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Abstract: In this paper, we are concerned with a class of hyperbolic problems with non-
periodic coefficients in two-component domains. By the periodic unfolding method, we derive
the homogenization and corrector results, which generalize those achieved by Donato, Faella and
Monsurro.

Keywords: hyperbolic problems; periodic unfolding method; homogenization; correctors

2010 MR Subject Classification: 35B27; 35120

Document code: A Article ID: 0255-7797(2017)01-0028-11

1 Introduction

In this paper, we study the homogenization and corrector results for the following hy-

perbolic problem with —1 < v < 1,

uy. — div(A*Vui.) = fie in Q. x (0,7),

uy. — div(A*Vug.) = fae in Q. x (0,7),

A*Vuq. - nie = —A*Vua, - na. on I'“ x (0,7),

AVuy, - nie = —€7h (U — ug.) onI'* x (0,7), (1.1)
U1 =0 on 092 x (0,7,

uie(z,0) = Uy (2), ui(2,0) = U (2) in Qu,
2 (2,0) = UL (&), ) (2,0) = UL (2) in e,

where 2 C R” is the union of two e-periodic sub-domains €2;. and ., separated by an
interface I'®, such that Q1. UQs. = Q and I'® = 9€Q,.. Here, Q. is connected and the number

of connected components of €25, is of order e~". This problem models the wave propagation

* Received date: 2015-06-05 Accepted date: 2015-09-09
Foundation item: Supported by National Natural Science Foundation of China (11401595).
Biography: Yang Zhanying (1980-), female, born at Zhoukou, Henan, associate professor, major
in homogenization theory and its application.



No. 1 A note on homogenization of the hyperbolic problems with imperfect interfaces 29

in a medium made up of two materials with different coefficients of propagation. For the
physical model, we refer the reader to Carslaw and Jaeger [1].

Let Y =1[0,03) x - - - x [0,1,,) be the reference cell with I; >0, i =1,---,n. We suppose
that Y7 and Y, are two nonempty open disjoint subsets of Y such that Y = Y; UYs, where
Y] is connected and I' = 0Y5 is Lipschitz continuous. Throughout this paper, we have the
following assumptions.

e For any ¢, A%(z) = (a§;(2))1<i j<n is a matrix satisfying the following:

A® is symmetric and there exist o, 3 € RT(0 < o < 3) such that
(AX\0) > a|A?, |AA| < B])| for all A € R™ and a.e. x € Q.

e For any ¢, h®(x) = h(x/e), where h is a Y-periodic function such that h € L>°(I") and
there exists hy € R such that 0 < hg < h(y) a.e. on I'.
e The initial data satisfy the assumptions:

Ul .= (U, UL) € VE x HY(Qy.), UL := (UL, Uy.) € L*(:) x L*(Qe)

€

and
fe = <f167f2€) € L2 (07T7 L2(91€)) X L2 (07T’ LQ(QQE))'

For the classical case A%(z) = A(x/e) with A being periodic, symmetric, bounded and
uniformly elliptic, Donato, Faella and Monsurrd gave the homogenization for v < 1 in [2].
Later, they obtained the corrector results in [3] for —1 < v < 1. Their proofs are based on
the oscillating test functions method. In [4], the first author gave the corrector results for
v < —1 by the unfolding method. However, the above methods do not work for the case
that A°(z) is non-periodic coefficient matrix.

In this paper, we will consider problem (1.1) with A®(z) being non-periodic for —1 <

v < 1. More precisely, suppose that there exists a matrix A = (a;;)1<i,j<n such that
T.(A°) — A strongly in (L*(Q x Y))"*", (1.2)

where 7 is the unfolding operator. By the unfolding method, we derive the homogenization
and corrector results for —1 < v < 1. Next, we state our main theorems, in which we will use
some notations to be defined in the next section. We first state the homogenization results
whose unfolded formulation will be provided for the study of correctors in Section 3.

Theorem 1.1 For —1 <« < 1, let u. be the solution of problem (1.1) with (1.2). We
further suppose that

[l

He is uniformly bounded,

UL — (0,U},0,UL) weakly in L*(Q) x L*(),
fo = (81 f1,02f2) weakly in L2(0, T, L*(Q2)) x L(0,T, L*(Q2)).
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Then there exists u; € L>(0,T; H}(Q2)) such that
Uie — Oyu;  weakly” in L>(0,T; L*(Q)), i=1,2.
Also, u; is the unique solution of the following problem:

uy —div(A'Vuy) =01 f1 + 62> in Qx(0,T),

u; =0 on 092 x (0,7), (1.4)
ui(z,0) = 0,U7 + 0,U7) in Q,
u)(z,0) = .U} + 0,U, in Q,
where the homogenized matrix A° = (af;(x))1<; j<n is defined by
ag;(x) = 1 My, (aij + Z aik%), (1.5)
k=1 Yk
and x; € L*(Q; H}.(Y1)) (j = 1,- - -,n) is the solution of the following cell problem:
—div(AV(x; +¥;)) =0  inY,
AV(x;+y;) - ni =0 on T, (1.6)
My, (x;) =0, X; is Y-periodic.
Further, we have the following precise convergence of flux:
AVup, — A°Vuy  weakly* in (0, T; L*(2)), W

AVug. — 0 weakly” in L0, T; L2(Q)).

Notice that the homogenized matrix A° still depends on z, compared with the classical
constant matrix (see for instance [2, 4]).

In order to investigate the corrector results, we need stronger assumptions on the initial
data than that of the convergence results, as already evidenced in the classical works (see,
for instance, [3, 5]). Here we impose some assumptions, introduced by the first author (see
[4] for more details), which are slightly weaker than those in [3]. Now we list them as follows.

(i) For fi. € L?(0,T; L*(Q:.)) (i = 1,2), there exists f; in L2(0,T; L*(2)) such that

”fze — fiHLQ(O,T;Lz(Qig)) — 0 fOI‘ 1= 1, 2. (18)

(i) For UL € L*(Q1.)(i = 1,2), there exists U' € L?(Q) such that

1T = UMl L2(i) — 0. (1.9)

(iii) For U?, we assume that

(i) ||UEO||H§ is uniformly bounded,
(i) UL — 0,U° weakly in L2(Q), i=1,2,

(iii) / A*Vu Vg, do + / AV uy. Vg, d (1.10)
ng Q2a

+e7 / R (u1e — ug.)?do, — | A°VU°VU° dz,

Ie Q
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where UY is given in H}(Q).

These assumptions ensure the convergence of the energy in C°([0,7]). Moreover, we
obtain the following corrector results.

Theorem 1.2 For —1 < v < 1, let u. be the solution of problem (1.1) with (1.2).
Suppose that the initial data satisfy (1.8)—(1.10). Let u; be the solution of the homogenized
problem (1.4), then we have the following corrector results:

[uhe 4 ube — vy || 20, 7:22(02)) — Os

n 8 8” E
[Vure = Vun = 3 U5 (52U (Voxi) 20 mi220000) — 0, (1.11)

i=1

[Vuze |l 22(0,7522(0250)) — 0,

where x; € L>(Q; Hy.(Y))(j = 1,- - -,n) is the solution of the cell problem (1.6).

For the parabolic case, Jose [6] proved the homogenization for v < 1. Later, the
corrector results for —1 < 7 < 1 were given by Donato and Jose [7]. Recently, by the
unfolding method, the first author obtained the homogenization and corrector results for
v < 1in [8]. Our results are also related to those of hyperbolic problems in perforated
domains which were studied in [9, 10].

The paper is organized as follows. In Section 2, we briefly recall the unfolding method
in perforated domains. Section 3 is devoted to the homogenization result. In Section 4, we

prove the corrector results.

2 Preliminaries

Let 2 C R™ be an open and bounded set with Lipschitz continuous boundary. Let € be
the general term of a sequence of positive real numbers which converges to zero.

For any k € Z™, we denote
Yi=k+Y, Thn=k+TD, Yf=k+Y,

where k; = (kily, -+, knl,) and i = 1,2. For any fixed €, let K. = {k € Z" | Y NQ #0,i =
1,2}. We suppose that

N ( U (eTk)) =0

kezmr

and define the two components of €2 and the interface respectively by

Qoo = J &V, Qo =0\, T =0,

keK.

Observe that 92 and I'* are disjoint, the component {2;. is connected and the component

Qg is union of e~ disjoint translated sets of €Y5.
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The following notations are related to the unfolding method in [11-13]:

K.={kez"|eY*cQ}, Q.=int (el +7), A.=0Q\Q,
keK.
Qie = U E}/ik7 Ais = Qis\ﬁisa i1=1,2, fE = 85\225‘
keK.
This paper will also use the following notations:
o0, =|Yi|/IY], i=12.
e Mp(v) = |10|/ vdx.
o
e ¢ is the zero extension to Q (respectively 2 x A) of any function g defined on Q.
(respectively ;. x A) for i =1,2.
e V¢ is defined by
Ve i={ve H(Q.)|v=0on 0N}

endowed with the norm ||v||ve = [[Vv|12(q,.)-
e For any v € R, the product space
HS .= {u = (u1,up) | uy € Ve, uy € H (Qa)}
is equipped with the norm
||U||%r7 = ||VU1||%2(915) + ||Vu2||2L2(925) + &7 lur — U2H%2(rs)-

e (' denotes generic constant which does not depend upon e¢.

e The notation LP(O) will be used both for scalar and vector-valued functions defined
on the set O, since no ambiguity will arise.

In the rest of this section, we give a brief review of the unfolding operators in two-
component domains. We refer the reader to [9] and [14] for further properties and related
comments.

For any x € R"™, we use [z]y to denote its integer part (kil, - - , k,l,) such that x—[z]y €

Y, and set {z}y =z — [z]y. Then one has

.I:E([E] +{£} ) for any x € R".
ely ely

Definition 2.1 [2] Let i = 1,2. Forp € [1,+00) and g € [1, 0], let ¢ € L4(0,T; LP(Q;.)).
The unfolding operator 7,7 : LY(0,T; LP(£;.)) — L9(0,T; L (2 x Y;)) is defined as follows:

d)(e E] +5y,t) a.e. for (z,y,t) € 0. xY; x (0,7),
Y
a.e. for (z,y,t) € A. xY; x (0,T).

Ze(gf))(l‘, Y, t) =

Definition 2.2 [2] Let i = 1,2. For p € [1,400) and ¢ € [1,400], let ¢ be in
L9(0,T; LP(Q x Y;)). The averaging operator s : L(0,T; LP(Q x Y;)) — L9(0,T; L?(.))
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is defined as follows:

|Y| / —l—ez, {g}y,t)dz a.e. for (z,t) € ;. x 0,7),
a.e. for (x,t) € Ay x (0,7).

Ui (9)(x, 1)

Proposition 2.3 For p € [1,+00) and ¢ € [1,00], let ¢ € L9(0,T; L' (€;.)). Then for
a.e. t € (0,T), we have

1 T (o) (z,y,t) dedy = / o(x,t)dx = / o(x,t)dx — / o(x,t) dz
|Y| QxY; Qe Qe Ase

Proposition 2.4 (some convergence properties)

(i) Let w € L2(0, T, L2<Q)), then ||Z/lf(w) — W||L2(07T;L2(Qi5)) — 0.

(i) Let w. € L*(0,T;L*(Q4e)) and w € L*(0,T; L*(f2)), then the following two asser-
tions are equivalent:

(a) 7F(w:) — w strongly in L*(0, 75 L*(Q x Y;)) and [|lwe|[r2(0,;22(a00)) — 0,

(b) [lwe = wllL20mL2(020)) = 0-

(iii) Let w. € L*(0,T;L*(Q;.)) and w € L*(0,T; L?(Q x Y;)), then the following two
assertions are equivalent:

(a) 7T (we) — w strongly in L?(0,T; L*(Q x Y;)) and ||w:||r20,7;02(a.)) — O,

(b) we = Ui (w)llz>07:L202:)) — O

Following the arguments in the proof of [Proposition 1.7, 14] (see also [Proposition 2.13,
9]), we can obtain the following result which will be used to get the corrector results.

Proposition 2.5 Let p,q € [1,00), for i = 1,2, let f € L%0,7;L(2)) and g €
L>(Q; LP(Y;)), then we have

U (fg) — U (U (9 Lago,r:r(0:.)) — O

We end this subsection with the following convergence theorem which is crucial to
obtaining our homogenization result.
Theorem 2.6 Let u. = (1, uz) and {u.} be in L>=(0,T; HY) with —1 < < 1. If

l[te || o< 0,75 m2) + [ulllLoe 0,7502(010) x 22(0220)) < C

then there exist uy; € L>(0,T; Hy () and uy € L>*(0,T; L*(2, H),(Y1))) with Mp(u;) =0
for a.e. x € Q, such that, up to a subsequence (still denoted by ¢),

) T (uie) — uy strongly in L4(0,T; L*(Q, H'(Y1))) for any ¢ € (1, 4+00),

i) 7T (ue) = up  weakly™ in L>(0,T; L*(Q, H'(Y1))),

iii) 77 (Vuie) = Vug + Vyuy  weakly™ in L=(0,T; L*(2 x 7)),

iv) 75 (uge) = uy  weakly™ in L>(0,T; L*(Q, H'(Y2))),

v) T5(Vug.) = 0 weakly™ in L>(0,T; L*(Q2 X Y3)),

(i
(i
(
(
(
(vi) TF(ul.) — ) weakly” in L>(0,T; L*(Q2 x Y;)), i=1,2.
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In fact, the proof can be obtained by following the lines of the proofs of [Theorem 2.12,
14] (see also [Theorem 2.19, 9]) and [Theorem 2.20, 13].

3 Homogenization Results

In this section, we are devoted to the asymptotic behavior of the hyperbolic problem
(1.1). For every fixed e, the Galerkin method provides that problem (1.1) has a unique
solution u.. Under assumption (1.3), following the arguments in [2], we can obtain the

following uniform estimate,

l[te | L= 0,752y + il Lo= 0,702 (010 x 22(9220)) < C- (3.1)

Now, we state the unfolded formulation of the homogenization results (see Theorem
1.1) which will be used for getting the corrector results.

Theorem 3.1 Under the assumptions of Theorem 1.1, there exist u; € L>(0,T; H} (2))
with «} € L*°(0,T; L*(Q)) and u; € L>(0,T; L*(, H..(Y1))) with Mr(@;) = 0 such that

per

(i) 7 (u1.) — wuy strongly in L7(0,T; L*(Q2, H*(Y1))) for any ¢ € (1, +00),

(i) 7 (uie) — uy  weakly® in L°°(0,T; L*(Q, H'(Y1))),

(iii) 77 (Vuie) — Vuy + Vi weakly” in L>(0,T; L*(Q x Y7)),

(iv) 75 (uge) — uy  weakly™ in L>=(0,T; L*(Q, H'(Y2))), (3.2)
(v) T5(Vug.) = 0 weakly” in L°(0,T; L*(Q x Y3)),

(vi) 77 (u)) — ) weakly” in L>(0,T; L*(Q x Y))

(vii) @ — Qu;  weakly” in L™(0,T; L*(1)),

And the pair (uq, ;) is the unique solution in L*(0,T; Hg(Q)) x L*(0,T; L*(Q, H}.(Y1)))
with Mr(u;) = 0 for a.e. x € €, of the problem

T
/ / u V" dedt + — / / A(Vuy + V,u) (VY + V, @) pdrdydt
o Jo Y] axv;

T
= / /(91f1 + 02 f2)Wpdxdt for all p € D(0,T),¥ € H} () and ® € L*(Q, H!_ (1)),
0 Q

per
Ul(ﬂﬁ,O) = 91U{) + 92U20 in Q,
u) (2,0) = 0,U] + 0,U, in Q.

Moreover, we have

(3.3)

where x; € L>(; H),(Y)) (j = 1,- - -,n) is the solution of the cell problem (1.6).
The proofs of Theorem 3.1 and Theorem 1.1 mainly rely on the periodic unfolding
method. Indeed, following the lines of proof of Theorem 3.1 [4], we can use Theorem 2.6 to

obtain the proofs of these two theorems.



No. 1 A note on homogenization of the hyperbolic problems with imperfect interfaces 35

Remark 3.2 Following the framework in the proof of Theorem 3.2 [8], we derive

1 ~ ~
/ AV Vu, de = — A(Vuy + Vyuy)(Vuy + Vyuy)dz dy
Q |Y| QxYy (3 4)
1 ~ ~ '
+ A(Vyu2)(Vyus)dz dy,
|Y| QXY

which will be used in the proof of Corollary 4.2.
Remark 3.3 In Theorem 1.1, we exclude the case v = 1. For this case, the homoge-
nized problem is a coupled system of a PDE and an ODE. As a result, the corrector results

are more complicated.

4 Proof of Theorem 1.2

In this section, we are devoted to the proof of corrector results. To do that, we need
some stronger assumptions than those of the homogenization results. Here, we impose the
assumptions (1.8)—(1.10), as presented in [4], which are slightly weaker than those in [3].
Under these assumptions, the energy of problem (1.1) converges in C°([0,77]) to that of the
homogenized one. Moreover, we obtain that some convergences in (3.2) are strong ones.

For each ¢, the energy E°(t), associated to the problem (1.1), is defined by

1
E°(t) ::2[/ u’la(t)|2dx+/ |u’2€(t)|2d:r+/ A*Vu1Vuye de
ng QZE

le

+ / AEV’LLQEV'LLQE dx + e’ / hE|U1€ — ’LL25|2dO'wi| .
Qoc I'e

The energy associated to the homogenized problem (1.4) is defined by

1
E(t) = 5 [/ |u}|*dx + / A'Vu, Vuy d:r}.
Q Q

Following the classical arguments (see for instance [3]), we have the following result.
Theorem 4.1 Let v € (—1,1). Suppose that u. is the solution of problem (1.1) with
the initial data satisfying (1.8)—(1.10). Let u; be the solution of the homogenized problem
(1.4), then we have
E¢(t) — E(t) strongly in C°([0, T)).

Corollary 4.2 Under the assumptions of Theorem 4.1, we have

(1) [Juicllzz0,m:2a00) — 0, [[Vurellz2 0,102 (ar0)) — 0 and

T (u).) — v} strongly in L?*(0,T; L*(Q2 x Y;)) for i=1,2,

(ii) 75 (Vue) — Vauy + V,uy  strongly in L2(0,T; L*(Q x Y7)),

(iii) | Vuacl| 220,712 (02.)) — 0,

where u; is given by Theorem 3.1.
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To prove this corollary, we need the following classical result.

Proposition 4.3 (see [14]) Let {D.} be a sequence of n x n matrices in M («, 3, O)
for some open set O, such that D. — D a.e. on O (or more generally, in measure in O). If
¢. — ¢ weakly in L?*(0), then

/DCCdeliminf/ D.(.(. dx.
o =0 Jo

Proof of Corollary 4.2 From (3.4), we have

T 1 [T 1 T
2/ E(t)dt = / / |u} | do dy dt + / / |u} | d dy dt
0 Y| axv; Y] QXY
/ / A(Vuy + V) (Vuyg + Vyuy) de dy dt.
‘Y| QXYl

By Proposition 4.3 and the weak lower-semicontinuity, we deduce

T T
1
2/ E(t)dtghminf// [Tf(u’ls)]zdmdydt
0 =0 |V QxY;
+hm1nf/ / Tgue d:vdydt
e—0 |Y| QOxYs 2

+ liminf — V] / / T (Vui )T (Vuge) dx dy dt.
QXYl

e—0

Thus, Proposition 2.3 allows us to get that

T T T T T
/ E(t)dt <lim inf/ E*(t)dt < lim sup/ E°(t)dt < lim E¢(t)dt = / E(t)dt,
0 0 0 0

e—0 e—0 e—=0 /g,

where .
Ee(t) = - [/ |u) | dx +/ b, |*dx +/ AEVukVulEd:I:}.
Moreover,
T T T
lim E¢(t)dt = lim E¢(t)dt = / E(t)dt. (4.2)
e—0 0 e—0 0 0

The former equality implies that

T T
/ / |} |Pdx dt + / / |ub, |*dx dt — 0,
0 Ala 0 AQa
T
/ / A*Vu . Vuiedr dt — 0,
0 AlE

T
/ / A*Vus,Vuo.dx dt — 0.
0 925

These give the first line and (iii) in (4.1) due to the ellipticity of A®.
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By the latter equality in (4.2) and Proposition 2.3, we know

T T
/ / (T3 (a2 dy dt + / / 1T (ud) P dy
QxYy QxYs

/ / T (Vur) T (Ve )de dy dt — 2|Y|/ )dt.
QOxY;

Combining this with (3.2), we obtain

T T
/ / [T (uf,) — u’1]2dac dy dt + / / |75 (uh.) — u’l]Qdaz dy dt
QxY; 0 QxYs

/ / TE (V) — (Vuy + vyal)] [Tf(Vuls) — (Vur + vyal)} dz dy dt
QXYl

—>2|Y|/ t)dt — |2|Y|/ dt+2|Y|/ dt2|Y|/

This together with the ellipticity of A, allows us to obtain the rest convergences in (4.1).

Proof of Theorem 1.2 Observe that u; is independent of y. By (ii) of Proposition 2.4,

the first convergence in (1.11) follows from (i) in Corollary 4.2. By (i) and (ii) in Corollary

4.2,

we use (iii) of Proposition 2.4 to get

Ve — U5 (Vur + V)| 2200,1502(04.)) — 0.

By the fact that Vu, is independent of y, (i) of Proposition 2.4 gives

Vuy — Ui (Vur) |l z20,7:22(0.0)) — O-

Together with (3.3) and Proposition 2.5, we complete the proof of Theorem 1.2.
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