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Abstract: In the paper, we mainly study Dirichlet problem for the stationary Schrodinger
operator and the boundary behavior of Martin function. Depended on the generalized Martin
representation and the fundamental system of solutions of an ordinary differential equation corre-
sponding to stationary Schrodinger operator, we obtain some characterizations for the majorization
of the generalized Martin functions associated with the stationary Schrodinger operator in a cone
with smooth boundary, and generalize some classical results in Laplace setting.
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1 Introduction

Let R"(n > 2) be the n-dimensional Euclidean space and S its an open set. The
boundary and the closure of S are denoted by 9S and S, respectively. In cartesian coordinate
a point P is denoted by (X, x,,), where X = (21,2, - ,2,_1). For P and Q in R", let |P| be
the Euclidean norm of P and |P — Q| the Euclidean distance. The unit sphere and the upper
half unit sphere are denoted by S™"~! and Si_l, respectively. For P € R™ and r > 0, let
B(P,r) be the open ball of radius r centered at P in R", then S, = dB(O, r). Furthermore,
denote by dS, the (n — 1)-dimensional volume elements induced by the Euclidean metric on
S,

In the paper we are mainly concerned with some properties for the generalized Martin
function associated with the stationary Schrodinger operator in a cone. Our aim is to give
precise characterization for majorization of the generalized Martin functions in a cone. Deng
et al. (see [17] and [23]) ever considered the growth for the potential functions in the half
space. However, Miyamoto et al. (see [10, 11] and [12]) focused on the potential theories
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in a cone. Levin and Kheyfits (see [9]) paid attention to the problems associated with the
stationary Schrodinger operator in a cone. In addition, Long and Qiao et al. (see [7, 8, 13—
15] and [16]) considered some related problems about Dirichlet problem for the stationary
Schrédinger operator at oo with respect to a cone as well as Levin and Kheyfits (see [9]).
Based on the above statement, we will mainly generalize some results from Miyamoto and
Yoshida (see [10]) to the stationary Schrodinger operator’s setting. Unfortunately we don’t
have Riesz-Herglotz type theorem as the classical results which needed in the proof. To get
over this difficulty, here we will depend on the generalized Martin representation theorem
(see [8]). For the better statements about our results, we will introduce some notations and
background materials below.

Relative to system of spherical coordinates, the Laplace operator A may be written by

n—1209 0% A*

r Or Or?2 r2’

A:

where the explicit form of the Beltrami operator A* is given by Azarin (see [1]).

For an arbitrary domain D in R"™, Ap denotes the class of nonnegative radial potentials
a(P), ie., 0 < a(P) = a(r), P = (r,0) € D, such that a € L% (D) with some b > n/2 if
n>4and withb=2ifn=2o0rn=23.

If a € Ap, then the stationary Schrédinger operator with a potential af(-)

Lo=—-A+a(-)]

can be extended in the usual way from the space C§°(D) to an essentially self-adjoint operator
on L?(D), where A is the Laplace operator and I the identical operator(see [18, Chap.13]).
Then £, has a Green a-function G%(-,-). Here G% (-, -) is positive on D and its inner normal
derivative 0GY,(+,-)/0ng is not negative, where 9/0n¢ denotes the differentiation at @) along
the inward normal into D. We write this derivative by PI%(-,-), which is called the Poisson
a-kernel with respect to D. Denote by G%(+,-) the Green function of Laplacian.

For simplicity, a point (1,0) on S"~! and the set {©; (1,0) € Q} for aset Q (2 C S"71)
are often identified with © and €, respectively. For two sets = C R, and Q C S™7!, the set
{(r,©) e R";r € £,(1,0) € Q} in R" is simply denoted by = x Q. In particular, the half
space Ry x 87" = {(X,z,) € R";z, > 0} will be denoted by T,,. By C,,(2) we denote the
set Ry x Q in R™ with the domain Q on S”~! and call it a cone. We mean the sets I x 2 and
I x 9 with an interval on Ry by C,(Q; 1) and S, (22; 1), and C,,() N S, by C.(Q2;7). By
S,(£2) we denote S, (£; (0,400)), which is 0C,,(2) \ {O}. From now on, we always assume
D = C,(2) and write G§(-,-) instead of G¢, q)(+; ).

Let Q be a domain on S"~! with smooth boundary and A the least positive eigenvalue
for —A* on Q (see [19, p. 41]),

(A" 4+ XN)p(©)=0 on Q,
©(©) =0 on 09.
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The corresponding eigenfunction is denoted by ¢(O) satisfying / ©*(©)dS; = 1. In order
Q

to ensure the existence of A and ¢(0), we put a rather strong assumption on €: if n > 3,
then Q is a C**-domain (0 < a < 1) on S"! surrounded by a finite number of mutually
disjoint closed hypersurfaces (e.g., see [6, p. 88-89] for the definition of C*“*-domain).

Solutions of an ordinary differential equation

n—1

—Q"(r) -

r

Q'(r) + <;\2 + a(r)) Q(r)=0 for0 <r < oo (1.1)

are known (see [22] for more references) that if the potential @ € Ap. We know the equation
(1.3) has a fundamental system of positive solutions {V, W} such that V is nondecreasing
with

0<V(0+)<V(r) as r — 400 (1.2)

and W is monotonically decreasing with
+oo =W (0+) > W(r) \,0 as r — +oc. (1.3)

We remark that both V(r)¢(0) and W (r)p(0) are a-harmonic on C,(€2) and vanish con-
tinuously on S, (€2).

We will also consider the class Bp, consisting of the potentials a € Ap such that there
exists the finite limit lim 7%a(r) = k € [0,00), moreover, r—!|ra(r) — x| € L(1,00). If
a € Bp, then the (sup:e;)(;oubfunctions are continuous (e.g. see [20]). For simplicity, in the
rest of paper we assume that a € Bp.

Denote

+_ 2—n+ \/(n—2)2+4(/$+)\)

K 2 )

then the solutions V() and W (r) to equation (1.1) normalized by V(1) = W(1) = 1 have
the asymptotic (see [6])

L

V(ry=r=, W(r)=r~ as r— o0 (1.4)

and

X=u =t =V (=22 +4(x+X), X =wV(),W(r)) =,
where ' is their Wronskian at r = 1.
Remark 1 Ifa = 0and Q = S, then if = 1,15 = 1—nand p(0) = (2ns;*)'/2 cos by,
where s,, is the surface area 27"/2{I'(n/2)} ! of 8"~
The function M§ defined on C,,(2) x C,,(Q2) \ {(Po, Fo)} by

. _ GH{(PQ)
MQ(Pv Q) - G?S;(P(),Q)

is called the generalized Martin kernel of C,,(Q2) (relative to Py). If @ = Py, the above

quotient is interpreted as 0 (for a=0, refer to Armitage and Gardiner [3]).
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The rest of the paper is organized as follows: in Section 2, we shall give our main
theorems; in Section 3, some necessary lemmas are given; in Section 4, we shall prove the
main results.

2 Statement of Main Results

It is known that the Martin boundary A of C,,(€?) is the set 9C,,(2)U{cc}. When we de-
note the Martin kernel associated with the stationary Schrédinger operator by M§(P, Q) (P €
Cn(),Q € 0C,(2) U {oo}) with respect to a reference point chosen suitably, for any
P e C,(9), we see

MS(P7 OO) = V(T’)(p(@), M(%(Pv O) = RW<T>90(@)7 (2'1>

where O denotes the origin of R™ and « is a positive constant.
For aset E C D and ¢ € (0,1), put

E, = | J B(P,td(P)),

PcE

where d(P) = Qinlg | P— @ |. Next we start to sate our main theorems.
E c

Theorem 1 Let E be a set in C, () satisfying E N 0C,(Q) = ¢. If E, with a positive
number /(0 < ¢ < 1) is a-minimally thin at oo, then there exists a positive generalized
harmonic function u(P) on C, () such that

P P
in & < inf &
PeC,(9) M&(P,00) ~ PeE ME(P,00)

For E C C,(f2) and a fixed point @ € 9C,,(?), E is a-minimally thin at @ if and only if
Ef/[g(_,@ # M&(-,Q), where ﬁfjg(,@) is the regularized reduced function of Mg(-, Q) relative
to E and a superfunction on C,,(£2) (refer to [8]).

Following the Armitage and Kuran (see [4]) as well as Miyamoto et al. (see [10]), we call
that set E C D characterizes the positive generalized harmonic majorization of Mg(-, @),
if every positive generalized harmonic function v in D which majorizes M&(-, Q) on E can
majorize M§&(-,Q) on D, that is to say

_ v(P) _ v(P)
inf ———— = inf ————.
peD M&(P,Q) PeE ME(P,Q)

Theorem 2 Let E be a subset C,,(2). The following conditions on E are equivalent:

(a) E characterizes the positive generalized harmonic majorization of M&(P, c0);

(b) for any ¢ € (0,1), Ey is not a-minimally thin at oo;

(c) for some ¢ € (0,1), Ey is not a-minimally thin at oco.

Theorem 3 Let E be a subset C,,(2). The following conditions on E are equivalent:

(a) E characterizes the positive generalized harmonic majorization of M&(P, c0);
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(b) for any £ € (0,1),

/ VA+r)W(QA +r)dP oo

B, (1+47)? B ’
(c) for some £ € (0,1),

/ VAW P

o (1+7)? B -

A sequence P,, C D is called to be separated if there exists a positive constant C' such
that

(see [2]). With Theorem 3, we have the corollary as follows.
Corollary 1 Let {P,,} C C,(€2) be a separated sequence such that

inf | P, |> 0.

The sequence { P, } characterizes the positive generalized harmonic majorization of M&(P, co)

if and only if

3 d(Pp)"V (| P YW (| P |)
| P [?

= +o0.

m=1

Remark 2 When a = 0, the theorems and corollary above are due to Miyamoto et

al. (see [10]). If a = 0 and Q = S"', Theorem 1, Theorem 2 and Theorem 3 are from

the Dahlberg’s results in upper-half space or Liapunov-Dini domain in R" (see [5]), and
Corollary 1 results from Armitage and Kuran (see [4]).

3 Some Lemmas

For our arguments we collect the following results.
Lemma 1 (see [13])

PIA(P,Q) ~ t- V()W (r)p(0) 222, (3.1)

one
(resp. PI&(P, Q) ~ V(r)t_1W(t)g0(®)8§7§§)) (3.2)

for any P = (r,0) € C,, () and any Q = (¢, ®) € 5, () satisfying 0 < £ < 1 (resp. 0 < £ <

2):

©(©) 590(<I>)jL rp(0) dp(P)

PI5(P,Q) 5 5= e | |P— Q" One (3.3)
for any P = (r,0) € C,,(?) and any Q = (t,®) € S,,(% (37,2r)).
Lemma 2 (see [13])
L(P.Q) = VW ()p(0) e, (3.4
(resp. GA(P.Q) = V(r)W (1)(8) 222 (35)




56 Journal of Mathematics Vol. 37

for any P = (r,0) € C,,(2) and any Q = (¢, ®) € 5, () satisfying 0 < £ < £ (resp. 0 < & <

3)i

©(0) Op(P) n rtp(0) Jp(P)
tn—2 ({971@ ‘P_Q|n 87’Lq>

for any P = (r,0) € C,,(Q) and any Q = (t,®) € S,,(% (57,2r)).

Lemma 3 (The generalized Martin representation, see [7] ) If u is a positive a-harmonic

Go(P.Q) < (3.6)

function on C,,(€2), then there exists a measure p, on A, uniquely determined by wu, such
that

u(P) = / Ma(PQ)du(Q) (P € Cu()),

where A is the Martin boundary of C,, ().

It is well-known that a cube is of the form
[27F (0, +1)27%] x - x [6,27%, (0, +1)27F],

where k, /¢y, -+, ¢, are integers. Now we introduce a family of so-called Whitney cubes of
C,, () having the following properties:

(a) U;W; = Cu(Q);

(b) intW,; NintWy, = 0(j # k);

(c) diamW; < dist(W;, R™\ C,,(Q?)) < 4diamWV;,
where intS, diamS and dist(S7, S2) stand for the interior of S, the diameter of S and the
distance between S; and Ss, respectively (see [21], P.167, Theorem 1).

Lemma 4 (see [10]) Let {W;};>; be a family of the Whitney cubes of C,,(€2) with .
Let E be a subset of C,,(€2). Then there exists a subsequence {W; };>1 of {W;};>1 such that

(a) UpW;, C Ey;

(b) Wy, NEg s A0 (m=1,2,,--+), B,y C U, W, .

Lemma 5 (see [8]) Let a Borel subset E of C,,(©2) be a-minimally thin at oo with
respect to C,(2). Then we see that

/ VA+ | P)W(I+| P|)(1+| P|)2dP < cc. (3.7)

If E is a union of cubes from the Whitney cubes of C,,(£2), then (3.7) is also sufficient for F
to be a-minimally thin at co with respect to C,,(2).

4 Proofs of Main Theorems

Proof of Theorem 1 When E is a bounded subset of C,(£2), we may assume that
u(P) is a constant function. Otherwise we will follow the same method as Dahlberg to make
the required function.

Set £ € (0,1). We assume that {P,,} is a sequence of points P,, which are central

points of cubes W, in Lemma 4. From the assumption on E, it follows that {P,,} can not
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converge to any boundary point of C,(Q2). Since {P,,} € E;, due to Lemma 4, we see that

| Py, |— +oo(m — 400). Because Fy is a-minimally thin at co and

(m=1,2,---), (4.1)

/ VA +r)W(1+r)dP ~ A(Py)" V(| P DW(| P |)
W (1+7)? | Py |?

im

we get by Lemma 4 and Lemma 5 that

— d(P)"V(| P NW(| Py, |)
Z BE < 00

m=1
Hence from (1.2)—(1.4) we can take a positive integer N such that d(FP,,) <

each m > N.
Choose a point @, = (tym, @) € C,(2) \ {O} such that

~ | Py | for

‘Pm_Q'rrL':d(Pm) (m:NaN_l']-»)

Then we see that | @, |[> Y= | P, | and hence | Q,, |— +00 (m — +00). Define hi(P) as

follow:
d(Pn)" V(| Py |)
| P |

hi(P)=>" PI§(P,Qm) (P € Cu(Q),

then h; is well defined, and hence is a positive generalized harmonic function on C,, () which
is due to Lemma 4.

First we will prove that

ha (P)
1}’I€1E m > 0. (42)

Denote the Possion Kernel of the ball B,, = B(P,,,d(Py,,))) by Plg, (P,Q) for P € B,, and
Q € dB,,. Since PI&(P,Q.,) = PI3(P,Q,,) (see [13]), we have

PIS%(Pan)ZPIBm(PvQW) (PGBm;m:N,N+1,~-~)

and hence
PI§(Prn, Qm) 2 Plp,, (P, Qm) = s, d(Py)' ™" (m=N,N+1,---).
Because
p(®) = d(P) (P'=(1,®),0ecq),
we get that

A(Pu)" V(| P ) -

M§(Py,00) (m=N,N+1,--). (4.3)
For any P € FE . then exists a point P, such that

|P-P, |< S 0d(P) <

diam(W; ) 1P|
2 e

\CRIS%
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When 2r <torr >2t (2| P, |<tor| P, |>2t), by Lemma 2 and (1.2)—(1.4) we obtain

that e (P.Q)
eV R S o
o (P @)~
Since
"GP Q) = Go(P, Q) (P,Q € Cy(Q))
and

GH(P,Q) = Go(P,Q)  (P,Q € Co(Q))

(refer to [10] and [13]), we know that

Ga(P.Q) |
(P Q) ™

for £ <r and | P, |< 2t. From Lemma 3 (the generalized Martin representation), we may

obtain that
hi(P) Z hi(P).

By (2.1) and (1.2)—(1.4) we also see that
Mg(P,00) S Mg (P, 00).

With (4.4)—(4.5) and (4.3) we see that (4.2) holds.

Now, for a fixed ray L which is in C,(€2) and starts from O, we will show

Set

hl(P) _ Z Hm(P) d<Pm)nV(|| ;7: ||2W(| P |)

By Lemma 1 we see that

lim  H,(P)=0
|P|—o00,PEL

for any fixed m > N. Hence, if we can show that

|H,(P)|<C (PeLym=N,N+1,---)

(4.4)

(4.5)

(4.6)

(4.7)

for some constant C' independent of m, then we will get (4.6) from (4.1) and Lebesgue’s

dominated convergence theorem.
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To prove (4.7), we divide the proof into three cases. When 2r < t,, or r > 2t,,, by
Lemma 1 we see that

| H(P)|I<C (P=(r,0)eC,(Q);m=NN+1,---).
Finally, when ‘2 < r < 2t,,, we have
tzz_lp-[gl(P7Qm)§C/ (P:(T,@)GL,T)’L:N,N—I—].,)

for some constant C” (refer to [10, p.1051]). Since PI&(P, Q) = PIS(P,Q.), by (1.2)-(1.4)

we have
tm PIG(P, Q) < C"V(ty )W (ty) (P=(r,0)€ Lim=N,N+1,---).

So
| H,(P)|<C (P=(r,©)€eL;m=N,N+1,---).

At last, we put T =  max M&(P,,,00) and h(P) = H,(P) + T for any P € C,,(2). Then
we easily get from (4.2) and (4.6) that h(P) is a positive generalized harmonic function on
C,(Q2) which is required in Theorem 1.

Proof of Theorem 2 (a)=(b). Let C be a positive constant and set Ec = {P €
E : M&(P,00) > C}. Then E¢ satisfies that Ec N 9C,(2) = (). Since E characterizes the
positive generalized harmonic majorization of Mg(P, c0), E¢ also characterizes the positive
generalized harmonic majorization of Mg(P,00). Otherwise, there would exists a positive
generalized harmonic function v(P) on C,(Q) satisfying

v(P)

A= mr 0Py v(P)

A A §
PeC,(2) M&(P,00) ~ PeEc M&(P,00)

Let u(P) = v(P) + BC for any P € C,(2). Then u(P) > BM&(P, ) for P € E, and so

. u(P) . u(P)
f ———*—=A<B< inf ———
Pelg’ln(ﬂ) ME(P, o) <SPS Pl ME(P,o00)’
which contradicts (a).
If we can show that (F¢), is not a-minimally thin at infinity when ¢ € (0, 1), then for
all £ € (0,1) the set Ey also is not a-minimally thin at infinity, and hence (b) holds.
Suppose that for some £ € (0, 1) the set (E¢), is a-minimally thin at infinity. Then from

Theorem 1 there exists a positive generalized harmonic function v(P) on C,(2) satisfying

v(P) < v(P)
inf —————— < inf ————.
PeC, () M&(P,00) ~ PeEc M&(P,c0)

We see that E¢ characterizes the positive generalized harmonic majorization of Mg(P, o0),
so for all £ € (0,1) the set (E¢), is not a-minimally thin at infinity.
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(c)=(a). Suppose that FE does not characterize the positive generalized harmonic ma-
jorization of M§ (P, c0). Then there exists a positive generalized harmonic function v(P) on
C, () such that

in 7U(P) < inf 7U(P)
PeC,(2) M&(P,00) ~ PeE M&(P,00)
Put h(P) = v(P) — AM§(P,00) for any P € C,(f2). Then h(P) is a positive generalized

harmonic function on C,,(Q) satisfying

A: :B.

h(P)
inf ————— =0. 4.8
Pelcr'ln(ﬂ) ME(P,o0) (48)
For any P € E,(¢ € (0,1) there exists a point P’ such that | P — P’ |< ¢d(P’), and by the

generalized Martin representation and the same proof as Theorem 1 we see that

inf h(P) > inf nP)

_h(P) _hMP) 4.
pPeB, MG(P,00) ~ peE M§(P, o) =0 )

From (4.8) and (4.9) we obtain that
h
mf P e MP)
PeC,(2) M&(P,00) ~ Pek, M&(P,00)
for the positive supfunction h(P) on C,,(Q2). It follows that E; is a-minimally thin at infinity.

This contradicts (c).
Proof of Theorem 3 (a)=(b). Assume that

/ VA+r)W(QA+r)dP < o
E, (1+47)?

for some ¢ € (0,1). Let {W;  }>1 be a subsequence of {W;};>; from Lemma 4. With (a)

of Lemma 4 we obtain
/ VIl+r)W(1+r)dP
Um Wim (1 +7)?

Since U,,W; s a union of cubes from the Whitney cubes of C,,(2) with ¢, by Lemma 5 we
see that U,, W;

a-minimally thin at infinity.

. 18 a-minimally thin at infinity. Further, from Lemma 4 we know that E is
On the other hand, since E characterizes the positive generalized harmonic majorization
of M&(P, ), we see from the Theorem 2 that Eﬁ is not a-minimally thin at infinity, which
contradicts the conclusion above.
(c)=(a). Suppose that E does not characterize the positive generalized harmonic ma-
jorization of M&(P,o0). Then it follows from Theorem 2 that for any ¢ € (0,1)E, is a-

minimally thin at infinity. So we see from Lemma 5 that for any ¢ € (0,1)

/ VW + )P
B, (1+7)2 ’

which contradicts (c).



No.

1 Majorization of the generalized Martin functions for the stationary Schrodinger operator ... 61

Proof of Corollary 1 If {P,,} is a separated sequence,then

B(P;, £d(P,)) N B(P;, d(P;)) =0 (i,5 =1,2,--- ;1 # j)

for a sufficiently small ¢ € (0,1), and hence

VA+r) W1 +7r)dP = d(P, ”V|Pm|)W(|Pm|)
/E,Z (1+7)? Z | P |2

m=1

Following (c) of Theorem 3, Corollary 1 immediately holds.
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