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Abstract: In this paper we study the optimal dividend problems in the Brownian motion
model with interest and randomized observation time. By using stochastic control theory, we obtain
the associated Hamilton-Jacobi-Bellman (HJB) equation with the optimal value function, which
show that the optimal dividend strategy is a barrier strategy, and give the explicit expression for
the optimal value function, which generalize the results of [19].
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1 Introduction

Finding the optimal dividend strategy for an insurance company is a very popular
research topics in actuarial mathematics. It was first proposed for measuring the stability
of an insurance company by De Finetti [1]. In recent years, many papers were published
about the optimal dividend strategy. See, for example, Jeanblanc and Shiryaev [2], Amussen
et al. [3], Gerber and Shiu [4], Bai and Paulsen [5], Bayraktar et al. [6, 7], Wang [§]
and the references therein. One can refer to Avanzi [9] and Albrecher and Thonhauser
[10] for knowing more about the models with dividends before 2009. But in all of the
above-mentioned literatures, the surplus process need continuously observed, which cannot
be realized in practice. Albrecher et al. [11-14] first introduced the idea of randomized
observation time in the classical risk model, the diffusion model and the Lévy model, in
which the risk process can be “looked” only at random times. Avanzi [15] and Peng et al.
[16] considered this idea in the dual model. The model was extended to the dual model with
diffusion by Liu et al. [17] and Avanzi et al. [18].
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Brownian motion model is a Brownian motion with a positive drift. This model can
be viewed as a diffusion approximation of the classical risk model, but it often leads to
more simple calculation of the characteristics than the classical risk model, such as ruin
probability. Wang and Liu [19] studied the expected discounted sum of dividends paid until
ruin in the Brownian motion model with interest under the assumption that the dividend
strategy is restricted to a barrier strategy and the dividends can only be paid at some
randomized observation times. Naturally, one interesting problem appears: is the barrier
strategy optimal or not? In this paper, assuming that the surplus of a company is modeled
by the Brownian motion model with interest, we show that the barrier strategy is the optimal
dividend strategy among all the admissible dividend strategies by using stochastic control

theory.

This paper is organized as follows. In Section 2, the Brownian motion model with
interest and randomized observation time is shortly discussed. In Section 3, it is shown
that the optimal value function can be characterized by the associated HJB equation. In
addition, the verification theorem is stated and proved. In Section 4, we show that the
optimal dividend strategy is a barrier strategy, and the explicit expression for the optimal

value function is given.

2 The Model

Let (2, F, {Fi}i>0, P) be a filtered probability space on which all random processes
and variables introduced in the following are defined. We assume that the surplus process of
an insurance company is modeled by the Brownian motion model and the company invests
all the surplus in the risk-free asset. Let {X(¢); t > 0} be the surplus of the company
before a dividend strategy is imposed. Then {X(¢); t > 0} satisfies the following stochastic

differential equation

AX(t) = (c + rX (£))dt + odB(2), (2.1)

where ¢ > 0 is the drift coefficient, r > 0 is the force of interest, ¢ > 0 is the standard

deviation and {B(t); t > 0} is a standard Brownian motion.

Let {T;; i =1, 2, ---} denote the random observation times. Let Z; = T; — T;_; with
To = 0 be the ith time interval between observations, we assume that {Z;; i =1, 2, --- } are
independent random variables with an exponential distribution of mean % Let L; be the
dividend payment at T;. Let {X(¢); t > 0} denote the surplus process after an admissible
dividend strategy L is imposed.

A dividend strategy L = {L;; ¢ =1, 2, ---} is called admissible, if L; < X (T;—) and
no dividend is paid after ruin. Denote II the set of all admissible dividend strategies.

Let 7, = inf{t : X (t) < 0} be the ruin time. Assume that dividends are discounted

at a constant force of interest 4. In this paper we assume § > r. For a given admissible
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strategy L, we define the value function V}, as

o0

Vi(z) = E, [Z eXP(—fm)I{Tigm}Li} 7 (2.2)

i=1

where Iy} is the indicator function and E, is the expectation corresponding to the law of
{X(t); t >0} with X(0) = 2. We aim to find the optimal value function, which is defined
as

V(z) = sup Vi (z) for xz >0, (2.3)
Lel

and find an optimal dividend strategy L* that satisfies V(x) = V- (x). For technical reasons,
we define V(x) = 0 for x < 0.

3 Hamilton-Jacobi-Bellman Equation

In this section, the HJB equation associated with (2.3) is obtained and the verification
theorem is stated and proved.

Suppose V(z) is twice continuously differentiable on [0,00). Consider a small time
interval (0, At], where At > 0 is sufficiently small so that the surplus process will not reach
0 if there is no dividend paying in the interval. The strategy L is that paying amount [ > 0
as dividend if T} < At. By the strong Markov property of the surplus process, we have

V(z) 2[(1 = BAYE[V(X(AL)] 4 BALL+ V(z — 1)]]e 2" + o(At). (3.1)
Applying It formula, we get
E.[V(X(A)] =V (z) + (¢ +rx)V'(z) At + %QV”(:U)At + o(At). (3.2)

Plugging (3.2) into (3.1), rearranging the terms, dividing by At and then letting At tend to
0, we have

%2v"<x> + (et ra)V' (@) = (B+ 0V (@) + Bl + V(e — D] <0.

We obtain the HJB equation associated with (2.3) as follows

Orglag);{ﬂ[l +V(z-0D]}+LV(z) =0, (3.3)
where
LV (z) = %V”(az) +(c+ra)V'(z) — (B+0)V(x). (3.4)

Because ruin is immediate and no dividend is paid if the initial surplus x = 0, we get the
boundary condition V(0) = 0.

The next Theorem states the verification theorem.
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Theorem 3.1 Let H(z) : [0,00) — [0,00) with H(0) = 0 be a twice continuously
differentiable function. Assume that H(z) is dominated by a linear function. If H(x)

satisfies

max {3l + H(x — )]} + LH(z) <0, (3.5)

0<i<z

we then have

H(z) > V(z). (3.6)
Furthermore, if H(z) satisfies
max (B[l + H(x )]} + £H(x) =0, (3.7)
we then have
H(z) = V(). (3.8)

Proof Let L = {L;; i = 1, 2, ---} be any admissible strategy and X (¢) be the
surplus process associated with the dividend strategy L. Denote S = {T};; i =1, 2, ---}.
For convenience we let H(x) = 0 for x < 0. From generalized It6 formula, we know that

e H(X(tAT)) =H (x) — / e (X 5-)ds

+ /OtM e % [(c +rXp(s—))H' (Xr(s—)) + O;H”(XL(S—))] ds

+ /W oe H'(Xy(s—))dB(s) + R, (3.9)

where
R= Y e [H(Xp(s—)+ AXL(s) = H(X(s—))).
s€ES, s<tAT
Defining
KB = 3 e AXL(s) - 8 / e X (s))ds

SES, s<t 0

and

J)= Y e [H(Xp(s) + AXL(s) — H(XL(s))]

seS, s<t

— ﬁ/o e [H(Xp(s—) + AXp(s)) — H(X(s—))]ds,
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we have
e S H(XL(EAT))

:H(x)—(S/O Te—ésH(XL(s—))ds

+ /MT e 05 [(c +rXp(s—))H (X(s—)) + %H"(XL(S—))]dS

+ 5/0 ' e [H(Xp(s—) + AXp(s)) — H(XL(s—))]ds
+ /MT oe % H' (X (s—))dB(s) + J(t A T)

=H(z) + /0 eSS [BH(X 0 (5—) + AX1(5)) — AXp(s)) + LH(X(5—))]ds

+ > eTAXL(s) = K(EAT) + J(EAT).

SeS, s<tAT
tAT
+ / oe " H'(X1(s—))dB(s). (3.10)
0

Noting that K (¢) and J(t) can be denoted as

K(t) —/ e_ésAXL(s)dNﬁ(s)—ﬁ/O e AXp(s))ds

0

and
J(t) = / e S H(Xy(s) + AXp(s)) — H(Xp(s))dNs(s)

— ﬁ/o e [H(Xp(s—) + AXp(s)) — H(X(s—))]ds,

where Nj(t) is a Poisson process with parameter 3, we then have that K (t) and J(t) are
martingales with zero-expectation, together with condition (3.5), we get

B le I H(X(t AT))) gH(a:)+Ex[ Z e"sSAXL(s))]

s€S, s<tAT

—H(z) - E, [Z exp(—(STi)I{TiSMT}Li} . (3.11)

i=1

Because H(x) is dominated by a linear function, we know that
t
H(XL<t VAN T)) S leL(t N 7') + ]{72 S kle”[q: + g—i— | 0’/ eirsdB(S) H + kg
0
for some positive constants k; and ko, hence

t
eI H(XL(tAT)) < ke e+ 4 | o / e dB(s) | ] + ks
r 0
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ift <7and e " H(XL(tAT)) =0ift > 7. By dominated convergence theorem, we have

lim E,[e """ H(X(tAT))] =0. (3.12)

t—o0

Let ¢ tend to oo in (3.11) and using (3.12) yield

o0

H(z)> E, [Zexp(—éTi)I{TigT}Li = V(). (3.13)
i=1
Because (3.13) holds for any admissible strategy L, we have H(z) > V(x).
If condition (3.7) holds, we take the admissible strategy L} = I(X«(T;—)), where I(z)
satisfies

Bll(z) + H(z —l(z))]} + LH(z) = 0.

By a similar argument, we get H(x) = Vp«(z), hence H(z) = V(z) and L* is the optimal
dividend strategy. The proof is completed.

4 The Optimal Dividend Strategy

In this section, we show that there exists a twice continuously differentiable concave
function V' (z) which is dominated by a linear function and a solution to the HJB equation
(3.3) with the boundary condition V(0) = 0, and the optimal dividend strategy is a barrier
strategy. In addition, the explicit expression for V(z) is given.

Let us find a twice continuously differentiable, increasing and concave solution V(x) to
(3.3) with V(0) = 0, and V(z) is dominated by a linear function. If there exists some point
b > 0 with the following properties:

Viz)>1: z<b, V'(z)<1l: x>b.

Because o+ V(w1
ol

for l € [0,z] if 2 <b,and 1 = V'(x —1) > 0for I € [0,z —b) but 1 — V'(z —1) < 0 for

l € [x—b,z)if v > b, we have that [ + V(z — ) is decreasing in [0,b) with respect to [ if

x <b,and | + V(xz — 1) is increasing in [0,z — b) but decreasing in [x — b, x] with respect to

=1-V'(z-1)<0

[ if x > b. Hence a candidate of the optimal dividend strategy should be

K2

O, XL* (ﬂ—) < b,
Xp-(T—) —b, Xp-(T,—) >b.

Therefore (3.3) is translated into
—V"(x)+ (c+rz)V'(x) =0V (z) =0, z<b, (4.1)

—V"z)+ (c+rx)V'(x) — (B+0)V(x)+ Pz —b+ V()] =0, x>b. (4.2)
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Noting that V(x) behaves differently depending on wether x is below or above the barrier b,

we denote V(z) as

V(r) =

Vi(z), z<b,
Va(z), x >b.

According to Theorem 16.69 of Breiman L [20], we know that equation (4.1) has two positive

independent solutions f;(x) and f(z), and thus the equation

%V"(:U) +(ctra)V'(z) = (B+6)V(z) =0

has two positive independent solutions f3(x) and f4(z). In addition, fi(x) and f3(z) are
strictly decreasing, but fa(z) and fy(x) are strictly increasing. In fact, the explicit expres-

sions for fi(z), fa(z), f3(z) and fi(z) are given by

Cerrn? 1 0 1 (C+T‘x)2
= ro2 — - -~ 7 4
fl(I) € U(2 27” 27 ro2 )a ( 3)

leren? 5 3 (c+ra)?
fo(x) = (c+ra)e” +o2 M(l‘*‘%,i;(TT))a (4.4)

a2 1 64+8 1 (c+rx)?
L ety (45)

U(§+ 2r 727 ro?
(etra)? §4+06 3 (c+rz)?
= ro M 1 — 4
fulw) = (e +r)e S5 a1 4 S22 B ey (46)

fa(z) =€

where M (a1,a9;2) and U(ay,az;x) are called the confluent hypergeometric functions of

the first and second kinds respectively. M(aq,aq2;x) and U(aq, aq;x) satisfy the following

properties:

4 M (ar, am2) = B M(ay + 1,0 + 1), (4.7)
dx Qo

%U(al, ag;x) = —a U(a; + 1,a9 + 1; ), (4.8)
M(ay,a2;0) =1, (4.9)
Ilin;o M(ay,az;x) = 00, (4.10)
Tlirgo U(a,as;x) =0, (4.11)
Uay,ag;x) =2 [14+0( 2 |™")] as = — oo, (4.12)
M(ay,az;x) = ?EZ?;e”Cmal_a"‘[l +o(lz|™Y)] as x — oc. (4.13)

Therefore the solution of (4.1) can be expressed as
Vi(z) = Avfi(z) + Az fo(w) (4.14)

for some constants A; and A,.
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Using (4.13), we get lim @

the solution of (4.2) can be expressed as

= 00. Because V(z) is dominated by a linear function,

Va(z) = A3 fs(x) + Dz + F (4.15)

for some constants A3, D and F.
Plugging (4.15) into (4.2), we get

_ B
. BB ~b) .
- c
F==05 TGroyGre—n (4.17)
Plugging (4.16) and (4.17) into (4.15) and letting x tend to b, we have
_B+6 B(c+ rb)
Va(b) = TAsfa(b) + SBro—1) (4.18)
. g Setrt) 0
ct+r
F:gAgfg(b)+5<ﬁ+5_r>—ﬁ+5_rb. (4.19)
The conditions V(0) = 0 and V{(b—) = V5 (b+) = 1 imply that
A1£f1(0) + A2 £2(0) = 0, (4.20)
/ B
As f5(b) + [ L (4.21)
Arfi(b) + A2 f5(0) = 1. (4.22)

From (4.20)—(4.22), we have

RO, RO, (o1
A=Tey 2T TRe BT B nAG)

where h(z) = fi(z)f2(0) — f1(0) fa(z). The value of b is determined by V;(b—) = Va(b+),

ie.,

hb) _ (5= 1)(F+0) fs0) | Ble+ D)

W) 6(B+0—r) f5(b)  6(B+0—r) (4.23)
Using (4.12) and (4.13), we can easily show that
h(z)
oo Th(z) (4.24)
and
fm 25— 0 (4.25)

oo fl(x)
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Hence there exists a positive solution to the equation (4.23) if

f3(0)
§—=r)(B+0)7= + fc>0. 4.26
6=rB+ 55 (4.26)
If (6 —7)(B+9) 228; + Bc <0, then b = 0, by a similar argument, we have
p Be

V(z) = Asfs(x)

T T BB —r) (4.27)

for some constant A4. The condition V(0) = 0 implies that
Be

SRR YA OL 42%)
Theorem 4.1 If (§ — r)(6 + 9) ﬁgg; + Be <0, then the function
e By, 6
V@ = GraaTi T 20) t iTer (4.29)

is twice continuously differentiable, concave, dominated by a linear function and a solution
to the HJB equation (3.3).

If (0 —r)(B+9) ;?Eg; + e > 0, then the function

h(x)
OR 0 <z <b,

bor fs@) . B B6-r) fs(0) | Bletrb)
Fromr 1) T Ao (@~ 0) 5@ m tosge—ny T 20

Viz) = (4.30)

is twice continuously differentiable, concave, dominated by a linear function and a solution
to the HJB equation (3.3), where b is determined by (4.23).

Proof If (§—r)(6+9) ;zgg; +p5c <0, it is straightforward to verify that the function given
by (4.29) is twice differentiable and satisfies the differential equation (4.2) with boundary

condition V' (0) = 0. Because of the facts that

ey Be f3(0) 5
VO = G nE s ho T Fra=r S
and
V//(x):_ /86 //(:I:)
(B+6)(B+06—7)fs(0)"
20c

= _O'Q(ﬁ + 5)(,8 46— ’I")fg(()) [(/6 + 5)f3(39) - (C—l—T‘l‘)fé(I)] <0,

we know that V'(x) < 1 for any = > 0, hence V' (z) is concave and satisfies the HJB equation
(3.3) with boundary condition V(0) = 0.

If (0 —r)(B+9) ;:?Eg; + fe > 0, using (4.23) and the facts that

O;h”(b) — 5h(b) — (C+ ’l“b)h/(b)
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and

0.2

T 1®) = (5+ B)fs(6) — (e +rB)f3(0),

we have

W) -1 ()
W(b) — B+6—r fib)’

which implies that the function given by (4.30) is twice differentiable. Noticing that, for

x > b, we have

1 _ o—r 5 ()
Ve = s )
_ 01 2[(6+ B)fs(x) — (c+ rx) fi(x)]
B+0—r a2 f4(b)

<0,

and hence V’(z) < 1. For x < b, using the formulas

(ag — 1)M(ay — 1,a0 — 1,2) = (a — 1 — 2)M(ay, az, 2) + 2M' (a1, az, 2),
(ay —1)M(ay,a2 — 1,2) = (az — 1)M(ay, ag, 2) + 2M'(ay, az, 2)

and
U(ai,aq,2) — U'(a1,aq,2) = Ulay,as + 1, 2),
we have
8r(c+rr) o2 & 1 3 (c+rx)?

1 _ po> - __ =

(@) ot © U(2r 2'2" o2 )

V() = 2r(o _T)e (et (i Y (c—i—m’)2)

2 o2 2r 2°2° ro2 7
hence

W () = fi"(2) 2(0) — f1(0) f3"(x) < 0.
Noting that h'(b) = f1(b)f2(0) — f1(0)f5(b) < 0, then it follows that V"'(x) > 0. Hence

V" (x) is strictly increasing. Since

V//(b) — o—r é:(l‘)

B+d—r f5(b)
we have V" (x) < 0 for any = < b, therefore V’(x) is decreasing in [0, b]. Because V'(b) = 1,
we have V'(z) > 1 for < b. Hence V(x) is concave and satisfies the HJB equation (3.3)
with boundary condition V(0) = 0. The proof is completed.

<0,

Combining Theorem 3.1 with Theorem 4.1, we obtain the following proposition.
Proposition 4.2 The optimal dividend strategy is a barrier strategy. The barrier is 0

f5(0)
f3(0)

if

(0 =7)(B+9) +Bc<0
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or determined by (4.23) if

f(0)
/3(0)

(6 —7)(B+9) + Be > 0.

The functions V() given by (4.29) and (4.30) are the optimal value functions respectively.
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