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Abstract: In the paper, we mainly study Dirichlet problem for the stationary Schrödinger

operator and the boundary behavior of Martin function. Depended on the generalized Martin

representation and the fundamental system of solutions of an ordinary differential equation corre-

sponding to stationary Schrödinger operator, we obtain some characterizations for the majorization

of the generalized Martin functions associated with the stationary Schrödinger operator in a cone

with smooth boundary, and generalize some classical results in Laplace setting.
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1 Introduction

Let Rn(n ≥ 2) be the n-dimensional Euclidean space and S its an open set. The
boundary and the closure of S are denoted by ∂S and S, respectively. In cartesian coordinate
a point P is denoted by (X, xn), where X = (x1, x2, · · · , xn−1). For P and Q in Rn, let |P | be
the Euclidean norm of P and |P −Q| the Euclidean distance. The unit sphere and the upper
half unit sphere are denoted by Sn−1 and Sn−1

+ , respectively. For P ∈ Rn and r > 0, let
B(P, r) be the open ball of radius r centered at P in Rn, then Sr = ∂B(O, r). Furthermore,
denote by dSr the (n− 1)-dimensional volume elements induced by the Euclidean metric on
Sr.

In the paper we are mainly concerned with some properties for the generalized Martin
function associated with the stationary Schrödinger operator in a cone. Our aim is to give
precise characterization for majorization of the generalized Martin functions in a cone. Deng
et al. (see [17] and [23]) ever considered the growth for the potential functions in the half
space. However, Miyamoto et al. (see [10, 11] and [12]) focused on the potential theories
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in a cone. Levin and Kheyfits (see [9]) paid attention to the problems associated with the
stationary Schrödinger operator in a cone. In addition, Long and Qiao et al. (see [7, 8, 13–
15] and [16]) considered some related problems about Dirichlet problem for the stationary
Schrödinger operator at ∞ with respect to a cone as well as Levin and Kheyfits (see [9]).
Based on the above statement, we will mainly generalize some results from Miyamoto and
Yoshida (see [10]) to the stationary Schrödinger operator’s setting. Unfortunately we don’t
have Riesz-Herglotz type theorem as the classical results which needed in the proof. To get
over this difficulty, here we will depend on the generalized Martin representation theorem
(see [8]). For the better statements about our results, we will introduce some notations and
background materials below.

Relative to system of spherical coordinates, the Laplace operator ∆ may be written by

∆ =
n− 1

r

∂

∂r
+

∂2

∂r2
+

∆∗

r2
,

where the explicit form of the Beltrami operator ∆∗ is given by Azarin (see [1]).
For an arbitrary domain D in Rn, AD denotes the class of nonnegative radial potentials

a(P ), i.e., 0 ≤ a(P ) = a(r), P = (r,Θ) ∈ D, such that a ∈ Lb
loc(D) with some b > n/2 if

n ≥ 4 and with b = 2 if n = 2 or n = 3.
If a ∈ AD, then the stationary Schrödinger operator with a potential a(·)

La = −∆ + a(·)I

can be extended in the usual way from the space C∞
0 (D) to an essentially self-adjoint operator

on L2(D), where ∆ is the Laplace operator and I the identical operator(see [18, Chap.13]).
Then La has a Green a-function Ga

D(·, ·). Here Ga
D(·, ·) is positive on D and its inner normal

derivative ∂Ga
D(·, ·)/∂nQ is not negative, where ∂/∂nQ denotes the differentiation at Q along

the inward normal into D. We write this derivative by PIa
D(·, ·), which is called the Poisson

a-kernel with respect to D. Denote by G0
D(·, ·) the Green function of Laplacian.

For simplicity, a point (1,Θ) on Sn−1 and the set {Θ; (1,Θ) ∈ Ω} for a set Ω (Ω ⊂ Sn−1)
are often identified with Θ and Ω, respectively. For two sets Ξ ⊂ R+ and Ω ⊂ Sn−1, the set
{(r,Θ) ∈ Rn; r ∈ Ξ, (1,Θ) ∈ Ω} in Rn is simply denoted by Ξ × Ω. In particular, the half
space R+×Sn−1

+ = {(X, xn) ∈ Rn;xn > 0} will be denoted by Tn. By Cn(Ω) we denote the
set R+×Ω in Rn with the domain Ω on Sn−1 and call it a cone. We mean the sets I×Ω and
I × ∂Ω with an interval on R+ by Cn(Ω; I) and Sn(Ω; I), and Cn(Ω) ∩ Sr by Cn(Ω; r). By
Sn(Ω) we denote Sn(Ω; (0,+∞)), which is ∂Cn(Ω) \ {O}. From now on, we always assume
D = Cn(Ω) and write Ga

Ω(·, ·) instead of Ga
Cn(Ω)(·, ·).

Let Ω be a domain on Sn−1 with smooth boundary and λ the least positive eigenvalue
for −∆∗ on Ω (see [19, p. 41]),

(∆∗ + λ)ϕ(Θ) = 0 on Ω,

ϕ(Θ) = 0 on ∂Ω.
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The corresponding eigenfunction is denoted by ϕ(Θ) satisfying
∫

Ω

ϕ2(Θ)dS1 = 1. In order

to ensure the existence of λ and ϕ(Θ), we put a rather strong assumption on Ω: if n ≥ 3,

then Ω is a C2,α-domain (0 < α < 1) on Sn−1 surrounded by a finite number of mutually
disjoint closed hypersurfaces (e.g., see [6, p. 88–89] for the definition of C2,α-domain).

Solutions of an ordinary differential equation

−Q′′(r)− n− 1
r

Q′(r) +
(

λ

r2
+ a(r)

)
Q(r) = 0 for 0 < r < ∞ (1.1)

are known (see [22] for more references) that if the potential a ∈ AD. We know the equation
(1.3) has a fundamental system of positive solutions {V, W} such that V is nondecreasing
with

0 ≤ V (0+) ≤ V (r) as r → +∞ (1.2)

and W is monotonically decreasing with

+∞ = W (0+) > W (r) ↘ 0 as r → +∞. (1.3)

We remark that both V (r)ϕ(Θ) and W (r)ϕ(Θ) are a-harmonic on Cn(Ω) and vanish con-
tinuously on Sn(Ω).

We will also consider the class BD, consisting of the potentials a ∈ AD such that there
exists the finite limit lim

r→∞
r2a(r) = κ ∈ [0,∞), moreover, r−1|r2a(r) − κ| ∈ L(1,∞). If

a ∈ BD, then the (super)subfunctions are continuous (e.g. see [20]). For simplicity, in the
rest of paper we assume that a ∈ BD.

Denote

ι±κ =
2− n±

√
(n− 2)2 + 4(κ + λ)

2
,

then the solutions V (r) and W (r) to equation (1.1) normalized by V (1) = W (1) = 1 have
the asymptotic (see [6])

V (r) ≈ rι+κ , W (r) ≈ rι−κ as r →∞ (1.4)

and
χ = ι+κ − ι−κ =

√
(n− 2)2 + 4(κ + λ), χ′ = ω(V (r),W (r)) |r=1,

where χ′ is their Wronskian at r = 1.
Remark 1 If a = 0 and Ω = Sn−1

+ , then ι+0 = 1, ι−0 = 1−n and ϕ(Θ) = (2ns−1
n )1/2 cos θ1,

where sn is the surface area 2πn/2{Γ(n/2)}−1 of Sn−1.
The function Ma

Ω defined on Cn(Ω)× Cn(Ω) \ {(P0, P0)} by

Ma
Ω(P, Q) =

Ga
Ω(P, Q)

Ga
Ω(P0, Q)

is called the generalized Martin kernel of Cn(Ω) (relative to P0). If Q = P0, the above
quotient is interpreted as 0 (for a=0, refer to Armitage and Gardiner [3]).
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The rest of the paper is organized as follows: in Section 2, we shall give our main
theorems; in Section 3, some necessary lemmas are given; in Section 4, we shall prove the
main results.

2 Statement of Main Results

It is known that the Martin boundary M of Cn(Ω) is the set ∂Cn(Ω)∪{∞}. When we de-
note the Martin kernel associated with the stationary Schrödinger operator by Ma

Ω(P, Q) (P ∈
Cn(Ω), Q ∈ ∂Cn(Ω) ∪ {∞}) with respect to a reference point chosen suitably, for any
P ∈ Cn(Ω), we see

Ma
Ω(P,∞) = V (r)ϕ(Θ), Ma

Ω(P, O) = κW (r)ϕ(Θ), (2.1)

where O denotes the origin of Rn and κ is a positive constant.
For a set E ⊂ D and ` ∈ (0, 1), put

E` =
⋃

P∈E

B(P, `d(P )),

where d(P ) = inf
Q∈Dc

| P −Q |. Next we start to sate our main theorems.

Theorem 1 Let E be a set in Cn(Ω) satisfying E ∩ ∂Cn(Ω) = φ. If E` with a positive
number `(0 < ` < 1) is a-minimally thin at ∞, then there exists a positive generalized
harmonic function u(P ) on Cn(Ω) such that

inf
P∈Cn(Ω)

u(P )
Ma

Ω(P,∞)
< inf

P∈E

u(P )
Ma

Ω(P,∞)
.

For E ⊆ Cn(Ω) and a fixed point Q ∈ ∂Cn(Ω), E is a-minimally thin at Q if and only if
R̂E

Ma
Ω(·,Q) 6= Ma

Ω(·, Q), where R̂E
Ma

Ω(·,Q) is the regularized reduced function of Ma
Ω(·, Q) relative

to E and a superfunction on Cn(Ω) (refer to [8]).
Following the Armitage and Kuran (see [4]) as well as Miyamoto et al. (see [10]), we call

that set E ⊂ D characterizes the positive generalized harmonic majorization of Ma
Ω(·, Q),

if every positive generalized harmonic function υ in D which majorizes Ma
Ω(·, Q) on E can

majorize Ma
Ω(·, Q) on D, that is to say

inf
P∈D

υ(P )
Ma

Ω(P, Q)
= inf

P∈E

υ(P )
Ma

Ω(P, Q)
.

Theorem 2 Let E be a subset Cn(Ω). The following conditions on E are equivalent:
(a) E characterizes the positive generalized harmonic majorization of Ma

Ω(P,∞);
(b) for any ` ∈ (0, 1), E` is not a-minimally thin at ∞;
(c) for some ` ∈ (0, 1), E` is not a-minimally thin at ∞.
Theorem 3 Let E be a subset Cn(Ω). The following conditions on E are equivalent:
(a) E characterizes the positive generalized harmonic majorization of Ma

Ω(P,∞);
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(b) for any ` ∈ (0, 1),
∫

E`

V (1 + r)W (1 + r)dP

(1 + r)2
= +∞;

(c) for some ` ∈ (0, 1),
∫

E`

V (1 + r)W (1 + r)dP

(1 + r)2
= +∞.

A sequence Pm ⊂ D is called to be separated if there exists a positive constant C such
that

| Pi − Pj |≥ Cd(Pi) (i, j = 1, 2, · · · , i 6= j)

(see [2]). With Theorem 3, we have the corollary as follows.
Corollary 1 Let {Pm} ⊂ Cn(Ω) be a separated sequence such that

inf
m
| Pm |> 0.

The sequence {Pm} characterizes the positive generalized harmonic majorization of Ma
Ω(P,∞)

if and only if
∞∑

m=1

d(Pm)nV (| Pm |)W (| Pm |)
| Pm |2 = +∞.

Remark 2 When a = 0, the theorems and corollary above are due to Miyamoto et
al. (see [10]). If a = 0 and Ω = Sn−1

+ , Theorem 1, Theorem 2 and Theorem 3 are from
the Dahlberg’s results in upper-half space or Liapunov-Dini domain in Rn (see [5]), and
Corollary 1 results from Armitage and Kuran (see [4]).

3 Some Lemmas

For our arguments we collect the following results.
Lemma 1 (see [13])

PIa
Ω(P, Q) ≈ t−1V (t)W (r)ϕ(Θ)

∂ϕ(Φ)
∂nΦ

, (3.1)

(resp. PIa
Ω(P, Q) ≈ V (r)t−1W (t)ϕ(Θ)

∂ϕ(Φ)
∂nΦ

) (3.2)

for any P = (r,Θ) ∈ Cn(Ω) and any Q = (t, Φ) ∈ Sn(Ω) satisfying 0 < t
r
≤ 1

2
(resp. 0 < r

t
≤

1
2
),

P I0
Ω(P, Q) . ϕ(Θ)

tn−1

∂ϕ(Φ)
∂nΦ

+
rϕ(Θ)
|P −Q|n

∂ϕ(Φ)
∂nΦ

(3.3)

for any P = (r,Θ) ∈ Cn(Ω) and any Q = (t, Φ) ∈ Sn(Ω; ( 1
2
r, 2r)).

Lemma 2 (see [13])

Ga
Ω(P, Q) ≈ V (t)W (r)ϕ(Θ)

∂ϕ(Φ)
∂nΦ

, (3.4)

(resp. Ga
Ω(P, Q) ≈ V (r)W (t)ϕ(Θ)

∂ϕ(Φ)
∂nΦ

) (3.5)
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for any P = (r,Θ) ∈ Cn(Ω) and any Q = (t, Φ) ∈ Sn(Ω) satisfying 0 < t
r
≤ 1

2
(resp. 0 < r

t
≤

1
2
);

G0
Ω(P, Q) . ϕ(Θ)

tn−2

∂ϕ(Φ)
∂nΦ

+
rtϕ(Θ)
|P −Q|n

∂ϕ(Φ)
∂nΦ

(3.6)

for any P = (r,Θ) ∈ Cn(Ω) and any Q = (t, Φ) ∈ Sn(Ω; ( 1
2
r, 2r)).

Lemma 3 (The generalized Martin representation, see [7] ) If u is a positive a-harmonic
function on Cn(Ω), then there exists a measure µu on M, uniquely determined by u, such
that

u(P ) =
∫

M
Ma

Ω(P, Q)dµu(Q) (P ∈ Cn(Ω)),

where M is the Martin boundary of Cn(Ω).
It is well-known that a cube is of the form

[`12−k, (`1 + 1)2−k]× · · · × [`n2−k, (`n + 1)2−k],

where k, `1, · · · , `n are integers. Now we introduce a family of so-called Whitney cubes of
Cn(Ω) having the following properties:

(a) ∪jWj = Cn(Ω);
(b) intWj ∩ intWk = ∅(j 6= k);
(c) diamWj ≤ dist(Wj ,Rn \ Cn(Ω)) ≤ 4diamWj ,

where intS, diamS and dist(S1, S2) stand for the interior of S, the diameter of S and the
distance between S1 and S2, respectively (see [21], P.167, Theorem 1).

Lemma 4 (see [10]) Let {Wi}i≥1 be a family of the Whitney cubes of Cn(Ω) with `.
Let E be a subset of Cn(Ω). Then there exists a subsequence {Wim

}i≥1 of {Wi}i≥1 such that
(a) ∪mWim

⊂ E`;
(b) Wim

∩ E`�4 6= ∅ (m = 1, 2, , · · · ), E`�4 ⊂ ∪mWim
.

Lemma 5 (see [8]) Let a Borel subset E of Cn(Ω) be a-minimally thin at ∞ with
respect to Cn(Ω). Then we see that

∫

E

V (1+ | P |)W (1+ | P |)(1+ | P |)−2dP < ∞. (3.7)

If E is a union of cubes from the Whitney cubes of Cn(Ω), then (3.7) is also sufficient for E

to be a-minimally thin at ∞ with respect to Cn(Ω).

4 Proofs of Main Theorems

Proof of Theorem 1 When E is a bounded subset of Cn(Ω), we may assume that
u(P ) is a constant function. Otherwise we will follow the same method as Dahlberg to make
the required function.

Set ` ∈ (0, 1). We assume that {Pm} is a sequence of points Pm which are central
points of cubes Wim

in Lemma 4. From the assumption on E, it follows that {Pm} can not
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converge to any boundary point of Cn(Ω). Since {Pm} ∈ E` due to Lemma 4, we see that
| Pm |→ +∞(m → +∞). Because E` is a-minimally thin at ∞ and

∫

Wim

V (1 + r)W (1 + r)dP

(1 + r)2
≈ d(Pm)nV (| Pm |)W (| Pm |)

| Pm |2 (m = 1, 2, · · · ), (4.1)

we get by Lemma 4 and Lemma 5 that

∞∑
m=1

d(Pm)nV (| Pm |)W (| Pm |)
| Pm |2 < ∞.

Hence from (1.2)–(1.4) we can take a positive integer N such that d(Pm) ≤ 1
N
| Pm | for

each m ≥ N .
Choose a point Qm = (tm,Φm) ∈ ∂Cn(Ω) \ {O} such that

| Pm −Qm |= d(Pm) (m = N, N + 1, · · · ).

Then we see that | Qm |≥ N−1
N

| Pm | and hence | Qm |→ +∞ (m → +∞). Define h1(P ) as
follow:

h1(P ) =
∞∑

m=N

PIa
Ω(P, Qm)

d(Pm)nV (| Pm |)
| Pm | (P ∈ Cn(Ω)),

then h1 is well defined, and hence is a positive generalized harmonic function on Cn(Ω) which
is due to Lemma 4.

First we will prove that

inf
P∈E

h1(P )
Ma

Ω(P,∞)
> 0. (4.2)

Denote the Possion Kernel of the ball Bm = B(Pm, d(Pm))) by PIBm
(P, Q) for P ∈ Bm and

Q ∈ ∂Bm. Since PIa
Ω(P, Qm) ≈ PI0

Ω(P, Qm) (see [13]), we have

PIa
Ω(P, Qm) & PIBm

(P, Qm) (P ∈ Bm;m = N, N + 1, · · · )

and hence

PIa
Ω(Pm, Qm) & PIBm

(Pm, Qm) = s−1
n d(Pm)1−n (m = N, N + 1, · · · ).

Because
ϕ(Φ) ≈ d(P ′) (P ′ = (1,Φ),Φ ∈ Ω),

we get that

h1(Pm) ≥ PIa
Ω(Pm, Qm)

d(Pm)nV (| Pm |)
| Pm | & Ma

Ω(Pm,∞) (m = N, N + 1, · · · ). (4.3)

For any P ∈ E,then exists a point Pm such that

| P − Pm |< diam(Wim
)

2
. δd(P ) 6 δ

2
| Pm | .
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When 2r ≤ t or r ≥ 2t (2 | Pm |≤ t or | Pm |≥ 2t), by Lemma 2 and (1.2)–(1.4) we obtain
that

Ga
Ω(P, Q)

Ga
Ω(Pm, Q)

≥ C.

Since

`n−2G0
Ω(`P, `Q) = G0

Ω(P, Q) (P, Q ∈ Cn(Ω))

and

Ga
Ω(P, Q) ≈ G0

Ω(P, Q) (P, Q ∈ Cn(Ω))

(refer to [10] and [13]), we know that

Ga
Ω(P, Q)

Ga
Ω(Pm, Q)

% 1

for t
2
≤ r and | Pm |≤ 2t. From Lemma 3 (the generalized Martin representation), we may

obtain that

h1(P ) & h1(Pm). (4.4)

By (2.1) and (1.2)–(1.4) we also see that

Ma
Ω(P,∞) . Ma

Ω(Pm,∞). (4.5)

With (4.4)–(4.5) and (4.3) we see that (4.2) holds.
Now, for a fixed ray L which is in Cn(Ω) and starts from O, we will show

lim
|P |→∞,P∈L

h1(P )
Ma

Ω(P,∞)
= 0. (4.6)

Set

Hm(P ) =
PIa

Ω(P, Qm) | Pm |
Ma

Ω(P,∞)W (| Pm |) (P ∈ Cn(Ω);m = N, N + 1, · · · ).

Then we have that

h1(P )
Ma

Ω(P,∞)
=

∞∑
m=N

Hm(P )
d(Pm)nV (| Pm |)W (| Pm |)

| Pm |2 .

By Lemma 1 we see that

lim
|P |→∞,P∈L

Hm(P ) = 0

for any fixed m ≥ N . Hence, if we can show that

| Hm(P ) |≤ C (P ∈ L;m = N, N + 1, · · · ) (4.7)

for some constant C independent of m, then we will get (4.6) from (4.1) and Lebesgue’s
dominated convergence theorem.
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To prove (4.7), we divide the proof into three cases. When 2r ≤ tm or r ≥ 2tm, by
Lemma 1 we see that

| Hm(P ) |≤ C (P = (r,Θ) ∈ Cn(Ω);m = N, N + 1, · · · ).

Finally, when tm

2
≤ r ≤ 2tm, we have

tn−1
m PI0

Ω(P, Qm) ≤ C ′ (P = (r,Θ) ∈ L;m = N, N + 1, · · · )

for some constant C ′ (refer to [10, p.1051]). Since PIa
Ω(P, Qm) ≈ PI0

Ω(P, Qm), by (1.2)–(1.4)
we have

tmPIa
Ω(P, Qm) ≤ C ′′V (tm)W (tm) (P = (r,Θ) ∈ L;m = N, N + 1, · · · ).

So
| Hm(P ) |≤ C (P = (r,Θ) ∈ L;m = N, N + 1, · · · ).

At last, we put Υ = max
1≤m≤N

Ma
Ω(Pm,∞) and h(P ) = H1(P ) + Υ for any P ∈ Cn(Ω). Then

we easily get from (4.2) and (4.6) that h(P ) is a positive generalized harmonic function on
Cn(Ω) which is required in Theorem 1.

Proof of Theorem 2 (a)⇒(b). Let C be a positive constant and set EC = {P ∈
E : Ma

Ω(P,∞) ≥ C}. Then EC satisfies that EC ∩ ∂Cn(Ω) = ∅. Since E characterizes the
positive generalized harmonic majorization of Ma

Ω(P,∞), EC also characterizes the positive
generalized harmonic majorization of Ma

Ω(P,∞). Otherwise, there would exists a positive
generalized harmonic function υ(P ) on Cn(Ω) satisfying

A = inf
P∈Cn(Ω)

υ(P )
Ma

Ω(P,∞)
< inf

P∈EC

υ(P )
Ma

Ω(P,∞)
= B.

Let u(P ) = υ(P ) + BC for any P ∈ Cn(Ω). Then u(P ) ≥ BMa
Ω(P,∞) for P ∈ E, and so

inf
P∈Cn(Ω)

u(P )
Ma

Ω(P,∞)
= A < B ≤ inf

P∈EC

u(P )
Ma

Ω(P,∞)
,

which contradicts (a).
If we can show that (EC)` is not a-minimally thin at infinity when ` ∈ (0, 1), then for

all ` ∈ (0, 1) the set E` also is not a-minimally thin at infinity, and hence (b) holds.
Suppose that for some ` ∈ (0, 1) the set (EC)` is a-minimally thin at infinity. Then from

Theorem 1 there exists a positive generalized harmonic function υ(P ) on Cn(Ω) satisfying

inf
P∈Cn(Ω)

υ(P )
Ma

Ω(P,∞)
< inf

P∈EC

υ(P )
Ma

Ω(P,∞)
.

We see that EC characterizes the positive generalized harmonic majorization of Ma
Ω(P,∞),

so for all ` ∈ (0, 1) the set (EC)` is not a-minimally thin at infinity.
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(c)⇒(a). Suppose that E does not characterize the positive generalized harmonic ma-
jorization of Ma

Ω(P,∞). Then there exists a positive generalized harmonic function υ(P ) on
Cn(Ω) such that

A = inf
P∈Cn(Ω)

υ(P )
Ma

Ω(P,∞)
< inf

P∈E

υ(P )
Ma

Ω(P,∞)
= B.

Put h(P ) = υ(P ) − AMa
Ω(P,∞) for any P ∈ Cn(Ω). Then h(P ) is a positive generalized

harmonic function on Cn(Ω) satisfying

inf
P∈Cn(Ω)

h(P )
Ma

Ω(P,∞)
= 0. (4.8)

For any P ∈ E`(` ∈ (0, 1) there exists a point P ′ such that | P − P ′ |< `d(P ′), and by the
generalized Martin representation and the same proof as Theorem 1 we see that

inf
P∈E`

h(P )
Ma

Ω(P,∞)
& inf

P∈E

h(P )
Ma

Ω(P,∞)
> 0. (4.9)

From (4.8) and (4.9) we obtain that

inf
P∈Cn(Ω)

h(P )
Ma

Ω(P,∞)
≤ inf

P∈E`

h(P )
Ma

Ω(P,∞)

for the positive supfunction h(P ) on Cn(Ω). It follows that E` is a-minimally thin at infinity.
This contradicts (c).

Proof of Theorem 3 (a)⇒(b). Assume that
∫

E`

V (1 + r)W (1 + r)dP

(1 + r)2
< ∞

for some ` ∈ (0, 1). Let {Wim
}m≥1 be a subsequence of {Wi}i≥1 from Lemma 4. With (a)

of Lemma 4 we obtain ∫

∪mWim

V (1 + r)W (1 + r)dP

(1 + r)2
< ∞.

Since ∪mWim
is a union of cubes from the Whitney cubes of Cn(Ω) with `, by Lemma 5 we

see that ∪mWim
is a-minimally thin at infinity. Further, from Lemma 4 we know that E `

4
is

a-minimally thin at infinity.
On the other hand, since E characterizes the positive generalized harmonic majorization

of Ma
Ω(P,∞), we see from the Theorem 2 that E `

4
is not a-minimally thin at infinity, which

contradicts the conclusion above.
(c)⇒(a). Suppose that E does not characterize the positive generalized harmonic ma-

jorization of Ma
Ω(P,∞). Then it follows from Theorem 2 that for any ` ∈ (0, 1)E` is a-

minimally thin at infinity. So we see from Lemma 5 that for any ` ∈ (0, 1)
∫

E`

V (1 + r)W (1 + r)dP

(1 + r)2
< ∞,

which contradicts (c).



No. 1 Majorization of the generalized Martin functions for the stationary Schrödinger operator ... 61

Proof of Corollary 1 If {Pm} is a separated sequence,then

B(Pi, `d(Pi)) ∩B(Pj , `d(Pj)) = ∅ (i, j = 1, 2, · · · ; i 6= j)

for a sufficiently small ` ∈ (0, 1), and hence

∫

E`

V (1 + r)W (1 + r)dP

(1 + r)2
≈

∞∑
m=1

d(Pm)nV (| Pm |)W (| Pm |)
| Pm |2 .

Following (c) of Theorem 3, Corollary 1 immediately holds.
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锥中与稳态的薛定谔算子相关的广义Martin函数无穷远处的控制

龙品红,韩惠丽

(宁夏大学数学计算机学院, 宁夏银川 750021)

摘要: 本文研究了稳态的薛定谔算子的Dirichlet 问题和Martin 函数的边界行为. 利用广义Martin 表

示和稳态的薛定谔算子对应的常微分方程基本解, 在具有光滑边界的锥形区域中获得了与稳态的薛定谔算子

相关的广义Martin 函数无穷远处广义调和控制的一些刻画, 推广了拉普拉斯算子情形的结果.
关键词: 稳态的薛定谔算子; Martin函数; 调和控制; 极细; 锥
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