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Abstract: In the paper, we study the stochastic stability for non-linear autoregressive mod-

els. By establishing an appropriate Foster-Lyapunov criterion, a sufficient condition for geometric

transience is presented.
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1 Introduction

Consider a non-linear autoregressive Markov chain {Φn : n ∈ Z+} on R defined by

Φn+1 = F (Φn) + Un+1, n ∈ Z+,

where F : R → R is a continuous function, {Un : n ∈ Z+} is a sequence of i.i.d. random
variables with distribution

Γ(−∞, x] = P{Un ≤ x}, x ∈ R,

and Φ0 is independent of {Un : n ∈ Z+}. Assume that the distribution Γ is absolutely
continuous with respect to the Lebesgue measure λ, and has a density which is positive
everywhere. The non-linear autoregressive model attracted a large amount of attention in
the literature. Most of the studies focued on conditions implying ergodicity, sub-geometric
ergodicity and geometric ergodicity, see e.g. [1–4] and references therein. In the paper, we
aim to present a sufficient condition for geometric transience for the non-linear autoregressive
model.

First, let us recall some notations and definitions, see [3, 5, 6] for details. Denote by
B(R) the Borel σ-field on R, and write B+(R) = {A ∈ B(R) : λ(A) > 0}. The n-step
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transition kernel of the chain Φn is defined as

P n(x,A) = Px{Φn ∈ A}, n ∈ Z+, x ∈ R, A ∈ B(R),

where Px is the conditional distribution of the chain given Φ0 = x. The corresponding
expectation operator will be denoted by Ex. The operator P acts on non-negative measurable
functions f via

Pf(x) =
∫

R
f(y)P (x, dy), x ∈ R.

The chain Φn is Lebesgue-irreducible, if for every A ∈ B+(R),

∞∑
n=0

P n(x,A) > 0, x ∈ R.

A set A ∈ B(R) is called petite, if there exist a probability distribution a = {an : n ∈ Z+}
and a non-trivial measure νa satisfying for all x ∈ A and B ∈ B(R),

∞∑
n=0

anP n(x,B) ≥ νa(B).

Obviously, the subset of a petite set is still petite. By [7, Lemma 2.1] or [8, Theorem 1], we
know that the non-linear autoregressive model is Lebesgue-irreducible, and every compact
set in B+(R) is petite.

For A ∈ B(R), let

τA = inf{n ≥ 1 : Φn ∈ A} and σA = inf{n ≥ 0 : Φn ∈ A}

be the first return and first hitting times, respectively, on A. It is obvious that τA = σA if
Φ0 ∈ Ac. Denote by L(x,A) = Px{τA < ∞} the probability of the chain Φn ever returning
to A.

Recall that a set A ∈ B+(R) is called a uniformly geometrically transient set of the
chain Φn, if there exists a constant κ > 1 such that

sup
x∈A

∞∑
n=1

κnP n(x,A) < ∞.

The chain Φn is called geometrically transient, if it is ψ-irreducible for some non-trivial
measure ψ, and R can be covered ψ-a.e. by a countable number of uniformly geometrically

transient sets. That is, there exist sets D and Ai, i = 1, 2, · · · such that R = D ∪
( ∞⋃

i=1

Ai

)
,

where ψ(D) = 0 and each Ai is a uniformly geometrically transient set of the chain Φn.
To state the main result of this paper, we need the following assumptions:

(A1)
∫

es|x|Γ(dx) < ∞ for some constant s > 0;

(A2) lim inf
|x|→∞

|F (x)|
|x| > 1.
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Theorem 1.1 Assume (A1) and (A2). Then the non-linear autoregressive model Φn

is geometrically transient.
Remark 1.2 It is easy to see that (A2) is equivalent to the condition in [9, Theorem

3.1], where transience for the the non-linear autoregressive model Φn was confirmed. Here,
we get a stronger result (i.e. geometric transience) in Theorem 1.1.

2 Proof of Theorem 1.1

This section is devoted to proving Theorem 1.1 by using the Foster-Lyapunov (or drift)
condition for geometric transience.

It is well known that Foster-Lyapunov conditions were widely used to study the stochas-
tic stability for Markov chains. For examples, Down, Meyn and Tweedie [10–13] studied the
drift conditions for recurrence, ergodicity, geometric ergodicity and uniform ergodicity. The
drift conditions for sub-geometric ergodicity were discussed in [1, 4, 14–17] and so on. In
[18, 19], the drift conditions for transience were obtained.

Recently, we investigated the drift condition for geometric transience in [6]. One of
the main results shows that the chain Φn is geometrically transient, if there exist some set
A ∈ B+(R), constants λ, b ∈ (0, 1), and a function W ≥ 1A (with W (x0) < ∞ for some
x0 ∈ R) satisfying the drift condition

PW (x) ≤ λW (x)1Ac(x) + b1A(x), x ∈ R.

As far as we know, however, this drift condition can not be applied directly for the non-
linear autoregressive model considered in this paper. Alternatively, we will establish a more
practical drift condition for geometric transience. First, we need the following two lemmas,
which are taken from [6].

Lemma 2.1 The chain Φn is geometrically transient if and only if there exist some
set A ∈ B+(R) and a constant κ > 1 such that

sup
x∈A

L(x,A) < 1, sup
x∈A

Ex

[
κτA1{τA<∞}

]
< ∞.

Lemma 2.2 (1) For A ∈ B+(R) and κ ≥ 1,

Ex

[
κτA1{τA<∞}

]
= κ

∫

Ac

Ey

[
κσA1{σA<∞}

]
P (x, dy) + κP (x,A), x ∈ R.

(2)
{
Ex

[
κσA1{σA<∞}

]
, x ∈ R}

is the minimal non-negative solution to the equations




g(x) = κ

∫

Ac

g(y)P (x, dy) + κP (x,A), x ∈ Ac,

g(x) = 1, x ∈ A.

Proposition 2.3 The chain Φn is geometrically transient, if there exist a petite set
A ∈ B+(R), constants λ ∈ (0, 1), b ∈ (0,∞), and a non-negative measurable function W

bounded on A satisfying

PW (x) ≤ λW (x) + b1A(x), x ∈ R (2.1)
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and

D :=
{

x : W (x) < inf
y∈A

W (y)
}
∈ B+(R). (2.2)

Proof Since W is non-negative and D ∈ B+(R), we have inf
y∈A

W (y) > 0. Set

W (x) =
W (x)

inf
y∈A

W (y)
, x ∈ R.

Then W (x) ≥ 1 for x ∈ Dc, W (x) < 1 for x ∈ D, and (2.1) yields that




W (x) ≥ λ−1PW (x) ≥ λ−1

∫

Ac

W (y)P (x, dy) + λ−1P (x,A), x ∈ Ac,

W (x) ≥ 1, x ∈ A.
(2.3)

According to Lemma 2.2 (2),
{
Ex

[
λ−σA1{σA<∞}

]
, x ∈ R}

is the minimal non-negative so-
lution to the equations





g(x) = λ−1

∫

Ac

g(y)P (x, dy) + λ−1P (x,A), x ∈ Ac,

g(x) = 1, x ∈ A.
(2.4)

Hence by the comparison theorem of the minimal non-negative solution (see [20, Theorem
2.6]), we know from (2.3) and (2.4) that

Ex

[
λ−σA1{σA<∞}

] ≤ W (x), x ∈ Ac. (2.5)

By (2.5) and noting that D ⊂ Ac, we have for all x ∈ R,

L(x,A) =
∫

D

L(y, A)P (x, dy) +
∫

Dc

L(y, A)P (x, dy)

≤
∫

D

L(y, A)P (x, dy) + P (x,Dc) ≤
∫

D

Ey

[
λ−σA1{σA<∞}

]
P (x, dy) + P (x,Dc)

≤
∫

D

W (y)P (x, dy) + P (x,Dc) < P (x,D) + P (x,Dc) = 1.

Thus there exists some set C ⊂ A with C ∈ B+(R) such that

sup
x∈C

L(x,C) < 1. (2.6)

According to Lemma 2.1, in the following, it is enough to prove that for some κ > 1,
sup
x∈C

Ex

[
κτC 1{τC<∞}

]
< ∞.

Combining Lemma 2.2 (1) with (2.5) and (2.1), we get for all x ∈ A,

Ex

[
λ−τA1{τA<∞}

]
= λ−1

∫

Ac

Ey

[
λ−σA1{σA<∞}

]
P (x, dy) + λ−1P (x,A)

≤ λ−1

∫

Ac

W (y)P (x, dy) + λ−1P (x,A)

≤ λ−1PW (x) ≤ W (x) +
b

λ inf
y∈A

W (y)
.
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Since W is bounded on A,
sup
x∈A

Ex

[
λ−τA1{τA<∞}

]
< ∞. (2.7)

Noting that A is petite and C ⊂ A, according to (2.7) and the proof of [3, Theorem 15.2.1],
we obtain that for all 1 < κ ≤ λ−1/2, sup

x∈C
Ex

[
κτC 1{τC<∞}

]
< ∞. This together with (2.6)

yields the desired assertion.
Now, we are ready to prove Theorem 1.1.
Proof of Theorem 1.1 By (A2), there exist constants θ > 0 and c > 0 satisfying

|F (x)| ≥ (1 + θ)|x|, |x| ≥ c. (2.8)

Choose

A =
{

x : |x| < c ∨ 1 + log
∫

es|x|Γ(dx)
sθ

}
, W (x) = e−s|x|.

Then A ∈ B+(R) is petite and D ∈ B+(R), where D is defined in (2.2). From (A1) and
(2.8), we have for x ∈ Ac,

PW (x)−W (x)
W (x)

=
∫ (

W (F (x) + y)
W (x)

− 1
)

Γ(dy) =
∫ (

e−s|F (x)+y|+s|x| − 1
)
Γ(dy)

≤
∫ (

e−s|F (x)|+s|y|+s|x| − 1
)
Γ(dy) ≤

∫ (
e−s(1+θ)|x|+s|y|+s|x| − 1

)
Γ(dy)

= e−sθ|x|
∫

es|y|Γ(dy)− 1 ≤ e−1 − 1.

That is,
PW (x) ≤ e−1W (x), x ∈ Ac. (2.9)

Noting that W is bounded, it is obvious that for some b ∈ (0,∞),

PW (x) ≤ e−1W (x) + b, x ∈ A.

Combining this with (2.9), the drift condition (2.1) holds. Thus the non-negative autore-
gressive model Φn is geometrically transient by Proposition 2.3.
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非线性自回归模型的几何非常返性

宋延红

(中南财经政法大学统计与数学学院,湖北武汉 430073)

摘要: 本文研究了非线性自回归模型的随机稳定性. 通过建立恰当的 Foster-Lyapunov条件, 得到了

非线性自回归模型几何非常返的充分条件.
关键词: 几何非常返; 非线性自回归模型; Foster-Lyapunov条件
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