ such that the following data holds:

Each H_{α} is a monoidal Hom-algebra with multiplication m_{α} and unit $1_{\alpha} \in H_{\alpha \cdot}$ (2.4)
For all $\alpha, \beta \in G, \Delta_{\alpha, \beta}$ and $\varepsilon: H_{1} \rightarrow k$ are algebra maps.
For $\alpha \in G, m_{\alpha}\left(S_{\alpha^{-1}} \otimes i d_{H_{\alpha}}\right) \Delta_{\alpha^{-1}, \alpha}=\varepsilon 1_{\alpha}=m_{\alpha}\left(i d_{H_{\alpha}} \otimes S_{\alpha^{-1}}\right) \Delta_{\alpha, \alpha^{-1}}$.
Note that $\left(H_{1}, m_{1}, 1_{1}, \Delta_{1,1}, \varepsilon, S_{1}\right)$ is a monoidal Hom-Hopf algebra. A monoidal HomHopf G-coalgebra H is termed to be of finite type if, for all $\alpha \in G, H_{\alpha}$ is finite-dimensional as k-vector space.

Remark 2.4 Let $H=\left(\left\{H_{\alpha}, \xi_{H_{\alpha}}\right\}, \Delta, \varepsilon, S\right)$ be a monoidal Hom-Hopf G-coalgebra. Suppose that the antipode $S=\left\{S_{\alpha}\right\}_{\alpha \in G}$ of H is bijective. For any $\alpha \in G$, let $H_{\alpha}^{o p}$ be the opposite algebra to H_{α}. Then $H^{o p}=\left\{H_{\alpha}^{o p}\right\}_{\alpha \in G}$, endowed with the comultiplication and
the counit of H and with the antipode $S^{o p}=\left\{S_{\alpha}^{o p}=S_{\alpha^{-1}}^{-1}\right\}_{\alpha \in G}$, is an opposite monoidal Hom-Hopf G-coalgebra of H. The coopposite monoidal Hom- G-coalgebra equipped with $H_{\alpha}^{c o p}=H_{\alpha^{-1}}$ as an algebra and with the comultiplication $\Delta_{\alpha, \beta}=T_{C_{\beta-1}, C_{\alpha^{-1}}} \Delta_{\beta^{-1}, \alpha^{-1}}$ and with the antipode $S^{c o p}=\left\{S_{\alpha}^{c o p}=S_{\alpha}^{-1}\right\}_{\alpha \in G}$.

Definition 2.5 (see [4]) A monoidal Hom- G-coalgebra $H=\left(\left\{H_{\alpha}, \xi_{H_{\alpha}}\right\}, \Delta, \varepsilon, S\right)$ is said to be a monoidal Hom- T-coalgebra provided it is endowed with a family of algebra isomorphisms $\varphi=\left\{\varphi_{\beta}: H_{\alpha} \rightarrow H_{\beta \alpha \beta^{-1}}\right\}_{\alpha, \beta \in G}$ such that each φ_{β} preserves the comultiplication and the counit, i.e., for all $\alpha, \beta, \gamma \in G$,

$$
\left(\varphi_{\beta} \otimes \varphi_{\beta}\right) \circ \Delta_{\alpha, \gamma}=\Delta_{\beta \alpha \beta^{-1}, \beta \gamma \beta^{-1}} \circ \varphi_{\beta}, \quad \varepsilon \circ \varphi_{\beta}=\varepsilon,
$$

and φ is multiplicative in the sense that $\varphi_{\alpha \beta}=\varphi_{\alpha} \circ \varphi_{\beta}$ for all $\alpha, \beta \in G$.
Let H be a monoidal Hom- T-coalgebra. Then one has that $\varphi_{1} \mid H_{\alpha}=i d_{H_{\alpha}}, \varphi_{\alpha}^{-1}=\varphi_{\alpha^{-1}}$, for all $\alpha \in G$ and φ preserves the antipode, i.e., $\varphi_{\beta} \circ S_{\alpha}=S_{\beta \alpha \beta^{-1}} \circ \varphi_{\beta}$ for all $\alpha, \beta \in G$.

3 The Drinfeld Quantum Double for Monoidal Hom-Hopf T-Coalgebras

In order to construct the Drinfeld quantum double for monoidal Hom-Hopf T-coalgebras and study the definition of quasitriangular monoidal Hom-Hopf group-algebra. The following definitions are necessary.

Definition 3.1 The Duality C^{*}. Let $C=\left(\left\{C_{\alpha}, \xi_{C_{\alpha}}, \Delta, \varepsilon\right\}\right)$ be a G-coalgebra and A an algebra with multiplication m and unit element 1_{A}. For any $f \in \operatorname{Hom}_{k}\left(C_{\alpha}, A\right)$ and $g \in \operatorname{Hom}_{k}\left(C_{\beta}, A\right)$, we have their convolution product by

$$
(f * g)(c)=m(f \otimes g) \Delta_{\alpha, \beta}(c)=f\left(c_{(1, \alpha)}\right) g\left(c_{(2, \beta)}\right) \in \operatorname{Hom}_{k}\left(C_{\alpha, \beta}, A\right)
$$

for all $c \in C_{\alpha, \beta}$. Equations (2.1) and (2.2) will imply that k-space

$$
\operatorname{Conv}(C, A)=\bigoplus_{\alpha \in G} \operatorname{Hom}_{k}\left(C_{\alpha}, A\right)
$$

endowed with the convolution product $*$ and the unit element $1_{A} \varepsilon$, is a G-algebra, called a convolution algebra.

In particular, for $A=k$, the G-algebra $\operatorname{Con} v(C, k)=\oplus_{\alpha \in G} C_{\alpha}^{*}$ is called dual to C and is denoted by C^{*}.

Definition 3.2 The Mirror \bar{H}. Let H be a monoidal Hom- T-coalgebra. Then the notion of the mirror \bar{H} of H is given by the following data.

- For any $\alpha \in G$, set $\bar{H}_{\alpha}=H_{\alpha^{-1}}$.
- For any $\alpha, \beta \in G$, the G-coalgebra structure is defined by

$$
\begin{align*}
\bar{\Delta}_{\alpha, \beta} & =\left(\left(\varphi_{\beta} \otimes i d_{H_{\beta^{-1}}}\right) \circ \Delta_{\beta^{-1} \alpha \beta, \beta^{-1}}\right)(h) \\
& =\varphi_{\beta}\left(h_{\left(1, \beta^{-1} \alpha^{-1} \beta\right)}\right) \otimes h_{\left(2, \beta^{-1}\right)} \in \bar{H}_{\alpha} \otimes \bar{H}_{\beta} \tag{3.1}
\end{align*}
$$

for any $h \in \overline{H_{\alpha \beta}}=H_{\beta^{-1} \alpha^{-1}}$. The counit of \bar{H} is given by $\varepsilon \in H_{1}^{*}=\bar{H}_{1}^{*}$.

- For any $\alpha \in G$, the α th component of the antipode \bar{S} of \bar{H} is given by $\bar{S}_{\alpha}=\varphi_{\alpha} \circ S_{\alpha^{-1}}$.
- For any $\alpha \in G$, the α th component of the crossed map $\bar{\varphi}$ of \bar{H} is given by $\bar{\varphi}_{\alpha}=\varphi_{\alpha}$.

Dually, a monoidal Hom- G-algebra is a family of k-spaces $A=\left\{\left(A_{\alpha}, \xi_{A_{\alpha}}\right)\right\}_{\alpha \in G}$ together with a family of k-linear maps $m=\left\{m_{\alpha, \beta}: A_{\alpha} \otimes A_{\beta} \rightarrow A_{\alpha \beta}\right\}_{\alpha, \beta \in G}$ and a k-linear map $\eta: k \rightarrow A_{1}$, such that m is associative in the sense that, for any $\alpha, \beta, \gamma \in G$,

$$
\begin{equation*}
m_{\alpha \beta, \gamma}\left(m_{\alpha, \beta} \otimes \xi_{A_{\gamma}}\right)=m_{\alpha, \beta \gamma}\left(\xi_{A_{\alpha}} \otimes m_{\beta, \gamma}\right) \tag{3.2}
\end{equation*}
$$

and for all $\alpha, \beta \in G$,

$$
\begin{equation*}
m_{\alpha, 1}\left(i d_{A_{\alpha}} \otimes \eta\right)=\xi_{A_{\alpha}}=m_{1, \alpha}\left(\eta \otimes i d_{A_{\alpha}}\right) \tag{3.3}
\end{equation*}
$$

A monoidal Hom-Hopf G-algebra is a G-algebra $H=\left(\left\{H_{\alpha}, \xi_{H_{\alpha}}\right\}, m, \eta\right)$ endowed with a family of k-linear maps $S=\left\{S_{\alpha}: H_{\alpha} \rightarrow H_{\alpha^{-1}}\right\}_{\alpha \in G}$ such that each $\left(H_{\alpha}, \xi_{H_{\alpha}}\right)$ is a monoidal Hom-coalgebra with a comultiplication Δ_{α} and a counit ε_{α}; the map $\eta: k \rightarrow A_{1}$ and the maps $m_{\alpha, \beta}: H_{\alpha} \otimes H_{\beta} \rightarrow H_{\alpha \beta}$ (for all $\alpha, \beta \in G$) are coalgebra homomorphisms; and for any $\alpha \in G$, one has that

$$
\begin{equation*}
m_{\alpha^{-1}, \alpha}\left(S_{\alpha} \otimes i d_{H_{\alpha}}\right) \Delta_{\alpha}=\varepsilon_{\alpha} 1_{1}=m_{\alpha, \alpha^{-1}}\left(i d_{H_{\alpha}} \otimes S_{\alpha}\right) \Delta_{\alpha} \tag{3.4}
\end{equation*}
$$

A monoidal Hom-Hopf G-algebra H is said to be of finite type if, for all $\alpha \in G, H_{\alpha}$ is finite dimensional as k-space.

Furthermore, a monoidal Hom-Hopf T-algebra is a monoidal Hom-Hopf G-algebra H with a set of coalgebra isomorphisms $\psi=\left\{\psi_{\beta}: H_{\alpha} \rightarrow H_{\beta \alpha \beta^{-1}}\right\}_{\alpha, \beta \in G}$ called a conjugation, satisfying the following conditions:

- ψ is multiplicative, i.e., $\psi_{\beta} \circ \psi_{\gamma}=\psi_{\beta \gamma}$ for any $\beta, \gamma \in G$. It follows that, for any $\alpha \in G$, $\psi_{1} \mid H_{\alpha}=i d_{H_{\alpha}}$.
- ψ is compatible with m, i.e., for any $\alpha, \beta, \gamma \in G$, we have
$m_{\gamma \alpha \gamma^{-1}, \gamma \beta \gamma^{-1}} \circ\left(\psi_{\gamma} \otimes \psi_{\gamma}\right)=\psi_{\gamma} \circ m_{\alpha, \beta}$.
- ψ is compatible with η, i.e., $\eta \circ \psi_{\gamma}=\eta$ for any $\gamma \in G$.

Let H be a monoidal Hom-Hopf T-algebra. Similar to that of [9] we have the construction $H_{p k}$ (called a packed form of H) which can form a Hom-Hopf algebra.

Remark 3.3 Let H be a finite type monoidal Hom-Hopf T-algebra. The dual of H is the monoidal Hom-Hopf T-algebra defined as follows. For any $\alpha \in G$, the α th component of H^{*} is the dual coalgebra $\left(H_{\alpha}^{*}, \xi_{\alpha}^{*-1}\right)$ of the algebra $\left(H_{\alpha}, \xi_{\alpha}\right)$. The multiplication of H^{*} is given by

$$
\begin{equation*}
\left\langle m_{\alpha, \beta}(f \otimes g), h\right\rangle=\left\langle f \otimes g, \Delta_{\alpha, \beta}\right\rangle \tag{3.5}
\end{equation*}
$$

for any $f \in\left(H_{\alpha}^{*}, \xi_{\alpha}^{*-1}\right), g \in\left(H_{\beta}^{*}, \xi_{\beta}^{*-1}\right)$ and $h \in\left(H_{\alpha \beta}, \xi_{\alpha \beta}\right)$, with $\alpha, \beta \in G$. The unit of H^{*} is given by $\varepsilon \in H_{1}^{*} \subset H^{*}$. The antipode \mathscr{A}^{*} of H^{*} is given by $\mathscr{A}_{\alpha}^{*}=S_{\alpha^{-1}}^{*}$ for any $\alpha \in G$. For any $\beta \in G$, the conjugation isomorphism $\psi_{\beta}^{*}=\varphi_{\beta^{-1}}^{*}$.

Remark 3.4 Given any crossed monoidal Hom-Hopf T-coalgebra, then $\left(\left(H^{*}\right)_{p k}\right)^{\text {cop }}$ is the monoidal Hom-Hopf algebra obtained from $\left(H^{*}\right)_{p k}$ by replacing its comultiplication with the new one $\Delta^{*}=\Delta^{* t, c o p}$ given by

$$
\begin{equation*}
\left\langle\Delta^{*}(f), h \otimes k\right\rangle=\langle f, k h\rangle \tag{3.6}
\end{equation*}
$$

for any $f \in H_{\alpha}^{*} \subset \oplus_{\beta \in G} H_{\beta}^{*}$ and $h, k \in H_{\alpha}$, with $\alpha \in G$. We also replace the antipode with the new one obtained by $\mathscr{A}_{*}=\mathscr{A}^{* t}=\left(S^{*}\right)^{-1}$. In particular, we have $<\mathscr{A}_{*}(f), h>=<$ $f, S_{\alpha}^{-1}(h)>$, for any $f \in H_{\alpha}^{*}$ and $h \in H_{\alpha^{-1}}$, with $\alpha \in G$. We can obtain the crossed monoidal Hom-Hopf T-coalgebra denoted by $H^{* t, c o p}$ based on $\left(\left(H^{*}\right)_{p k}\right)^{c o p}$. Note that $\varphi_{H^{* t, c o p}, \alpha}=$ $\varphi_{H^{* t}, \alpha}=\sum_{\beta \in G} \varphi_{\beta^{-1}}^{*}$ for any $\alpha \in G$.

Let H be a finite type monoidal Hom-Hopf T-coalgebra. We define the Drinfeld quantum double $D(T)$ of H as follows. Consider the following vector spaces

$$
H_{\alpha^{-1}} \otimes H_{\alpha}^{* t, c o p}=H_{\alpha^{-1}} \otimes H_{1}^{* t, c o p}=\bar{H}_{\alpha} \otimes \bigoplus_{\beta \in G} H_{\beta}^{*}
$$

for any $\alpha \in G$. A multiplication is obtained by setting, for any $h, k \in H_{\alpha^{-1}}, f \in H_{\gamma}^{*}$, and $g \in H_{\delta}^{*}$ with $\gamma, \delta \in G$,

$$
\begin{align*}
& (h \circledast f)(k \circledast g) \\
= & \xi_{\alpha^{-1}}^{2}\left(h_{\left(12, \alpha^{-1}\right)}\right) k \circledast f\left\langle g, S_{\delta}^{-1}\left(h_{\left(2, \delta^{-1}\right)}\right)\left((\cdot) \varphi_{\alpha}\left(h_{\left(11, \alpha^{-1} \delta \alpha\right)}\right)\right)\right\rangle \\
= & \xi_{\alpha^{-1}}^{2}\left(h_{\left(12, \alpha^{-1}\right)}\right) k \circledast f\left\langle g_{11}, \varphi_{\alpha}\left(h_{\left(11, \alpha^{-1} \delta \alpha\right)}\right)\right\rangle\left\langle g_{2}, S_{\delta}^{-1}\left(h_{\left(2, \delta^{-1}\right)}\right)\right\rangle \xi_{\delta}^{*-2}\left(g_{12}\right) . \tag{3.7}
\end{align*}
$$

For any $h, k \in H_{\alpha^{-1}}$ and $f \in H_{\gamma}^{*}$

$$
(h \circledast f)(k \circledast \varepsilon)=h k \circledast \xi_{\gamma}^{*-1}(f)
$$

We now have the following main result of this section.
Theorem 3.5 Let H be a finite-type monoidal Hom-Hopf T-coalgebra. Then $D(H)$ is a crossed monoidal Hom-Hopf T-coalgebra with the following structures:

- For any $\alpha \in G, \alpha$ th component $D_{\alpha}(H)$ is an associative algebra with the multiplication given in eq. (3.7) and with unit $1_{\alpha^{-1}} \circledast \varepsilon$;
- The comultiplication is given by

$$
\begin{equation*}
\Delta_{\alpha, \beta}(h \circledast F)=\left[\varphi_{\beta}\left(h_{\left(1, \beta^{-1} \alpha^{-1} \beta\right)}\right) \circledast F_{1}\right] \otimes\left[h_{\left(2, \beta^{-1}\right)} \circledast F_{2}\right] \tag{3.8}
\end{equation*}
$$

for any $\alpha, \beta \in G, h \in \bar{H}_{\alpha \beta}$ and $F \in H^{* t, c o p}$, where we have that $\Delta^{*}(F)=F_{1} \otimes F_{2}$ defined by eq. (3.6);

- The counit is obtained by setting

$$
\begin{equation*}
\varepsilon(h \circledast f)=\langle\varepsilon, h \circledast f\rangle=\langle\varepsilon, h\rangle\left\langle f, 1_{\gamma}\right\rangle \tag{3.9}
\end{equation*}
$$

for any $h \in H_{1}$ and $f \in H_{\gamma}^{*}$ with $\gamma \in G$;

- For any $\alpha \in G$, the α th component of the antipode of $D(H)$ is given by

$$
\begin{align*}
S_{\alpha}(h \circledast F) & =\left[\bar{S}_{\alpha} \xi_{\alpha^{-1}}^{-1}(h) \circledast \varepsilon\right]\left[1_{\alpha} \circledast \mathscr{A}_{*}\left(\xi_{\alpha}^{*}(F)\right)\right] \\
& =\left[\varphi_{\alpha} S_{\alpha^{-1}}\left(\xi_{\alpha^{-1}}^{-1}(h)\right) \circledast \varepsilon\right]\left[1_{\alpha} \circledast \mathscr{A}_{*}\left(\xi_{\alpha}^{*}(F)\right)\right] \tag{3.10}
\end{align*}
$$

for any $h \in \bar{H}_{\alpha}$ and $F \in H^{* t, \text { cop }}$, where \mathscr{A}_{*} is the antipode of $H^{* t, \text { cop }}$ and $\bar{S}_{\alpha}=\varphi_{\alpha} \circ S_{\alpha^{-1}}$ is the antipode of \bar{H};

- For any $\alpha \in G$, the conjugation isomorphism is given by

$$
\begin{equation*}
\varphi_{\beta}(h \circledast f)=\left[\varphi_{\beta}(h) \circledast \varphi_{H^{* t, c o p}, \beta}(f)\right]=\left[\varphi_{\beta}(h) \circledast \varphi_{\beta^{-1}}^{*}(f)\right] \tag{3.11}
\end{equation*}
$$

for any $h \in \bar{H}_{\alpha}$ and $f \in H_{\gamma}^{* t, c o p}$ with $\gamma \in G$.
Proof First, for any $\alpha \in G$, we will show that $D_{\alpha}(H)$ is an Hom-associative algebra with unit. Then we will show that Δ, defined as above, is multipilcative, i.e., that any $\Delta_{\alpha, \beta}$ is an algebra map. After that, we show that ε is an algebra map. Finally, we will check axioms for the antipode and the conjugation isomorphisms are compatible with the multiplication.

Hom-associativity Let α be in G. The multiplication definition eq.(3.7) is associative if and only if, for any $h, k, l \in\left(H_{\alpha^{-1}}, \xi_{\alpha^{-1}}\right), f \in\left(H_{\beta}^{*}, \xi_{\beta}^{*-1}\right), q \in\left(H_{\delta}^{*}, \xi_{\delta}^{*-1}\right)$, and $p \in\left(H_{\gamma}^{*}, \xi_{\gamma}^{*-1}\right)$ with $\beta, \delta, \gamma \in G$,

$$
\begin{equation*}
((h \circledast f)(k \circledast q)) \xi_{D_{\alpha}(H)}(l \circledast p)=\xi_{D_{\alpha}(H)}(h \circledast f)((k \circledast q)(l \circledast p)) \tag{3.12}
\end{equation*}
$$

By computing the left-hand side of (3.12), we obtain

$$
\begin{aligned}
& ((h \circledast f)(k \circledast q)) \xi_{D_{\alpha}(H)}(l \circledast p) \\
= & \xi_{\alpha^{-1}}^{2}\left(\left(\xi_{\alpha^{-1}}^{2}\left(h_{\left(12, \alpha^{-1}\right)}\right) k\right)_{\left(12, \alpha^{-1}\right)}\right) \xi_{\alpha^{-1}}(l) \circledast\left(f\left\langle q_{11}, \varphi_{\alpha}\left(h_{\left(11, \alpha^{-1} \delta \alpha\right)}\right)\right\rangle\right. \\
& \left.\left\langle q_{2}, S_{\delta}^{-1}\left(h_{\left(2, \delta^{-1}\right)}\right)\right\rangle \xi_{\delta}^{*-2}\left(q_{12}\right)\right)\left\langle\xi_{\gamma}^{*-1}\left(p_{11}\right), \varphi_{\alpha}\left(\left(\xi_{\alpha^{-1}}^{2}\left(h_{\left(12, \alpha^{-1}\right)}\right) k\right)_{\left(11, \alpha^{-1} \gamma \alpha\right)}\right)\right\rangle \\
& \left\langle\xi_{\gamma}^{*-1}\left(p_{2}\right), S_{\gamma}^{-1}\left(\left(\xi_{\alpha^{-1}}^{2}\left(h_{\left(12, \alpha^{-1}\right)}\right) k\right)_{\left(2, \gamma^{-1}\right)}\right)\right\rangle \xi_{\gamma}^{*-2}\left(\xi_{\gamma}^{*-1}\left(p_{12}\right)\right),
\end{aligned}
$$

by the antimultiplicativity of S and the multiplicativity of φ,

$$
\begin{aligned}
= & \xi_{\alpha^{-1}}^{5}\left(h_{\left(1212, \alpha^{-1}\right)}\right)\left(\xi_{\alpha^{-1}}^{2}\left(k_{\left(12, \alpha^{-1}\right)}\right) l\right) \circledast\left\langle q_{11}, \varphi_{\alpha}\left(h_{\left(11, \alpha^{-1} \delta \alpha\right)}\right)\right\rangle\left\langle q_{2}, S_{\delta}^{-1}\left(h_{\left(2, \delta^{-1}\right)}\right)\right\rangle \\
& \left\langle\xi_{\gamma}^{*-1}\left(p_{111}\right), \varphi_{\alpha}\left(k_{\left(11, \alpha^{-1} \gamma \alpha\right)}\right)\right\rangle\left\langle\xi_{\gamma}^{*-1}\left(p_{112}\right), \varphi_{\alpha}\left(\xi_{\alpha^{-1} \gamma \alpha}^{2}\left(h_{\left(1211, \alpha^{-1} \gamma \alpha\right)}\right)\right)\right\rangle \\
& \left\langle\xi_{\gamma}^{*-1}\left(p_{21}\right), S_{\gamma}^{-1}\left(\xi_{\gamma^{-1}}^{2}\left(h_{\left(122, \gamma^{-1}\right)}\right)\right)\right\rangle\left\langle\xi_{\gamma}^{*-1}\left(p_{22}\right), S_{\gamma}^{-1}\left(k_{\left(2, \gamma^{-1}\right)}\right)\right\rangle \xi_{\beta}^{*-1}(f)\left(\xi_{\delta}^{*-2}\left(q_{12}\right) \xi_{\gamma}^{*-2}\left(p_{12}\right)\right) \\
= & \xi_{\alpha^{-1}}^{3}\left(h_{\left(12, \alpha^{-1}\right)}\right)\left(\xi_{\alpha^{-1}}^{2}\left(k_{\left(12, \alpha^{-1}\right)}\right) l\right) \circledast\left\langle q_{11}, \varphi_{\alpha}\left(\xi_{\alpha^{-1} \delta \alpha}\left(h_{\left(111, \alpha^{-1} \delta \alpha\right)}\right)\right)\right\rangle\left\langle q_{2}, S_{\delta}^{-1}\left(\xi_{\delta^{-1}}\left(h_{\left(22, \delta^{-1}\right)}\right)\right)\right\rangle \\
& \left\langle\xi_{\gamma}^{*-1}\left(p_{111}\right), \varphi_{\alpha}\left(k_{\left(11, \alpha^{-1} \gamma \alpha\right)}\right)\right\rangle\left\langle\xi_{\gamma}^{*-1}\left(p_{112}\right), \varphi_{\alpha}\left(\xi_{\alpha^{-1} \gamma \alpha}\left(h_{\left(112, \alpha^{-1} \gamma \alpha\right)}\right)\right)\right\rangle \\
& \left\langle\xi_{\gamma}^{*-1}\left(p_{21}\right), S_{\gamma}^{-1}\left(\xi_{\gamma^{-1}}\left(h_{\left(21, \gamma^{-1}\right)}\right)\right)\right\rangle\left\langle\xi_{\gamma}^{*-1}\left(p_{22}\right), S_{\gamma}^{-1}\left(k_{\left(2, \gamma^{-1}\right)}\right)\right\rangle \xi_{\beta}^{*-1}(f)\left(\xi_{\delta}^{*-2}\left(q_{12}\right) \xi_{\gamma}^{*-2}\left(p_{12}\right)\right)
\end{aligned}
$$

while, by computing the right-hand side, we obtain

$$
\begin{aligned}
& \xi_{D_{\alpha}(H)}(h \circledast f)((k \circledast q)(l \circledast p)) \\
= & \xi_{\alpha^{-1}}^{3}\left(h_{\left(12, \alpha^{-1}\right)}\right)\left(\xi_{\alpha^{-1}}^{2}\left(k_{\left(12, \alpha^{-1}\right)}\right) l\right) \circledast\left\langle p_{11}, \varphi_{\alpha}\left(k_{\left(11, \alpha^{-1} \gamma \alpha\right)}\right)\right\rangle\left\langle p_{2}, S_{\gamma}^{-1}\left(k_{\left(2, \gamma^{-1}\right)}\right)\right\rangle \\
& \left.\left.\left.\left\langle\left(q \xi_{\gamma}^{*-2}\left(p_{12}\right)\right)_{11}, \varphi_{\alpha}\left(\xi_{\alpha-1}(h)_{\left(11, \alpha^{-1} \delta \gamma \alpha\right)}\right)\right)\right\rangle\left\langle\left(q \xi_{\gamma}^{*-2}\left(p_{12}\right)\right)_{2}, S_{\gamma \delta}^{-1}\left(\xi_{\alpha^{-1}}(h)_{\left(2, \delta^{-1} \gamma^{-1}\right)}\right)\right)\right\rangle\right\rangle \\
& \xi_{\beta}^{*-1}(f)\left(\xi_{\delta}^{*-2}\left(q_{12}\right) \xi_{\gamma}^{*-4}\left(p_{1212}\right)\right)
\end{aligned}
$$

by the antimultiplicativity of S and the comultiplicativity of φ,

$$
\begin{aligned}
= & \xi_{\alpha^{-1}}^{3}\left(h_{\left(12, \alpha^{-1}\right.}\right)\left(\xi_{\alpha^{-1}}^{2}\left(k_{\left(12, \alpha^{-1}\right)}\right) l\right) \circledast\left\langle p_{11}, \varphi_{\alpha}\left(k_{\left(11, \alpha^{-1} \gamma \alpha\right)}\right)\right\rangle\left\langle p_{2}, S_{\gamma}^{-1}\left(k_{\left(2, \gamma^{-1}\right)}\right)\right\rangle \\
& \left.\left\langle q_{11}, \varphi_{\alpha}\left(\xi_{\alpha^{-1} \delta \alpha}\left(h_{\left(111, \alpha^{-1} \delta \alpha\right)}\right)\right)\right\rangle\left\langle\xi_{\gamma}^{*-2}\left(p_{1211}\right)\right), \varphi_{\alpha}\left(\xi_{\alpha^{-1} \gamma \alpha}\left(h_{\left(112, \alpha^{-1} \gamma \alpha\right)}\right)\right)\right\rangle \\
& \left.\left\langle q_{2}, S_{\delta}^{-1}\left(\xi_{\delta-1}\left(h_{\left(22, \delta^{-1}\right)}\right)\right)\right\rangle\left\langle\xi_{\gamma}^{-2}\left(p_{122}\right)\right), S_{\gamma}^{-1}\left(\xi_{\gamma^{-1}}\left(h_{\left(21, \gamma^{-1}\right)}\right)\right)\right\rangle \\
& \xi_{\beta}^{*-1}(f)\left(\xi_{\delta}^{*-2}\left(q_{12}\right) \xi_{\gamma}^{*-4}\left(p_{1212}\right)\right) \\
= & \xi_{\alpha^{-1}}^{3}\left(h_{\left(12, \alpha^{-1}\right)}\right)\left(\xi_{\alpha^{-1}}^{2}\left(k_{\left(12, \alpha^{-1}\right)}\right) l\right) \circledast\left\langle q_{11}, \varphi_{\alpha}\left(\xi_{\alpha^{-1} \delta \alpha}\left(h_{\left(111, \alpha^{-1} \delta \alpha\right)}\right)\right)\right\rangle\left\langle q_{2}, S_{\delta}^{-1}\left(\xi_{\delta-1}\left(h_{(22, \delta-1}\right)\right)\right\rangle \\
& \left.\left\langle\xi_{\gamma}^{*-1}\left(p_{111}\right), \varphi_{\alpha}\left(k_{\left(11, \alpha^{-1} \gamma \alpha\right)}\right)\right\rangle\left\langle\xi_{\gamma}^{*-1}\left(p_{112}\right)\right), \varphi_{\alpha}\left(\xi_{\alpha^{-1} \gamma \alpha}\left(h_{\left(112, \alpha^{-1} \gamma \alpha\right)}\right)\right)\right\rangle \\
& \left.\left\langle\xi_{\gamma}^{*-1}\left(p_{21}\right)\right), S_{\gamma}^{-1}\left(\xi_{\gamma^{-1}}\left(h_{\left(21, \gamma^{-1}\right)}\right)\right)\right\rangle\left\langle\xi_{\gamma}^{*-1}\left(p_{22}\right), S_{\gamma}^{-1}\left(k_{\left(2, \gamma^{-1}\right)}\right)\right\rangle \xi_{\beta}^{*-1}(f)\left(\xi_{\delta}^{*-2}\left(q_{12}\right) \xi_{\gamma}^{*-2}\left(p_{12}\right)\right) .
\end{aligned}
$$

Unit Let α be in G. For any $h \in H_{\alpha^{-1}}$ and $f \in H_{\gamma}^{*}$ with $\gamma \in G$, we have

$$
\begin{aligned}
\left(1_{\alpha^{-1}} \circledast \varepsilon\right)(h \circledast f) & =\xi_{\alpha^{-1}}(h) \circledast \xi_{\delta}^{*-1}(f) \\
& =\xi_{\alpha^{-1}}^{2}\left(h_{\left(12, \alpha^{-1}\right)}\right) 1_{\alpha^{-1}} \circledast f \varepsilon_{2}\left(S_{1}^{-1}\left(h_{(2,1)}\right)\right) \varepsilon_{11}\left(\varphi_{\alpha}\left(h_{(11,1)}\right)\right) \xi_{\delta}^{*-2}\left(\varepsilon_{12}\right) \\
& =(h \circledast f)\left(1_{\alpha^{-1}} \circledast \varepsilon\right) .
\end{aligned}
$$

Remark 3.6 Where we use the fact that both S_{1} and φ_{α} commute with ε.
Multiplicativity of Δ Let us prove that $\Delta_{\alpha, \beta}$ is an algebra map for any $\alpha, \beta \in G$. For any $h, k \in H_{\beta^{-1} \alpha^{-1}}, f \in H_{\gamma}^{*}$ and $g \in H_{\delta}^{*}$ with $\gamma, \delta \in G$, we have

$$
\begin{equation*}
\Delta_{\alpha, \beta}((h \circledast f)(k \circledast g))=\Delta_{\alpha, \beta}(h \circledast f) \Delta_{\alpha, \beta}(k \circledast g) . \tag{3.13}
\end{equation*}
$$

This is proved by evaluating both terms in the above equation (3.13) against the general term $p \otimes x \otimes q \otimes y\left(p \in H_{\alpha^{-1}}^{*}, q \in H_{\beta^{-1}}^{*}\right.$, and $\left.x, y \in H_{\gamma \delta}\right)$.

Multiplicativity of ε Let us prove that ε is an algebra map for any $h, k \in H_{1}, f \in H_{\gamma}^{*}$, and $g \in H_{\delta}^{*}$ with $\gamma, \delta \in G$,

$$
\langle\varepsilon, h \circledast f\rangle\langle\varepsilon, k \circledast g\rangle=\langle\varepsilon, h\rangle\left\langle f, 1_{\gamma}\right\rangle\langle\varepsilon, k\rangle\left\langle g, 1_{\delta}\right\rangle
$$

and

$$
\begin{aligned}
\langle\varepsilon,(h \circledast f)(k \circledast g)\rangle & \left.=\left\langle\varepsilon, \xi_{1}^{2}\left(h_{(12,1)}\right) k \circledast f\left\langle g_{11}, h_{(11, \delta)}\right)\right\rangle\left\langle g_{2}, S_{\delta}^{-1}\left(h_{2, \delta^{-1}}\right)\right\rangle \xi_{\delta}^{*-2}\left(g_{12}\right)\right\rangle \\
& \left.=\left\langle\varepsilon, \xi_{1}^{2}\left(h_{12}\right)\right\rangle\langle\varepsilon, k\rangle\left\langle f, 1_{\gamma}\right\rangle\left\langle g_{11}, h_{(11, \delta)}\right)\right\rangle\left\langle g_{2}, S_{\delta}^{-1}\left(h_{\left(2, \delta^{-1}\right)}\right)\right\rangle\left\langle\xi_{\delta}^{*-2}\left(g_{12}\right), 1_{\delta}\right\rangle \\
& =\langle\varepsilon, k\rangle\left\langle f, 1_{\gamma}\right\rangle\left\langle g, S_{\delta}^{-1}\left(h_{(2, \delta-1)}\right) h_{(1, \delta)}\right\rangle=\langle\varepsilon, h\rangle\left\langle f, 1_{\gamma}\right\rangle\langle\varepsilon, k\rangle\left\langle g, 1_{\delta}\right\rangle .
\end{aligned}
$$

This proves that ε is multiplicative. Moreover, since ε is obviously unitary, it is an algebra homomorphism.

Antipode Let $h \in H_{1}$ and let $f \in H_{\gamma}^{*}$ with $\gamma \in G$,

$$
\begin{aligned}
& (h \circledast f)_{(1, \alpha)} S_{\alpha^{-1}}\left((h \circledast f)_{\left(2, \alpha^{-1}\right)}\right) \\
= & \left(\varphi_{\alpha^{-1}}\left(h_{\left(1, \alpha^{-1}\right)}\right) \circledast f_{1}\right)\left[\left(\left(\varphi_{\alpha^{-1}} \circ S_{\alpha}\right) \xi_{\alpha}^{-1}\left(h_{(2, \alpha)}\right) \circledast \varepsilon\right)\left(1_{\alpha^{-1}} \circledast \mathscr{A}_{*}\left(\xi_{\gamma}^{*}\left(f_{2}\right)\right)\right)\right] \\
= & \left(\varphi_{\alpha^{-1}}\left(\xi_{\alpha^{-1}}^{-1}\left(h_{\left(1, \alpha^{-1}\right)}\right) S_{\alpha} \xi_{\alpha}^{-1}\left(h_{(2, \alpha)}\right)\right) \circledast \xi_{\gamma}^{*}\left(f_{1}\right) \varepsilon\right)\left(1_{\alpha^{-1}} \circledast \mathscr{A}_{*}\left(f_{2}\right)\right) \\
= & \langle\varepsilon, h \circledast f\rangle 1_{\alpha^{-1}} \circledast \varepsilon
\end{aligned}
$$

and

$$
\begin{aligned}
& S_{\alpha^{-1}}\left((h \circledast f)_{\left(1, \alpha^{-1}\right)}\right)(h \circledast f)_{(2, \alpha)} \\
= & {\left[\left(S_{\alpha} \xi_{\alpha}^{-1}\left(h_{(1, \alpha)}\right) \circledast \varepsilon\right)\left(1_{\alpha^{-1}} \circledast \mathscr{A}_{*}\left(\xi_{\gamma}^{*}\left(f_{1}\right)\right)\right)\right]\left(h_{\left(2, \alpha^{-1}\right)} \circledast f_{2}\right) } \\
= & \left(S_{\alpha}\left(h_{(1, \alpha)}\right) \circledast \varepsilon\right)\left(h_{\left(2, \alpha^{-1}\right)} \circledast \mathscr{A}_{*}\left(\xi_{\gamma}^{*}\left(f_{1}\right)\right)\left\langle\xi_{\gamma}^{*}\left(f_{2}\right)_{11}, 1_{\gamma}\right\rangle\left\langle\xi_{\gamma}^{*}\left(f_{2}\right)_{2}, 1_{\gamma}\right) \xi_{\gamma}^{*-2}\left(\xi_{\gamma}^{*}\left(f_{2}\right)_{12}\right)\right. \\
= & \left\langle f, 1_{\gamma}\right\rangle S_{\alpha}\left(h_{(1, \alpha)}\right) h_{\left(2, \alpha^{-1}\right)} \circledast \varepsilon \\
= & \langle\varepsilon, h \circledast f\rangle 1_{\alpha^{-1}} \circledast \varepsilon .
\end{aligned}
$$

Conjugation Let us check that φ_{β} is an algebra isomorphism for any $\alpha, \beta \in G$. For all $h, k \in H_{\alpha}^{-1}, f \in H_{\gamma}^{*}$, and $g \in H_{\delta}^{*}$ with $\gamma, \delta \in G$,

$$
\begin{aligned}
& \left(\varphi_{\beta}(h \circledast f) \varphi_{\beta}(k \circledast g)\right)(p \otimes x) \\
= & \left(\xi_{\beta \alpha^{-1} \beta^{-1}}^{2}\left(\varphi_{\beta}(h)_{12}\right) \varphi_{\beta}(k) \circledast \varphi_{\beta^{-1}}^{*}(f)\left\langle\varphi_{\beta^{-1}}^{*}(g)_{11}, \varphi_{\alpha}\left(\varphi_{\beta}(h)_{\left(11, \alpha^{-1} \beta^{-1} \delta \beta \alpha\right)}\right)\right\rangle\right. \\
& \left.\left.\left\langle\varphi_{\beta^{-1}}^{*}(g)_{2}, S_{\beta \delta \beta^{-1}}^{-1}\left(\varphi_{\beta}(h)_{\left(2, \beta \delta^{-1} \beta^{-1}\right)}\right)\right)\right\rangle \xi_{\beta^{-1} \delta \beta}^{*-2}\left(\varphi_{\beta^{-1}}^{*}(g)_{12}\right)\right)(p \otimes x) \\
= & \varphi_{\beta}\left(\xi_{\alpha^{-1}}^{2}\left(h_{12}\right) k\right) p \circledast\left\langle g_{11}, \varphi_{\alpha}\left(h_{\left(11, \alpha^{-1} \delta \alpha\right)}\right)\right\rangle\left\langle g_{2}, S_{\delta}^{-1}\left(h_{\left(2, \delta^{-1}\right)}\right)\right\rangle \\
& \varphi_{\beta^{-1}}^{*}\left(f \xi_{\delta}^{*-2}\left(g_{12}\right)\right)(x) \\
= & \varphi_{\beta}((h \circledast f)(k \circledast g))(p \otimes x)
\end{aligned}
$$

for all $x \in H_{\beta \gamma \delta \beta^{-1}}, p \in H_{\beta \alpha^{-1} \beta^{-1}}^{*}$.
For any $\alpha \in G$, we set $n_{\alpha}=\operatorname{dim} H_{\alpha}$. Let $\left(\kappa_{(\alpha, i)}\right)_{i=1, \cdots, n_{\alpha}}$ and $\left(\kappa^{(\alpha, i)}\right)_{i=1, \cdots, n_{\alpha}}$ be dual bases in H_{α} and H_{α}^{*}. Then we have the following proposition.

Definition 3.7 A quasitriangular Hom-Hopf T-coalgebra is a Hom-Hopf T-coalgebra endowed with a family $R=\left\{R_{\alpha, \beta}=\kappa_{\alpha, i} \otimes \kappa_{\beta, i} \in H_{\alpha} \otimes H_{\beta}\right\}_{\alpha, \beta \in G}$, called a universal R-matrix, such that $R_{\alpha, \beta}$ is invertible for any $\alpha, \beta \in G$ and the following conditions are satisfied:

$$
\begin{align*}
& R_{\alpha, \beta} \Delta_{\alpha, \beta}(h)=\left(\tau \circ\left(\varphi_{\alpha^{-1}} \otimes i d_{\alpha}\right) \circ \Delta_{\alpha \beta \alpha^{-1}, \alpha}\right)(h) R_{\alpha, \beta} \tag{3.14}\\
& \left(\xi_{\alpha} \otimes \xi_{\beta}\right) R_{\alpha, \beta}=R_{\alpha, \beta} \tag{3.15}
\end{align*}
$$

for all $h \in H_{\alpha \beta}$ and $\alpha, \beta \in G$,

$$
\begin{align*}
& \kappa_{\alpha, i} \otimes \kappa_{(1, \beta), i} \otimes \kappa_{(2, \gamma), i}=\kappa_{\alpha, i} \kappa_{\alpha, j} \otimes \kappa_{\beta, j} \otimes \kappa_{\gamma, i}, \tag{3.16}\\
& \kappa_{(1, \alpha), i} \otimes \kappa_{(2, \beta), i} \otimes \kappa_{\gamma, i}=\varphi_{\beta}\left(\kappa_{\beta^{-1} \alpha \beta, i}\right) \otimes \kappa_{\beta, j} \otimes \kappa_{\gamma, i} \kappa_{\gamma, j}, \tag{3.17}\\
& \left(\varphi_{\beta} \otimes \varphi_{\beta}\right)\left(R_{\alpha, \gamma}\right)=R_{\beta \alpha \beta^{-1}, \beta \gamma \beta^{-1}} \tag{3.18}
\end{align*}
$$

for all $\alpha, \beta, \gamma \in G$.
Remark 3.8 (1) We introduce the notation $\tilde{\kappa}_{\alpha, i} \otimes \tilde{\kappa}_{\beta, i}=\tilde{R}_{\alpha, \beta}=\left(R^{-1}\right)_{\alpha, \beta}$.
(2) $R_{1,1}$ is an R-matrix for the Hom-Hopf algebra H_{1} (see [8]).

Proposition 3.9 The Drinfeld double $D(H)=\left\{D_{\alpha}(H)\right\}_{\alpha \in G}$ has a quasitriangular structure given by

$$
\begin{equation*}
R_{\alpha, \beta}=\left(\kappa_{\left(\alpha^{-1}, i\right)} \circledast \varepsilon\right) \otimes\left(1_{\beta^{-1}} \circledast \kappa^{\left(\alpha^{-1}, i\right)}\right) \in D_{\alpha}(H) \otimes D_{\beta}(H) \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{R}_{\alpha, \beta}=\left(S_{\alpha}\left(\kappa_{(\alpha, i)}\right) \circledast \varepsilon\right) \otimes\left(1_{\beta^{-1}} \circledast \kappa^{(\alpha, i)}\right) \in D_{\alpha}(H) \otimes D_{\beta}(H) \tag{3.20}
\end{equation*}
$$

Proof Relation (3.14):

$$
R_{\alpha, \beta} \Delta_{\alpha, \beta}(h)=\left(\tau \circ\left(\varphi_{\alpha^{-1}} \otimes i d_{\alpha}\right) \circ \Delta_{\alpha \beta \alpha^{-1}, \alpha}\right)(h) R_{\alpha, \beta}
$$

Let $\alpha, \beta, \gamma \in G$. Given $h \in H_{\beta^{-1} \alpha^{-1}}$ and $f \in H_{\gamma}^{*}$, we have

$$
\begin{aligned}
& R_{\alpha, \beta} \Delta_{\alpha, \beta}(h \circledast f) \\
= & \left(\left(\kappa_{\left(\alpha^{-1}, i\right)} \circledast \varepsilon\right) \otimes\left(1_{\beta^{-1}} \otimes \kappa^{\left(\alpha^{-1}, i\right)}\right)\right)\left(\left(\varphi_{\beta}\left(h_{\left(1, \beta^{-1} \alpha^{-1} \beta\right)}\right) \circledast f_{1}\right) \otimes\left(h_{\left(2, \beta^{-1}\right)} \circledast f_{2}\right)\right) \\
= & \left(\xi_{\alpha^{-1}}^{2}\left(\left(\kappa_{\left(\alpha^{-1}, i\right)}\right)_{12}\right) \varphi_{\beta}\left(h_{\left(1, \beta^{-1} \alpha^{-1} \beta\right)}\right) \circledast \varepsilon\left\langle f_{111}, \varphi_{\alpha}\left(\left(\kappa_{\left(\alpha^{-1}, i\right)}\right)_{\left(11, \alpha^{-1} \gamma \alpha\right)}\right)\right\rangle\right. \\
& \left.\left\langle f_{12}, S_{\gamma}^{-1}\left(\left(\kappa_{\left(\alpha^{-1}, i\right)}\right)_{\left(2, \gamma^{-1}\right)}\right)\right\rangle \xi_{\gamma}^{*-2}\left(f_{112}\right)\right) \otimes\left(\xi_{\beta^{-1}}^{2}\left(1_{\beta^{-1}}\right) h_{\left(2, \beta^{-1}\right)} \circledast \kappa^{\left(\alpha^{-1}, i\right)}\right) \\
& \left\langle f_{211}, 1_{\gamma}\right\rangle\left\langle f_{22}, 1_{\gamma}\right\rangle \xi_{\gamma}^{*-2}\left(f_{212}\right) \\
= & \left(\xi_{\alpha^{-1}}^{2}\left(\left(\kappa_{\left(\alpha^{-1}, i\right)}\right)_{12}\right) \varphi_{\beta}\left(h_{\left(1, \beta^{-1} \alpha^{-1} \beta\right)}\right) \circledast\left\langle f_{111}, \varphi_{\alpha}\left(\left(\kappa_{\left(\alpha^{-1}, i\right)}\right)_{\left(11, \alpha^{-1} \gamma \alpha\right)}\right)\right\rangle\right. \\
& \left.\left\langle f_{12}, S_{\gamma}^{-1}\left(\left(\kappa_{\left(\alpha^{-1}, i\right)}\right)_{\left(2, \gamma^{-1}\right)}\right)\right\rangle \xi_{\gamma}^{*-3}\left(f_{112}\right)\right) \otimes\left(\xi_{\beta^{-1}}\left(h_{2, \beta^{-1}}\right) \circledast \kappa^{\left(\alpha^{-1}, i\right)} f_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\left(\tau \circ\left(\varphi_{\alpha^{-1}} \otimes i d_{D_{\alpha}(H)}\right) \circ \Delta_{\alpha \beta \alpha^{-1}, \alpha}\right)(h \circledast f)\right) R_{\alpha, \beta} \\
= & \left(h_{\left(2, \alpha^{-1}\right)} \circledast f_{2}\right)\left(\kappa_{\left(\alpha^{-1}, i\right)} \circledast \varepsilon\right) \otimes\left(h_{\left(1, \beta^{-1}\right)} \circledast \varphi_{\alpha}^{*}\left(f_{1}\right)\right)\left(1_{\beta^{-1}} \otimes \kappa^{\left(\alpha^{-1}, i\right)}\right) \\
= & \left(\xi_{\alpha^{-1}}^{2}\left(h_{\left(212, \alpha^{-1}\right)}\right) \kappa_{\alpha^{-1}, i} \circledast f_{2}\left\langle\varepsilon, S_{1}^{-1}\left(h_{(22,1)}\right)\right\rangle\left\langle\varepsilon, \varphi_{\alpha}\left(h_{(211,1)}\right)\right\rangle \xi_{1}^{*-2}(\varepsilon)\right) \\
& \otimes\left(\xi_{\beta^{-1}}^{2}\left(h_{\left(112, \beta^{-1}\right)}\right) 1_{\beta^{-1}} \circledast \varphi_{\alpha}^{*}\left(f_{1}\right)\left\langle\kappa_{11}^{\left(\alpha^{-1}, i\right)}, \varphi_{\beta}\left(h_{\left(111, \beta^{-1} \alpha^{-1} \beta\right)}\right)\right\rangle\right. \\
& \left.\left\langle\kappa_{2}^{\left(\alpha^{-1}, i\right)}, S_{\alpha^{-1}}^{-1}\left(h_{(12, \alpha)}\right)\right\rangle \xi_{\alpha^{-1}}^{*-2}\left(\kappa_{12}^{\left(\alpha^{-1}, i\right)}\right)\right) \\
= & \left(h_{\left(2, \alpha^{-1}\right)} \kappa_{\left(\alpha^{-1}, i\right)} \circledast \xi_{\gamma}^{*-1}\left(f_{2}\right)\right) \otimes\left(\xi_{\beta^{-1}}^{3}\left(h_{\left(112, \beta^{-1}\right)}\right) \circledast\left\langle\kappa_{11}^{\left(\alpha^{-1}, i\right)}, \varphi_{\beta}\left(h_{\left(111, \beta^{-1} \alpha^{-1} \beta\right)}\right)\right\rangle\right. \\
& \left.\left\langle\kappa_{2}^{\left(\alpha^{-1}, i\right)}, S_{\alpha^{-1}}^{-1}\left(h_{(12, \alpha)}\right)\right\rangle \varphi_{\alpha}^{*}\left(f_{1}\right) \xi_{\alpha^{-1}}^{*-2}\left(\kappa_{12}^{\left(\alpha^{-1}, i\right)}\right)\right) .
\end{aligned}
$$

Relation (3.14) is proved by observing that evaluating the two expressions above against the tensor $i d_{\alpha^{-1}} \otimes i d_{\gamma}^{*} \otimes i d_{\beta^{-1}} \otimes\langle\cdot, x\rangle$ (for $x \in H_{\alpha^{-1} \gamma}$), we get the same result

$$
\begin{aligned}
& \left(\xi_{\alpha^{-1}}^{2}\left(\left(\kappa_{\left(\alpha^{-1}, i\right)}\right)_{12}\right) \varphi_{\beta}\left(h_{\left(1, \beta^{-1} \alpha^{-1} \beta\right)}\right) \circledast\left\langle f_{111}, \varphi_{\alpha}\left(\left(\kappa_{\left(\alpha^{-1}, i\right)}\right)_{\left(11, \alpha^{-1} \gamma \alpha\right)}\right)\right\rangle\right. \\
& \left.\left.\left\langle f_{12}, S_{\gamma}^{-1}\left(\left(\kappa_{\left(\alpha^{-1}, i\right)}\right)_{\left(2, \gamma^{-1}\right)}\right)\right\rangle \xi_{\gamma}^{*-3}\left(f_{112}\right)\right) \otimes \xi_{\beta^{-1}}\left(h_{\left(2, \beta^{-1}\right)}\right) \circledast\left\langle\kappa^{\left(\alpha^{-1}, i\right)} f_{2}, x\right\rangle\right) \\
= & \left(x_{\left(2, \alpha^{-1}\right)} \varphi_{\beta}\left(h_{\left(1, \beta^{-1} \alpha^{-1} \beta\right)}\right) \circledast\left\langle f_{1}, \varphi_{\alpha}\left(x_{\left(1, \alpha^{-1} \gamma \alpha\right)}\right)\right\rangle \xi_{\gamma}^{*-1}\left(f_{2}\right)\right) \otimes \xi_{\beta^{-1}}\left(h_{\left(2, \beta^{-1}\right)}\right) \\
= & \left(h_{\left(2, \alpha^{-1}\right)} \kappa_{\left(\alpha^{-1}, i\right)} \circledast \xi_{\gamma}^{*-1}\left(f_{2}\right)\right) \otimes\left(\xi_{\beta^{-1}}^{3}\left(h_{\left(112, \beta^{-1}\right)}\right) \circledast\left\langle\kappa_{11}^{\left(\alpha^{-1}, i\right)}, \varphi_{\beta}\left(h_{\left(111, \beta^{-1} \alpha^{-1} \beta\right)}\right)\right\rangle\right. \\
& \left.\left\langle\kappa_{2}^{\left(\alpha^{-1}, i\right)}, S_{\alpha^{-1}}^{-1}\left(h_{(12, \alpha)}\right)\right\rangle\left\langle\varphi_{\alpha}^{*}\left(f_{1}\right) \xi_{\alpha^{-1}}^{*-2}\left(\kappa_{12}^{\left(\alpha^{-1}, i\right)}\right), x\right\rangle\right),
\end{aligned}
$$

where we used

$$
\sum_{i}\left\langle f, \kappa_{\left(\alpha^{-1}, i\right)}\right\rangle \kappa^{\left(\alpha^{-1}, i\right)}=f \quad \text { and } \quad \sum_{i}\left\langle\kappa^{\left(\alpha^{-1}, i\right)}, h\right\rangle \kappa_{\left(\alpha^{-1}, i\right)}=h
$$

for all $f \in H_{\alpha^{-1}}^{*}, h \in H_{\alpha^{-1}}$ and $\alpha \in G$.
Then we check Relation (3.16) and (3.17). The identities

$$
\begin{aligned}
& \left(\kappa_{\left(\alpha^{-1}, i\right)} \circledast \varepsilon\right) \otimes\left(1_{\beta^{-1}} \circledast \kappa_{1}^{\left(\alpha^{-1}, i\right)}\right) \otimes\left(1_{\gamma^{-1}} \circledast \kappa_{2}^{\left(\alpha^{-1}, i\right)}\right) \\
= & \left(\kappa_{\left(\alpha^{-1}, i\right)} \kappa_{\left(\alpha^{-1}, j\right)} \circledast \varepsilon\right) \otimes\left(1_{\beta^{-1}} \circledast \kappa^{\left(\alpha^{-1}, j\right)}\right) \otimes\left(1_{\gamma^{-1}} \circledast \kappa^{\left(\alpha^{-1}, i\right)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\varphi_{\beta}\left(\left(\kappa_{\left((\alpha \beta)^{-1}, i\right)}\right)_{\left(1, \beta^{-1} \alpha^{-1} \beta\right)}\right) \circledast \varepsilon\right) \otimes\left(\left(\kappa_{\left((\alpha \beta)^{-1}, i\right)}\right)_{\left(2, \beta^{-1}\right)} \circledast \varepsilon\right) \otimes\left(1_{\gamma^{-1}} \circledast \kappa^{\left((\alpha \beta)^{-1}, i\right)}\right) \\
= & \left(\varphi_{\beta}\left(\kappa_{\left(\beta^{-1} \alpha^{-1} \beta, i\right)}\right) \circledast \varepsilon\right) \otimes\left(\kappa_{\left(\beta^{-1}, j\right)} \circledast \varepsilon\right) \otimes\left(1_{\gamma^{-1}} \circledast \kappa^{\left(\beta^{-1} \alpha^{-1} \beta, i\right)} \kappa^{\left(\beta^{-1}, j\right)}\right)
\end{aligned}
$$

can be written as (identifying $\bar{H}_{\alpha} \otimes \varepsilon$ with \bar{H}_{α} and $1_{\beta^{-1}} \otimes H^{*}$ with H^{*})

$$
\begin{align*}
& \kappa_{\left(\alpha^{-1}, i\right)} \otimes \kappa_{1}^{\left(\alpha^{-1}, i\right)} \otimes \kappa_{2}^{\left(\alpha^{-1}, i\right)}=\kappa_{\left(\alpha^{-1}, i\right)} \kappa_{\left(\alpha^{-1}, j\right)} \otimes \kappa^{\left(\alpha^{-1}, j\right)} \otimes \kappa^{\left(\alpha^{-1}, i\right)} \tag{3.21}\\
& \left(\kappa_{\left((\alpha \beta)^{-1}, i\right)}\right)_{\left(1, \beta^{-1} \alpha^{-1} \beta\right)} \otimes\left(\kappa_{\left((\alpha \beta)^{-1}, i\right)}\right)_{\left(2, \beta^{-1}\right)} \otimes \kappa^{\left((\alpha \beta)^{-1}, i\right)} \\
= & \kappa_{\left(\beta^{-1} \alpha^{-1} \beta, i\right)} \otimes \kappa_{\left(\beta^{-1}, j\right)} \otimes \kappa^{\left(\beta^{-1} \alpha^{-1} \beta, i\right)} \kappa^{\left(\beta^{-1}, j\right)} . \tag{3.22}
\end{align*}
$$

The above equalities can be verified by evaluating both sides on element $f \in H_{\alpha^{-1}}^{*}$ in the first factor (respectively, on $h \in \bar{H}_{\alpha \beta}$ in the third factor) (see Zunino [9], Theorem 11).

Finally, let us check that

$$
\begin{aligned}
\left(\xi_{D_{\alpha}(H)} \otimes \xi_{D_{\beta}(H)}\right) R_{\alpha, \beta} & =R_{\alpha, \beta}, \\
\left(\xi_{D_{\alpha}(H)} \otimes \xi_{D_{\beta}(H)}\right) R_{\alpha, \beta} & =\xi_{D_{\alpha}(H)}\left(\kappa_{\left(\alpha^{-1}, i\right)} \circledast \varepsilon\right) \otimes \xi_{D_{\beta}(H)}\left(1_{\beta^{-1}} \circledast \kappa^{\left(\alpha^{-1}, i\right)}\right) \\
& =\left(\xi_{\alpha^{-1}}\left(\kappa_{\left(\alpha^{-1}, i\right)}\right) \circledast \varepsilon\right) \otimes\left(1_{\beta^{-1}} \circledast \xi_{\alpha^{-1}}^{*-1}\left(\kappa^{\left(\alpha^{-1}, i\right)}\right)\right) .
\end{aligned}
$$

Now, $\xi_{\alpha^{-1}}$ is a linear isomorphism, so $\left(\xi_{\alpha^{-1}}\left(\kappa_{\left(\alpha^{-1}, i\right)}\right)\right)_{i=1, \cdots, n_{\alpha}}$ is a basis of $H_{\alpha^{-1}}$, and

$$
\left(\xi_{\alpha^{-1}}^{*-1}\left(\kappa_{\left(\alpha^{-1}, i\right)}\right)\right)_{i=1, \cdots, n_{\alpha}}
$$

is its dual basis. So $\left(\xi_{D_{\alpha}(H)} \otimes \xi_{D_{\beta}(H)}\right) R_{\alpha, \beta}=R_{\alpha, \beta}$,

$$
\begin{aligned}
& \left(\xi_{\alpha^{-1}}\left(\kappa_{\left(\alpha^{-1}, i\right)}\right) \circledast \varepsilon\right) \otimes\left(1_{\beta^{-1}} \circledast\left\langle\xi_{\alpha^{-1}}^{*-1}\left(\kappa^{\left(\alpha^{-1}, i\right)}\right), x\right\rangle\right) \\
= & \left(\xi_{\alpha^{-1}}\left(\kappa_{\left(\alpha^{-1}, i\right)}\left\langle\kappa^{\left(\alpha^{-1}, i\right)}, \xi_{\alpha^{-1}}^{-1}(x)\right\rangle\right) \circledast \varepsilon\right) \otimes 1_{\beta^{-1}} \\
= & (x \circledast \varepsilon) \otimes 1_{\beta^{-1}} \\
= & \left(\kappa_{\left(\alpha^{-1}, i\right)} \circledast \varepsilon\right) \otimes\left(1_{\beta^{-1}} \circledast\left\langle\kappa^{\left(\alpha^{-1}, i\right)}, x\right\rangle\right)
\end{aligned}
$$

for $x \in H_{\alpha^{-1}}$.
This completes the proof.

References

［1］Turaev V，Homotopy field theory in dimension 3 and crossed group－categories［GT］．http：／／ arxiv．org／abs／math／0005291．
［2］Freyd P，Yetter D，Braided compact closed categories with applications to low－dimensional topol－ ogy［J］．Adv．Math．，1989，77（2）：156－182．
［3］Zhou Xuan，Yang Tao，Kegel＇s theorem over weak Hopf group coalgebras［J］．J．Math．，2013，33（2）： 228－236．
［4］Yang Tao，Another construction of the braided T－category［RA］．http：／／arxiv．org／abs／1409．6936．
［5］Caenepeel S，Goyvaerts I，Monoidal Hom－Hopf algebras［J］．Commun．Alg．，2011，39：2216－2240．
［6］Virelizier A．Hopf group－coalgebra［J］．J．Pure Appl．Alg．，2002，171：75－122．
［7］Drinfeld V．Quantum groups［A］．Proceedings of the international congress of mathematicians［C］． （Berkeley，CA），Vol．1，Providence，RI：Amer．Math．Soc．，1987：789－820．
［8］Chen Yuanyuan，Wang Zhongwei，Zhang Liangyun．Quasitriangular Hom－Hopf algebra［J］．Colloq． Math．，2014，137（1）：67－88．
［9］Zunino M，Double construction for crossed Hopf coalgebra［J］．J．Algebra．，2004，278：43－75．

Monoidal Hom－Hopf 群－余代数上的Drinfeld量子偶

游弥漫 ${ }^{1}$ ，周 楠 ${ }^{2}$
（1．华北水利水电大学数学与信息科学学院，河南郑州 450046）
（2．东南大学数学系，江苏 南京 211189）

摘要：本文研究了monoidal Hom－Hopf 群－余代数上的Drinfeld量子偶的问题．利用交叉monoidal Hom－Hopf T－余代数的定义及拟三角monoidal Hom－Hopf 群－余代数的定义，获得了此Drinfeld量子偶是拟三角monoidal Hom－Hopf 群－余代数的结果。

关键词：拟三角；Monoidal Hom－Hopf 群－余代数；Drinfeld量子偶
$\operatorname{MR}(2010)$ 主题分类号： $16 \mathrm{~T} 05 ; 16 \mathrm{~T} 15$ 中图分类号：O153．3

[^0]: ＊Received date：2014－12－23 Accepted date：2015－07－06
 Foundation item：Supported by the NSF of China（11371088；11601078）；the NSF of Jiangsu Province（BK2012736）；the NSF of Jiangsu Province（KYLX15－0103）．

 Biography：You Miman（1984－），female，born at Zhoukou，Henan，lecturer，major in Hopf Algebra and locally compact quantum group．

 Corresponding author：Zhou Nan．

