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1 Introduction

In this paper, we study the homogenization and corrector results for the following hy-
perbolic problem with −1 < γ < 1,





u′′1ε − div(Aε∇u1ε) = f1ε in Ω1ε × (0, T ),

u′′2ε − div(Aε∇u2ε) = f2ε in Ω2ε × (0, T ),

Aε∇u1ε · n1ε = −Aε∇u2ε · n2ε on Γε × (0, T ),

Aε∇u1ε · n1ε = −εγhε(u1ε − u2ε) on Γε × (0, T ),

u1ε = 0 on ∂Ω× (0, T ),

u1ε(x, 0) = U0
1ε(x), u′1ε(x, 0) = U1

1ε(x) in Ω1ε,

u2ε(x, 0) = U0
2ε(x), u′2ε(x, 0) = U1

2ε(x) in Ω2ε,

(1.1)

where Ω ⊂ Rn is the union of two ε-periodic sub-domains Ω1ε and Ω2ε, separated by an
interface Γε, such that Ω1ε∪Ω2ε = Ω and Γε = ∂Ω2ε. Here, Ω1ε is connected and the number
of connected components of Ω2ε is of order ε−n. This problem models the wave propagation
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in a medium made up of two materials with different coefficients of propagation. For the
physical model, we refer the reader to Carslaw and Jaeger [1].

Let Y = [0, l1)× · · · × [0, ln) be the reference cell with li > 0, i = 1, · · ·, n. We suppose
that Y1 and Y2 are two nonempty open disjoint subsets of Y such that Y = Y1 ∪ Y2, where
Y1 is connected and Γ = ∂Y2 is Lipschitz continuous. Throughout this paper, we have the
following assumptions.

• For any ε, Aε(x) = (aε
ij(x))1≤i,j≤n is a matrix satisfying the following:

Aε is symmetric and there exist α, β ∈ R+(0 < α < β) such that

(Aελ, λ) ≥ α|λ|2, |Aελ| ≤ β|λ| for all λ ∈ Rn and a.e. x ∈ Ω.

• For any ε, hε(x) = h(x/ε), where h is a Y -periodic function such that h ∈ L∞(Γ) and
there exists h0 ∈ R such that 0 < h0 < h(y) a.e. on Γ.

• The initial data satisfy the assumptions:

U0
ε := (U0

1ε, U
0
2ε) ∈ V ε ×H1(Ω2ε), U1

ε := (U1
1ε, U

1
2ε) ∈ L2(Ω1ε)× L2(Ω2ε)

and
fε := (f1ε, f2ε) ∈ L2

(
0, T ;L2(Ω1ε)

)× L2
(
0, T ;L2(Ω2ε)

)
.

For the classical case Aε(x) = A(x/ε) with A being periodic, symmetric, bounded and
uniformly elliptic, Donato, Faella and Monsurrò gave the homogenization for γ ≤ 1 in [2].
Later, they obtained the corrector results in [3] for −1 < γ ≤ 1. Their proofs are based on
the oscillating test functions method. In [4], the first author gave the corrector results for
γ < −1 by the unfolding method. However, the above methods do not work for the case
that Aε(x) is non-periodic coefficient matrix.

In this paper, we will consider problem (1.1) with Aε(x) being non-periodic for −1 <

γ < 1. More precisely, suppose that there exists a matrix A = (aij)1≤i,j≤n such that

Tε(Aε) → A strongly in (L1(Ω× Y ))n×n, (1.2)

where Tε is the unfolding operator. By the unfolding method, we derive the homogenization
and corrector results for −1 < γ < 1. Next, we state our main theorems, in which we will use
some notations to be defined in the next section. We first state the homogenization results
whose unfolded formulation will be provided for the study of correctors in Section 3.

Theorem 1.1 For −1 < γ < 1, let uε be the solution of problem (1.1) with (1.2). We
further suppose that

‖U0
ε ‖Hε

γ
is uniformly bounded,

Ũ0
ε ⇀ (θ1U

0
1 , θ2U

0
2 ) weakly in L2(Ω)× L2(Ω), where U0

2 ∈ H1
0 (Ω),

Ũ1
ε ⇀ (θ1U

1
1 , θ2U

1
2 ) weakly in L2(Ω)× L2(Ω),

f̃ε ⇀ (θ1f1, θ2f2) weakly in L2
(
0, T, L2(Ω)

)× L2
(
0, T, L2(Ω)

)
.

(1.3)
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Then there exists u1 ∈ L∞(0, T ;H1
0 (Ω)) such that

ũiε ⇀ θiu1 weakly∗ in L∞(0, T ;L2(Ω)), i = 1, 2.

Also, u1 is the unique solution of the following problem:



u′′1 − div(A0∇u1) = θ1f1 + θ2f2 in Ω× (0, T ),

u1 = 0 on ∂Ω× (0, T ),

u1(x, 0) = θ1U
0
1 + θ2U

0
2 in Ω,

u′1(x, 0) = θ1U
1
1 + θ2U

1
2 in Ω,

(1.4)

where the homogenized matrix A0 = (a0
ij(x))1≤i,j≤n is defined by

a0
ij(x) = θ1MY1

(
aij +

n∑
k=1

aik
∂χj

∂yk

)
, (1.5)

and χj ∈ L∞(Ω;H1
per(Y1)) (j = 1, · · ·, n) is the solution of the following cell problem:





−div
(
A∇(χj + yj)

)
= 0 in Y1,

A∇(χj + yj) · n1 = 0 on Γ,

MY1(χj) = 0, χj is Y -periodic.

(1.6)

Further, we have the following precise convergence of flux:

Aε∇̃u1ε ⇀ A0∇u1 weakly∗ in L∞(0, T ;L2(Ω)),

Aε∇̃u2ε ⇀ 0 weakly∗ in L∞(0, T ;L2(Ω)).
(1.7)

Notice that the homogenized matrix A0 still depends on x, compared with the classical
constant matrix (see for instance [2, 4]).

In order to investigate the corrector results, we need stronger assumptions on the initial
data than that of the convergence results, as already evidenced in the classical works (see,
for instance, [3, 5]). Here we impose some assumptions, introduced by the first author (see
[4] for more details), which are slightly weaker than those in [3]. Now we list them as follows.

(i) For fiε ∈ L2
(
0, T ;L2(Ωiε)

)
(i = 1, 2), there exists fi in L2(0, T ;L2(Ω)) such that

‖fiε − fi‖L2(0,T ;L2(Ωiε)) → 0 for i = 1, 2. (1.8)

(ii) For U1
iε ∈ L2(Ω1ε)(i = 1, 2), there exists U1 ∈ L2(Ω) such that

‖U1
iε − U1‖L2(Ωiε) → 0. (1.9)

(iii) For U0
ε , we assume that




(i) ‖U0
ε ‖Hε

γ
is uniformly bounded,

(ii) Ũ0
1ε ⇀ θiU

0 weakly in L2(Ω), i = 1, 2,

(iii)
∫

Ω1ε

Aε∇u1ε∇u1ε dx +
∫

Ω2ε

Aε∇u2ε∇u2ε dx

+εγ

∫

Γε

hε(u1ε − u2ε)2dσx −→
∫

Ω

A0∇U0∇U0 dx,

(1.10)
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where U0 is given in H1
0 (Ω).

These assumptions ensure the convergence of the energy in C0([0, T ]). Moreover, we
obtain the following corrector results.

Theorem 1.2 For −1 < γ < 1, let uε be the solution of problem (1.1) with (1.2).
Suppose that the initial data satisfy (1.8)–(1.10). Let u1 be the solution of the homogenized
problem (1.4), then we have the following corrector results:

‖ũ′1ε + ũ′2ε − u′1‖L2(0,T ;L2(Ω)) → 0,

‖∇u1ε −∇u1 −
n∑

i=1

Uε
1

(∂u1

∂xi

)Uε
1 (∇yχi)‖L2(0,T ;L2(Ω1ε)) −→ 0,

‖∇u2ε‖L2(0,T ;L2(Ω2ε)) −→ 0,

(1.11)

where χj ∈ L∞(Ω; H1
per(Y ))(j = 1, · · ·, n) is the solution of the cell problem (1.6).

For the parabolic case, Jose [6] proved the homogenization for γ ≤ 1. Later, the
corrector results for −1 < γ ≤ 1 were given by Donato and Jose [7]. Recently, by the
unfolding method, the first author obtained the homogenization and corrector results for
γ ≤ 1 in [8]. Our results are also related to those of hyperbolic problems in perforated
domains which were studied in [9, 10].

The paper is organized as follows. In Section 2, we briefly recall the unfolding method
in perforated domains. Section 3 is devoted to the homogenization result. In Section 4, we
prove the corrector results.

2 Preliminaries

Let Ω ⊂ Rn be an open and bounded set with Lipschitz continuous boundary. Let ε be
the general term of a sequence of positive real numbers which converges to zero.

For any k ∈ Zn, we denote

Y k = kl + Y, Γk = kl + Γ, Y k
i = kl + Yi,

where kl = (k1l1, · · ·, knln) and i = 1, 2. For any fixed ε, let Kε = {k ∈ Zn | εY k
i ∩Ω 6= ∅, i =

1, 2}. We suppose that

∂Ω ∩ ( ⋃
k∈Zn

(εΓk)
)

= ∅

and define the two components of Ω and the interface respectively by

Ω2ε =
⋃

k∈Kε

εY k
2 , Ω1ε = Ω\Ω2ε, Γε = ∂Ω2ε.

Observe that ∂Ω and Γε are disjoint, the component Ω1ε is connected and the component
Ω2ε is union of ε−n disjoint translated sets of εY2.
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The following notations are related to the unfolding method in [11–13]:

K̂ε = {k ∈ Zn | εY k ⊂ Ω}, Ω̂ε = int
⋃

k∈K̂ε

ε(kl + Y ), Λε = Ω\Ω̂ε,

Ω̂iε =
⋃

k∈K̂ε

εY k
i , Λiε = Ωiε\Ω̂iε, i = 1, 2, Γ̂ε = ∂Ω̂2ε.

This paper will also use the following notations:
• θi = |Yi|/|Y |, i = 1, 2.

• MO(v) = 1
|O|

∫

O
vdx.

• g̃ is the zero extension to Ω (respectively Ω × A) of any function g defined on Ωiε

(respectively Ωiε ×A) for i = 1, 2.
• V ε is defined by

V ε := {v ∈ H1(Ω1ε) | v = 0 on ∂Ω}
endowed with the norm ‖v‖V ε = ‖∇v‖L2(Ω1ε).

• For any γ ∈ R, the product space

Hε
γ := {u = (u1, u2) | u1 ∈ V ε, u2 ∈ H1(Ω2ε)}

is equipped with the norm

‖u‖2
Hε

γ
= ‖∇u1‖2

L2(Ω1ε) + ‖∇u2‖2
L2(Ω2ε) + εγ‖u1 − u2‖2

L2(Γε).

• C denotes generic constant which does not depend upon ε.
• The notation Lp(O) will be used both for scalar and vector-valued functions defined

on the set O, since no ambiguity will arise.
In the rest of this section, we give a brief review of the unfolding operators in two-

component domains. We refer the reader to [9] and [14] for further properties and related
comments.

For any x ∈ Rn, we use [x]Y to denote its integer part (k1l1, · · · , knln) such that x−[x]Y ∈
Y , and set {x}Y = x− [x]Y . Then one has

x = ε
([x

ε

]
Y

+
{x

ε

}
Y

)
for any x ∈ Rn.

Definition 2.1 [2] Let i = 1, 2. For p ∈ [1,+∞) and q ∈ [1,∞], let φ ∈ Lq(0, T ;Lp(Ωiε)).
The unfolding operator T ε

i : Lq(0, T ;Lp(Ωiε)) → Lq(0, T ;Lp(Ω× Yi)) is defined as follows:

T ε
i (φ)(x, y, t) =





φ
(
ε
[x

ε

]
Y

+ εy, t
)

a.e. for (x, y, t) ∈ Ω̂ε × Yi × (0, T ),

0 a.e. for (x, y, t) ∈ Λε × Yi × (0, T ).

Definition 2.2 [2] Let i = 1, 2. For p ∈ [1,+∞) and q ∈ [1,+∞], let φ be in
Lq(0, T ;Lp(Ω × Yi)). The averaging operator Uε

i : Lq(0, T ;Lp(Ω × Yi)) 7→ Lq(0, T ;Lp(Ωiε))
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is defined as follows:

Uε
i (φ)(x, t) =





1
|Y |

∫

Y

φ
(
ε
[x

ε

]
Y

+ εz,
{x

ε

}
Y
, t

)
dz a.e. for (x, t) ∈ Ω̂iε × (0, T ),

0 a.e. for (x, t) ∈ Λiε × (0, T ).

Proposition 2.3 For p ∈ [1,+∞) and q ∈ [1,∞], let φ ∈ Lq(0, T ;L1(Ωiε)). Then for
a.e. t ∈ (0, T ), we have

1
|Y |

∫

Ω×Yi

T ε
i (φ)(x, y, t) dx dy =

∫

Ω̂iε

φ(x, t) dx =
∫

Ωiε

φ(x, t) dx−
∫

Λiε

φ(x, t) dx.

Proposition 2.4 (some convergence properties)
(i) Let ω ∈ L2(0, T ;L2(Ω)), then ‖Uε

i (ω)− ω‖L2(0,T ;L2(Ωiε)) → 0.

(ii) Let ωε ∈ L2(0, T ;L2(Ωiε)) and ω ∈ L2(0, T ;L2(Ω)), then the following two asser-
tions are equivalent:

(a) T ε
i (ωε) → ω strongly in L2(0, T ;L2(Ω× Yi)) and ‖ωε‖L2(0,T ;L2(Λiε)) → 0,

(b) ‖ωε − ω‖L2(0,T ;L2(Ωiε)) → 0.

(iii) Let ωε ∈ L2(0, T ;L2(Ωiε)) and ω ∈ L2(0, T ;L2(Ω × Yi)), then the following two
assertions are equivalent:

(a) T ε
i (ωε) → ω strongly in L2(0, T ;L2(Ω× Yi)) and ‖ωε‖L2(0,T ;L2(Λiε)) → 0,

(b) ‖ωε − Uε
i (ω)‖L2(0,T ;L2(Ωiε)) → 0.

Following the arguments in the proof of [Proposition 1.7, 14] (see also [Proposition 2.13,
9]), we can obtain the following result which will be used to get the corrector results.

Proposition 2.5 Let p, q ∈ [1,∞), for i = 1, 2, let f ∈ Lq(0, T ;Lp(Ω)) and g ∈
L∞(Ω;Lp(Yi)), then we have

‖Uε
i (fg)− Uε

i (f)Uε
i (g)‖Lq(0,T ;Lp(Ωiε)) → 0.

We end this subsection with the following convergence theorem which is crucial to
obtaining our homogenization result.

Theorem 2.6 Let uε = (u1ε, u2ε) and {uε} be in L∞(0, T ;Hε
γ) with −1 < γ < 1. If

‖uε‖L∞(0,T ;Hε
γ) + ‖u′ε‖L∞(0,T ;L2(Ω1ε)×L2(Ω2ε)) ≤ C,

then there exist u1 ∈ L∞(0, T ;H1
0 (Ω)) and û1 ∈ L∞(0, T ;L2(Ω,H1

per(Y1))) with MΓ(û1) = 0
for a.e. x ∈ Ω, such that, up to a subsequence (still denoted by ε),

(i) T ε
1 (u1ε) → u1 strongly in Lq(0, T ;L2(Ω,H1(Y1))) for any q ∈ (1,+∞),

(ii) T ε
1 (u1ε) ⇀ u1 weakly∗ in L∞(0, T ;L2(Ω,H1(Y1))),

(iii) T ε
1 (∇u1ε) ⇀ ∇u1 +∇yû1 weakly∗ in L∞(0, T ;L2(Ω× Y1)),

(iv) T ε
2 (u2ε) ⇀ u1 weakly∗ in L∞(0, T ;L2(Ω,H1(Y2))),

(v) T ε
2 (∇u2ε) ⇀ 0 weakly∗ in L∞(0, T ;L2(Ω× Y2)),

(vi) T ε
i (u′iε) ⇀ u′1 weakly∗ in L∞(0, T ;L2(Ω× Yi)), i = 1, 2.
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In fact, the proof can be obtained by following the lines of the proofs of [Theorem 2.12,
14] (see also [Theorem 2.19, 9]) and [Theorem 2.20, 13].

3 Homogenization Results

In this section, we are devoted to the asymptotic behavior of the hyperbolic problem
(1.1). For every fixed ε, the Galerkin method provides that problem (1.1) has a unique
solution uε. Under assumption (1.3), following the arguments in [2], we can obtain the
following uniform estimate,

‖uε‖L∞(0,T ;Hε
γ) + ‖u′ε‖L∞(0,T ;L2(Ω1ε)×L2(Ω2ε)) ≤ C. (3.1)

Now, we state the unfolded formulation of the homogenization results (see Theorem
1.1) which will be used for getting the corrector results.

Theorem 3.1 Under the assumptions of Theorem 1.1, there exist u1 ∈ L∞(0, T ;H1
0 (Ω))

with u′1 ∈ L∞(0, T ;L2(Ω)) and û1 ∈ L∞(0, T ;L2(Ω,H1
per(Y1))) with MΓ(û1) = 0 such that

(i) T ε
1 (u1ε) → u1 strongly in Lq(0, T ;L2(Ω,H1(Y1))) for any q ∈ (1,+∞),

(ii) T ε
1 (u1ε) ⇀ u1 weakly∗ in L∞(0, T ;L2(Ω,H1(Y1))),

(iii) T ε
1 (∇u1ε) ⇀ ∇u1 +∇yû1 weakly∗ in L∞(0, T ;L2(Ω× Y1)),

(iv) T ε
2 (u2ε) ⇀ u1 weakly∗ in L∞(0, T ;L2(Ω,H1(Y2))),

(v) T ε
2 (∇u2ε) ⇀ 0 weakly∗ in L∞(0, T ;L2(Ω× Y2)),

(vi) T ε
i (u′iε) ⇀ u′1 weakly∗ in L∞(0, T ;L2(Ω× Yi)),

(vii) ũiε ⇀ θiu1 weakly∗ in L∞(0, T ;L2(Ω)), i = 1, 2.

(3.2)

And the pair (u1, û1) is the unique solution in L2(0, T ;H1
0 (Ω)) × L2(0, T ;L2(Ω,H1

per(Y1)))
with MΓ(û1) = 0 for a.e. x ∈ Ω, of the problem




∫ T

0

∫

Ω

u1Ψϕ′′dxdt +
1
|Y |

∫ T

0

∫

Ω×Y1

A(∇u1 +∇yû)(∇Ψ +∇yΦ)ϕdxdydt

=
∫ T

0

∫

Ω

(θ1f1 + θ2f2)Ψϕdxdt for all ϕ ∈ D(0, T ),Ψ ∈ H1
0 (Ω) and Φ ∈ L2(Ω,H1

per(Y1)),

u1(x, 0) = θ1U
0
1 + θ2U

0
2 in Ω,

u′1(x, 0) = θ1U
1
1 + θ2U

1
2 in Ω.

Moreover, we have

û1 =
n∑

j=1

∂u1

∂xj

χj , (3.3)

where χj ∈ L∞(Ω; H1
per(Y )) (j = 1, · · ·, n) is the solution of the cell problem (1.6).

The proofs of Theorem 3.1 and Theorem 1.1 mainly rely on the periodic unfolding
method. Indeed, following the lines of proof of Theorem 3.1 [4], we can use Theorem 2.6 to
obtain the proofs of these two theorems.
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Remark 3.2 Following the framework in the proof of Theorem 3.2 [8], we derive
∫

Ω

A0∇u1∇u1 dx =
1
|Y |

∫

Ω×Y1

A(∇u1 +∇yû1)(∇u1 +∇yû1)dx dy

+
1
|Y |

∫

Ω×Y2

A(∇yû2)(∇yû2)dx dy,

(3.4)

which will be used in the proof of Corollary 4.2.
Remark 3.3 In Theorem 1.1, we exclude the case γ = 1. For this case, the homoge-

nized problem is a coupled system of a PDE and an ODE. As a result, the corrector results
are more complicated.

4 Proof of Theorem 1.2

In this section, we are devoted to the proof of corrector results. To do that, we need
some stronger assumptions than those of the homogenization results. Here, we impose the
assumptions (1.8)–(1.10), as presented in [4], which are slightly weaker than those in [3].
Under these assumptions, the energy of problem (1.1) converges in C0([0, T ]) to that of the
homogenized one. Moreover, we obtain that some convergences in (3.2) are strong ones.

For each ε, the energy Eε(t), associated to the problem (1.1), is defined by

Eε(t) :=
1
2

[ ∫

Ω1ε

|u′1ε(t)|2dx +
∫

Ω2ε

|u′2ε(t)|2dx +
∫

Ω1ε

Aε∇u1ε∇u1ε dx

+
∫

Ω2ε

Aε∇u2ε∇u2ε dx + εγ

∫

Γε

hε|u1ε − u2ε|2dσx

]
.

The energy associated to the homogenized problem (1.4) is defined by

E(t) :=
1
2

[ ∫

Ω

|u′1|2dx +
∫

Ω

A0∇u1∇u1 dx
]
.

Following the classical arguments (see for instance [3]), we have the following result.
Theorem 4.1 Let γ ∈ (−1, 1). Suppose that uε is the solution of problem (1.1) with

the initial data satisfying (1.8)–(1.10). Let u1 be the solution of the homogenized problem
(1.4), then we have

Eε(t) → E(t) strongly in C0([0, T ]).

Corollary 4.2 Under the assumptions of Theorem 4.1, we have

(i) ‖u′iε‖L2(0,T ;L2(Λiε)) → 0, ‖∇u1ε‖L2(0,T ;L2(Λ1ε)) → 0 and

T ε
i (u′iε) → u′1 strongly in L2(0, T ;L2(Ω× Yi)) for i = 1, 2,

(ii) T ε
1 (∇u1ε) → ∇u1 +∇yû1 strongly in L2(0, T ;L2(Ω× Y1)),

(iii)‖∇u2ε‖L2(0,T ;L2(Ω2ε)) → 0,

(4.1)

where û1 is given by Theorem 3.1.
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To prove this corollary, we need the following classical result.
Proposition 4.3 (see [14]) Let {Dε} be a sequence of n × n matrices in M(α, β,O)

for some open set O, such that Dε → D a.e. on O (or more generally, in measure in O). If
ζε ⇀ ζ weakly in L2(O), then

∫

O
Dζζ dx ≤ lim inf

ε→0

∫

O
Dεζεζε dx.

Proof of Corollary 4.2 From (3.4), we have

2
∫ T

0

E(t) dt =
1
|Y |

∫ T

0

∫

Ω×Y1

|u′1|2 dx dy dt +
1
|Y |

∫ T

0

∫

Ω×Y2

|u′1|2 dx dy dt

+
1
|Y |

∫ T

0

∫

Ω×Y1

A(∇u1 +∇yû1)(∇u1 +∇yû1) dx dy dt.

By Proposition 4.3 and the weak lower-semicontinuity, we deduce

2
∫ T

0

E(t) dt ≤ lim inf
ε→0

1
|Y |

∫ T

0

∫

Ω×Y1

[T ε
1 (u′1ε)

]2
dx dy dt

+ lim inf
ε→0

1
|Y |

∫ T

0

∫

Ω×Y2

[T ε
2 (u′2ε)

]2
dx dy dt

+ lim inf
ε→0

1
|Y |

∫ T

0

∫

Ω×Y1

A(y)T ε
1 (∇u1ε)T ε

1 (∇u1ε) dx dy dt.

Thus, Proposition 2.3 allows us to get that

∫ T

0

E(t)dt ≤ lim inf
ε→0

∫ T

0

Êε(t)dt ≤ lim sup
ε→0

∫ T

0

Êε(t)dt ≤ lim
ε→0

∫ T

0

Eε(t)dt =
∫ T

0

E(t)dt,

where
Êε(t) :=

1
2

[ ∫

Ω̂1ε

|u′1ε|2dx +
∫

Ω̂2ε

|u′2ε|2dx +
∫

Ω̂1ε

Aε∇u1ε∇u1εdx
]
.

Moreover,

lim
ε→0

∫ T

0

Eε(t)dt = lim
ε→0

∫ T

0

Êε(t)dt =
∫ T

0

E(t)dt. (4.2)

The former equality implies that

∫ T

0

∫

Λ1ε

|u′1ε|2dx dt +
∫ T

0

∫

Λ2ε

|u′2ε|2dx dt → 0,

∫ T

0

∫

Λ1ε

Aε∇u1ε∇u1εdx dt → 0,

∫ T

0

∫

Ω2ε

Aε∇u2ε∇u2εdx dt → 0.

These give the first line and (iii) in (4.1) due to the ellipticity of Aε.
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By the latter equality in (4.2) and Proposition 2.3, we know
∫ T

0

∫

Ω×Y1

[T ε
1 (u′1ε)]

2dx dy dt +
∫ T

0

∫

Ω×Y2

[T ε
2 (u′2ε)]

2dx dy dt

+
∫ T

0

∫

Ω×Y1

A(y)T ε
1 (∇u1ε)T ε

1 (∇u1ε)dx dy dt −→ 2|Y |
∫ T

0

E(t)dt.

Combining this with (3.2), we obtain
∫ T

0

∫

Ω×Y1

[T ε
1 (u′1ε)− u′1

]2
dx dy dt +

∫ T

0

∫

Ω×Y2

[T ε
2 (u′2ε)− u′1

]2
dx dy dt

+
∫ T

0

∫

Ω×Y1

A(y)
[
T ε

1 (∇u1ε)− (∇u1 +∇yû1)
][
T ε

1 (∇u1ε)− (∇u1 +∇yû1)
]
dx dy dt

−→2|Y |
∫ T

0

E(t)dt− |2|Y |
∫ T

0

E(t)dt + 2|Y |
∫ T

0

E(t)dt− 2|Y |
∫ T

0

E(t)dt = 0.

This together with the ellipticity of A, allows us to obtain the rest convergences in (4.1).
Proof of Theorem 1.2 Observe that u1 is independent of y. By (ii) of Proposition 2.4,

the first convergence in (1.11) follows from (i) in Corollary 4.2. By (i) and (ii) in Corollary
4.2, we use (iii) of Proposition 2.4 to get

‖∇u1ε − Uε
1 (∇u1 +∇yû1)‖L2(0,T ;L2(Ω1ε)) → 0.

By the fact that ∇u1 is independent of y, (i) of Proposition 2.4 gives

‖∇u1 − Uε
1 (∇u1)‖L2(0,T ;L2(Ω1ε)) → 0.

Together with (3.3) and Proposition 2.5, we complete the proof of Theorem 1.2.
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带不完美界面的双曲问题均匀化的一个注记

杨占英1,于云霞2

(1.中南民族大学数学与统计学学院, 湖北武汉 430074)

(2.新乡学院数学系, 河南新乡 453000)

摘要: 本文研究了一类二分区域上的具有非周期系数的双曲问题. 利用周期Unfolding方法, 得到了均

匀化及其矫正结果, 推广了Donato, Faella 和Monsurrò 的工作.
关键词: 双曲问题; 周期Unfolding 方法; 均匀化; 矫正
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