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Abstract: In this paper, the authors consider the IBVP for a class of second-order quasilin-

ear wave equation. By the method of characteristic analysis, the global smooth resolvability are

obtained under certain hypotheses on the initial data, which extend the result of Yang and Liu [8].
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1 Introduction

In this paper we consider the initial-boundary value problems (IBVP) for the following
quasilinear wave equation

utt − k(ux)x + γut = 0, t ≥ 0, 0 ≤ x ≤ 1, (1.1)

where k(v) is a sufficiently smooth function such that

k(0) = 0, 0 < k0 ≤ k′(v) ≤ k1, |k′′(v)| ≤ k2, (1.2)

and k0, k1, k2, γ are positive constants.
Equation (1.1) arises in a variety of ways in several areas of applied mathematics and

physics. When γ = 0, equation (1.1) serves to model the transverse vibrations of a finite
nonlinear string, for its Cauchy problem, Klainerman and Majda [1] proved that the second
order derivatives of the C2 solution u = u(t, x) must blow up in a finite time, Greenberg and
Li [5] proved global smooth solutions do exist under the dissipative boundary condition.

For the case that γ 6= 0, in a significant piece of work Nishida [2] considered the initial-
value problem for (1.1), using a Riemann invariant argument, the global smooth resolvability
has been proved if the initial data are small in an appropriate sense.
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For other results related to (1.1) and nonlinear string equation, we may refer to [3, 4,
etc].

In this paper, we consider equation (1.1) on the strip [0, 1]× (0,∞) with the following
initial and fixed boundary data

x = 0 : k(ux) = ut = 0, t ≥ 0, (1.3)

x = 1 : ut = 0, t ≥ 0, (1.4)

t = 0 : u = εf(x), ut = εg(x), x ∈ [0, 1], (1.5)

where
f(x) ∈ C2([0, 1]).

We also require the compatibility conditions

g(0) = g(1) = 0, k′(0)f ′(0) + γg′(0) = 0. (1.6)

We will show that problem (1.1) and (1.3)–(1.5) admits a unique global C1 solution.

2 Preliminaries and Main Theorem

If in (t, x) space we set ut = w, ux = v, then (1.1) is transformed into the dissipative
quasilinear system {

vt − wx = 0,

wt − k(v)x = −γw.
(2.1)

The eigenvalues λ1, λ2 and the Riemann invariants r and s for system (2.1) are, respec-
tively,

−λ1 = λ2 = λ =
√

k′(v) > 0, (2.2)

2r = w +
∫ v

0

√
k′(y) dy, 2s = w −

∫ v

0

√
k′(y) dy. (2.3)

Thus problems (2.1) and (1.3)–(1.5) can be written as




rt − λrx = −γ(r + s),
st + λsx = −γ(r + s),
t = 0 : (r(0, x), s(0, x)) = (r0(x), s0(x)) x ∈ [0, 1],
x = 0 : r(t, 0) = s(t, 0) = 0; x = 1 : r(t, 1) = s(t, 1) t ≥ 0,

(2.4)

where

r0(x) =
1
2
(
∫ v0(x)

0

√
k′(y) dy − g(x)), s0(x) =

1
2
(−

∫ v0(x)

0

√
k′(y) dy − g(x)).

Our main result of this paper may be stated as
Theorem 2.1 Assume that (1.2) and (1.6) hold, if ε is small enough, then IBVP (1.1)

and (1.3)–(1.5) admits a unique global C1 solution.
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Remark 2.1 Theorem 2.1 shows that the interior dissipative effect of the equation
in guaranteeing the global existence of classical solution which is different to that of the
dissipative effect of boundary in [5].

3 Proof of Main Theorem

By the local existence theorem of smooth solutions (see [7]), we only need to establish
the uniform C1 estimates for the solutions of (2.4) a priori. For our purpose, we give the
following lemma which play an important role in our analysis.

Lemma 3.1 Let r(t, x), s(t, x)be the solution to problem (2.4), then it holds for any
t ≥ 0 that

sup
0≤t≤τ

max
{|(r, s)(·, τ)|} ≤ max

{|(r0(x), s0(x))|}.

Proof Let
J(t) = sup

0≤t≤τ
max{|(r, s)(·, τ)|}. (3.1)

For every fixed T > 0, without loss of generality, we assume that J(t) is reached by r(t, x)
first at some point

(t, x) ∈ D(T ) = [0, T ]× [0, 1],

then for arbitrary (t, x) ∈ D, let

ξ = fi(τ ; t, x) (i = 1, 2)

be the forward and backward characteristics passing through point (t, x), that is,

dfi(τ ; t, x)
dτ

= λi(τ ; fi(τ ; t, x)) 6= 0, (3.2)

τ = t : fi(t; t, x) = x, i = 1, 2. (3.3)

Now we discuss the backward characteristics, the other cases can be treated similarly.
For the backward characteristics ξ = f2(τ ; t, x), there are two possibilities.

(1) ξ = f2(τ ; t, x) interacts the interval [0, 1] on the x-axis at (0, x0), thus we have

|r(t, x)| ≤ exp
{
−

∫ t

0

γdu

}
|r0(x)|+

∫ t

0

γ exp
{
−

∫ t

τ

γdu

}
|s|dτ. (3.4)

Due to

exp
{
−

∫ t

0

γdu

}
< 1 (3.5)

and
∫ t

0

γ exp
{
−

∫ t

τ

γdu

}
|s|dτ ≤

∫ t

0

γ exp
{
− γ(t− τ)

}
|s|dτ

≤
(

1− exp
{
−

∫ t

τ

γdu

})
|s|, (3.6)
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then it follows from (3.4)–(3.6) that

J(t) ≤ J(0). (3.7)

(2) ξ = f2(τ ; t, x) interacts the boundary x = 1 at (t1, 1), then by (2.4) we have

|r(t, x)| ≤ exp
{
−

∫ t

t1

γdu

}
|r(t1, 1)|+

∫ t

t1

γ exp
{
−

∫ t

τ

γdu

}
|s|dτ. (3.8)

Then from (t1, 1) we draw a forward characteristic which interacts the boundary x = 0 at
(t2, 0), along this characteristic, similar to (3.8), it holds that

|r(t1, 1)| = |s(t1, 1)|

≤ exp
{
−

∫ t1

t2

γdu

}
|s(t2, 0)|+

∫ t1

t2

γ exp
{
−

∫ t1

τ

γdu

}
|r|dτ. (3.9)

Thus, for the backward characteristic ξ = f2(τ ; t2, 0) passing through point (t2, 0), there
are still two possibilities:

(2a) the backward characteristic interacts the interval [0, 1] on the x-axis;
(2b) the backward characteristic interacts the boundary x = 1.
Noting that the monotonicity of the characteristic, after finite times refraction, the

characteristic must interacts the interval [0, 1] on the x-axis. Without loss of generality,
we may assume that the backward characteristic from (t2, 0) interacts the interval [0, 1] at
(x0, 0), so we have

|s(t2, 0)| = |r(t2, 0)|

≤ exp
{
−

∫ t2

0

γdu

}
|r0(x)|+

∫ t2

0

γ exp
{
−

∫ t2

τ

γdu

}
|s|dτ. (3.10)

Combining (3.8)–(3.10), we can obtain

|r(t, x)| ≤ exp
{
−

∫ t

0

γdu

}
|r0(x)|+ exp

{
−

∫ t

t2

γdu

}
·
∫ t2

0

γ exp
{
−

∫ t2

τ

γdu

}
|s|dτ

+exp
{
−

∫ t

t1

γdu

}
·
∫ t1

t2

γ exp
{
−

∫ t1

τ

γdu

}
|r|dτ

+
∫ t

t1

γ exp
{
−

∫ t

τ

γdu

}
|s|dτ. (3.11)

The combination of (3.1) and (3.11) yields

J(t) ≤ exp
{
−

∫ t

0

γdu

}
|r0(x)|+

(
1− exp

{
−

∫ t

0

γdu

})
J(t). (3.12)

Noting that (3.5), (3.12) imply (3.7) too.
By (3.7), we immediately get the conclusion of Lemma 2.1.
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Next, in order to prove Theorem 2.1 it suffices to establish a uniform a priori estimate
on C0 norm to the first order derivatives of the C1 solution to IBVP (2.4). To this end, we
differentiate (2.4) with respect to x, it is easy to see that





drx

dt
= λxrx − γ(r + s),

Dsx

Dt
= −λxsx − γ(r + s),

t = 0 : (rx(0, x), sx(0, x)) = (r′0(x), s′0(x)) x ∈ [0, 1],
x = 0 : rx(t, 0) = sx(t, 0); x = 1 : rx(t, 1) = sx(t, 1) t ≥ 0,

(3.13)

where
d

dt
= ∂t − λ∂x,

D

Dt
= ∂t + λ∂x,

and the initial data for (rx, sx) can be easily derived from (2.3) and (2.4).
Lemma 3.2 Assume that (1.2) holds, if ε is small enough, then we have

|rx(t, x)| ≤ k3, |sx(t, x)| ≤ k3, (3.14)

where
k3 = max{|rx(0, x)|, |sx(0, x)|}.

Proof Noting that (1.2), by the continuity of λ, with the help of the local result and
a standard continuity argument, for the time being we suppose that

|λx(t, x)| ≤ k4, (3.15)

then we can use the method similar to Lemma 3.1 and easy verify the following facts

|rx(t, x)| ≤ k3, |sx(t, x)| ≤ k5,

where k5 > 0 is a constant, and we have |λx(t, x)| ≤ k4, which verifies the a priori assumption
(3.15). The details will be omitted.

Applying Lemma 3.1 and Lemma 3.2, Theorem 2.1 is obtained.
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