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Abstract: In the paper, we study the stochastic stability for non-linear autoregressive mod-
els. By establishing an appropriate Foster-Lyapunov criterion, a sufficient condition for geometric
transience is presented.
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1 Introduction

Consider a non-linear autoregressive Markov chain {®,, : n € Z,} on R defined by
(I)n+1 =F (q)n) + Un+17 n e Z+,

where F: R — R is a continuous function, {U, : n € Z,} is a sequence of i.i.d. random

variables with distribution
[(—oco,z] =P{U, <z}, x€R,

and ®q is independent of {U, : n € Z,}. Assume that the distribution ' is absolutely
continuous with respect to the Lebesgue measure A\, and has a density which is positive
everywhere. The non-linear autoregressive model attracted a large amount of attention in
the literature. Most of the studies focued on conditions implying ergodicity, sub-geometric
ergodicity and geometric ergodicity, see e.g. [1-4] and references therein. In the paper, we
aim to present a sufficient condition for geometric transience for the non-linear autoregressive
model.

First, let us recall some notations and definitions, see [3, 5, 6] for details. Denote by
A(R) the Borel o-field on R, and write ZT(R) = {4 € B(R) : A(4) > 0}. The n-step
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transition kernel of the chain ®,, is defined as
P (z,A) =P, {®, € A}, neZ;, xR, Ac BR),

where P, is the conditional distribution of the chain given ®; = z. The corresponding
expectation operator will be denoted by E,. The operator P acts on non-negative measurable

functions f via
Pf(x) :/f(y)P(:z:,dy), z e R.
R

The chain ®,, is Lebesgue-irreducible, if for every A € BT (R),
> P'(z,A)>0, zeR
n=0

A set A € A(R) is called petite, if there exist a probability distribution a = {a,, : n € Z, }
and a non-trivial measure v, satisfying for all z € A and B € #(R),

o0

> a,P"(x,B) > va(B).
n=0
Obviously, the subset of a petite set is still petite. By [7, Lemma 2.1] or [8, Theorem 1], we
know that the non-linear autoregressive model is Lebesgue-irreducible, and every compact
set in BT (R) is petite.
For A € Z(R), let

7a=inf{n>1:®,€ A} and o4 =inf{n >0:P, € A}

be the first return and first hitting times, respectively, on A. It is obvious that 74 = o4 if
&, € A°. Denote by L(z,A) = P,{74 < oo} the probability of the chain ®,, ever returning
to A.

Recall that a set A € BT (R) is called a uniformly geometrically transient set of the
chain ®,,, if there exists a constant x > 1 such that

o0
Supz K"P"(z,A) < oco.
z€A n=1
The chain ®,, is called geometrically transient, if it is 4-irreducible for some non-trivial

measure ¥, and R can be covered i-a.e. by a countable number of uniformly geometrically

o)
transient sets. That is, there exist sets D and A;, i =1,2,--- such that R=DU | |J Al'),

i=1
where ¢(D) = 0 and each A; is a uniformly geometrically transient set of the chain ®,,.

To state the main result of this paper, we need the following assumptions:

(A1) /es|wf(drx) < oo for some constant s > 0;

(A2) liminf [E@)] > 1.
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Theorem 1.1 Assume (A1) and (A2). Then the non-linear autoregressive model ®,,
is geometrically transient.

Remark 1.2 Tt is easy to see that (A2) is equivalent to the condition in [9, Theorem
3.1], where transience for the the non-linear autoregressive model ®,, was confirmed. Here,

we get a stronger result (i.e. geometric transience) in Theorem 1.1.

2 Proof of Theorem 1.1

This section is devoted to proving Theorem 1.1 by using the Foster-Lyapunov (or drift)
condition for geometric transience.

It is well known that Foster-Lyapunov conditions were widely used to study the stochas-
tic stability for Markov chains. For examples, Down, Meyn and Tweedie [10-13] studied the
drift conditions for recurrence, ergodicity, geometric ergodicity and uniform ergodicity. The
drift conditions for sub-geometric ergodicity were discussed in [1, 4, 14-17] and so on. In
[18, 19], the drift conditions for transience were obtained.

Recently, we investigated the drift condition for geometric transience in [6]. One of
the main results shows that the chain ®,, is geometrically transient, if there exist some set
A € AT (R), constants \,b € (0,1), and a function W > 1, (with W () < oo for some
zo € R) satisfying the drift condition

PW(x) < AW (x)lac(x) +bla(z), zeR.

As far as we know, however, this drift condition can not be applied directly for the non-
linear autoregressive model considered in this paper. Alternatively, we will establish a more
practical drift condition for geometric transience. First, we need the following two lemmas,
which are taken from [6].

Lemma 2.1 The chain ®,, is geometrically transient if and only if there exist some
set A € #1(R) and a constant x > 1 such that

supL($,A> <1, supk, [KTA1{7A<°°}] < oo.
€A z€A

Lemma 2.2 (1) For A € " (R) and x > 1,
E, [/ﬁ”‘l{m@o}} = n/ E, [n"Al{(,A@o}] P(z,dy) + kP(z,A), z€eR.
Ae
(2) {]Eff [/-@”Al{“@()}] ,T € ]R} is the minimal non-negative solution to the equations
g(x) = Ii/ g(y)P(z,dy) + kP(z, A), =€ A°

Proposition 2.3  The chain ®,, is geometrically transient, if there exist a petite set
A € BT (R), constants A € (0,1), b € (0,00), and a non-negative measurable function W
bounded on A satisfying

PW(z) < A\W(z)+bls(z), z€R (2.1)
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and
D = {x W(z) < ing W(y)} € BT (R). (2.2)
ye
Proof Since W is non-negative and D € BT (R), we have in£W(y) > 0. Set
ye
T W (x)
= 5 R.
W) inf W(y)’ re
yeA

Then W (z) > 1 for x € D¢, W(z) < 1 for € D, and (2.1) yields that

Wi(x) > X'PW(z) >\ [ W(y)P(z,dy) + \"'P(z, A), z¢€ A, (2.3)
Ac .
W(x) > 1, r e A

According to Lemma 2.2 (2), {El [)\"’Al{m@o}] ,T € R} is the minimal non-negative so-

lution to the equations

o@) =X [ g)PGady) + X PG ), @ e A
g(l’) =1, x € A

(2.4)

Hence by the comparison theorem of the minimal non-negative solution (see [20, Theorem
2.6]), we know from (2.3) and (2.4) that

Eo (A7 Loacoc}] S W(z), z€ A (2.5)

By (2.5) and noting that D C A°, we have for all z € R,

L(:U,A):/DL(y,A)P(x,dy)—i—/ L(y, A)P(x,dy)

c

< /DL(y,A)P(x,dy) + P(z,D°) < /DEy A7 1o ucoc}]| Plz,dy) + P(z, D)
< / W(y)P(z,dy) + P(z, D) < P(x,D) + P(x, D) = 1.

Thus there exists some set C' C A with C' € Z*(R) such that

sup L(z,C) < 1. (2.6)
zeC
According to Lemma 2.1, in the following, it is enough to prove that for some x > 1,
supE, [/{Tcl{m@o}} < 0.

zeC
Combining Lemma 2.2 (1) with (2.5) and (2.1), we get for all x € A,
E, [)\_TAI{TA<DO}] = )\_1/ Ey [A_UA1{0A<OO}] P(x,dy) + )‘_lp(va)
Ac

<A W(y)P(z,dy) + A P(x, A)

b
Y W(y)

yeA

<ATPW(z) < W(x)
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Since W is bounded on A,

suEEI [)\_T“I{TA<OO}] < oo. (2.7)
Te

Noting that A is petite and C' C A, according to (2.7) and the proof of [3, Theorem 15.2.1],
we obtain that for all 1 < k < A2 supE, [ 1{;,<s0}| < 0o. This together with (2.6)
zeC

yields the desired assertion.
Now, we are ready to prove Theorem 1.1.
Proof of Theorem 1.1 By (A2), there exist constants § > 0 and ¢ > 0 satisfying

[F(x)| = (L+0)[x],  |z| = e (2.8)

Choose ol
1+1 ST (d
A—{J):x|<c\/ +ng2 (m)}’ W (x) = e slol.
s

Then A € A" (R) is petite and D € A" (R), where D is defined in (2.2). From (Al) and
(2.8), we have for x € A°,

PW(z) -W(x) [ (W(F(@)+y) — | (o-sIF@ tyltslal
D = (S ) ran = [« 1) T(dy)

< / (e—SIF(w)I+s|yI+SIw\ _ 1) F(dy) < / (e—s(1+9)|w\+8\y\+8\w| _ 1) F(dy)

= e~ %0lel /eslyf(dy) —1<el—-1.

That is,
PW(z) <e 'W(x), =c A (2.9)

Noting that W is bounded, it is obvious that for some b € (0, c0),
PW(z) <e 'W(z)+b, xc€A.

Combining this with (2.9), the drift condition (2.1) holds. Thus the non-negative autore-

gressive model ®,, is geometrically transient by Proposition 2.3.
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