A NOTE ON CYCLIC CODES OVER $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}+u^{2} \mathbb{F}_{p^{m}}$

LIU Xiu－sheng
（School of Mathematics and Physics，Hubei Polytechnic University，Huangshi 435003，China）

Abstract

In this paper，we study cyclic codes of length p^{s} over the ring $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}+u^{2} \mathbb{F}_{p^{m}}$ ． By establishing the homomorphism from ring $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}+u^{2} \mathbb{F}_{p^{m}}$ to ring $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}$ ，we give the new classify method for cyclic codes of length p^{s} over the ring $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}+u^{2} \mathbb{F}_{p^{m}}$ ．Using the method of the classify，we obtain the number of codewords in each of cyclic codes of length p^{s} over ring $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}+u^{2} \mathbb{F}_{p^{m}}$ ．

Keywords：local ring；cyclic codes；repeated－root codes；the number of codewords
2010 MR Subject Classification：94B05；94B15
Document code：A Article ID：0255－7797（2016）05－0981－06

1 Introduction

Let $\mathbb{F}_{p^{m}}$ be a finite field with p^{m} elements，where p is a prime and m is an integer number． Let R be the commutative ring $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}+u^{2} \mathbb{F}_{p^{m}}=\left\{a+b u+c u^{2} \mid a, b, c \in \mathbb{F}_{p^{m}}\right\}$ with $u^{3}=0$ ．The ring R is a chain ring，which has a unique maximal ideal $\langle u\rangle=\left\{a u \mid a \in \mathbb{F}_{p^{m}}\right\}$ （see［3］）．A code of length n over R is a nonempty subset of R^{n} ，and a code is linear over R if it is an R－submodule of R^{n} ．Let C be a code of length n over R and $P(C)$ be its polynomial representation，i．e．，

$$
P(C)=\left\{\sum_{i=0}^{n-1} c_{i} x^{i} \mid\left(c_{0}, c_{1}, \cdots, c_{n-1}\right) \in C\right\} .
$$

The notions of cyclic shift and cyclic codes are standard for codes over R ．Briefly，for the ring R ，a cyclic shift on R^{n} is a permutation T such that

$$
T\left(c_{0}, c_{1}, \cdots, c_{n-1}\right)=\left(c_{n-1}, c_{0}, \cdots, c_{n-2}\right) .
$$

A linear code over ring R of length n is cyclic if it is invariant under cyclic shift．It is known that a linear code over ring R is cyclic if and only if $P(C)$ is an ideal of $\frac{R[x]}{\left\langle x^{n}-1\right\rangle}$（see ［5］）．

The following two theorems can be found in［1］．

Theorem 1.1

[^0]Type $1\langle 0\rangle,\langle 1\rangle$.
Type $2 I=\left\langle u(x-1)^{i}\right\rangle$, where $0 \leq i \leq p^{s}-1$.
Type $3 I=\left\langle(x-1)^{i}+u \sum_{j=0}^{i-1} c_{1 j}(x-1)^{j}\right\rangle$, where $1 \leq i \leq p^{s}-1, c_{1 j} \in \mathbb{F}_{p^{m}}$; or equivalently, $I=\left\langle(x-1)^{i}+u(x-1)^{t} h(x)\right\rangle$, where $1 \leq i \leq p^{s}-1,0 \leq t<i$, and either $h(x)$ is 0 or $h(x)$ is a unit where it can be represented as $h(x)=\sum_{j} h_{j}(x-1)^{j}$ with $h_{j} \in \mathbb{F}_{p^{m}}$, and $h_{0} \neq 0$.

Type $4 I=\left\langle(x-1)^{i}+u \sum_{j=0}^{w-1} c_{1 j}(x-1)^{j}, u(x-1)^{w}\right\rangle$, where $1 \leq i \leq p^{s}-1, c_{1 j} \in \mathbb{F}_{p^{m}}, w<l$ and $w<T$, where T is the smallest integer such that $u(x-1)^{T} \in\left\langle(x-1)^{i}+u \sum_{j=0}^{i-1} c_{1 j}(x-1)^{j}\right\rangle$; or equivalently, $\left\langle(x-1)^{i}+u(x-1)^{t} h(x), u(x-1)^{w}\right\rangle$, with $h(x)$ as in Type 3 , and $\operatorname{deg}(h) \leq w-t-1$.

Theorem 1.2 Let C be a cyclic code of length p^{s} over $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}$, as classified in Theorem 1.1. Then the number of codewords n_{C} of C is determined as follows.

If $C=\langle 0\rangle$, then $n_{C}=1$.
If $C=\langle 1\rangle$, then $n_{C}=p^{2 m p^{s}}$.
If $C=\left\langle u(x-1)^{i}\right\rangle$, where $0 \leq i \leq p^{s}-1$, then $n_{C}=p^{m\left(p^{s}-i\right)}$.
If $C=\left\langle(x-1)^{i}\right\rangle$, where $1 \leq i \leq p^{s}-1$, then $n_{C}=p^{2 m\left(p^{s}-i\right)}$.
If $C=\left\langle(x-1)^{i}+u(x-1)^{t} h(x)\right\rangle$, where $1 \leq i \leq p^{s}-1,0 \leq t<i$, and $h(x)$ is a unit, then

$$
n_{C}= \begin{cases}p^{2 m\left(p^{s}-i\right)}, & \text { if } 1 \leq i \leq p^{s-1}+\frac{t}{2} \\ p^{m\left(p^{s}-t\right)}, & \text { if } p^{s-1}+\frac{t}{2}<i \leq p^{s-1}-1\end{cases}
$$

If $C=\left\langle(x-1)^{i}+u(x-1)^{t} h(x), u(x-1)^{\kappa}\right\rangle$, where $1 \leq i \leq p^{s}-1,0 \leq t<i$, either $h(x)$ is 0 or $h(x)$ is a unit, and

$$
\kappa<T=\left\{\begin{array}{lc}
i, & \text { if } h(x)=0 \\
\min \left\{i, p^{s}-i+t\right\}, & \text { if } h(x) \neq 0
\end{array}\right.
$$

then $n_{C}=p^{m\left(2 p^{s}-i-\kappa\right)}$.
Recently, Liu and $\mathrm{Xu}[3]$ studied constacyclic codes of length p^{s} over R. In particular, they classified all cyclic codes of length p^{s} over R. But they did not give the number of codewords in each of cyclic codes of length p^{s} over R. In this note, we study repeatedroot cyclic codes over R by using the different method from [2], and obtain the number of codewords in each of cyclic codes of length p^{s} over R.

2 Cyclic Codes of Length p^{s} over R

Cyclic codes of length p^{s} over R are ideals of the residue ring $R_{1}=\frac{R[x]}{\left\langle x^{p^{s}}-1\right\rangle}$. It is easy to prove the ring R_{1} is a local ring with the maximal ideal $\langle u, x-1\rangle$, but it is not a chain ring.

We can list all cyclic codes of length p^{s} over R_{1} as follows.
Theorem 2.1 Cyclic codes of length p^{s} over R are

Type $1\langle 0\rangle,\langle 1\rangle$.
Type $2 I=\left\langle u^{2}(x-1)^{k}\right\rangle$, where $0 \leq k \leq p^{s}-1$.
Type $3 \quad I=\left\langle u(x-1)^{l}+u^{2} \sum_{j=0}^{l} c_{2 j}(x-1)^{j}\right\rangle$, where $0 \leq l \leq p^{s}-1, c_{2 j} \in \mathbb{F}_{p^{m}}$; or equivalently, $I=\left\langle u(x-1)^{l}+u^{2}(x-1)^{t} h(x)\right\rangle$, where $0 \leq l \leq p^{s}-1,0 \leq t<l$, and either $h(x)$ is 0 or $h(x)$ is a unit where it can be represented as $h(x)=\sum_{j} h_{j}(x-1)^{j}$ with $h_{j} \in \mathbb{F}_{p^{m}}$, and $h_{0} \neq 0$.

Type $4 \quad I=\left\langle u(x-1)^{l}+u^{2} \sum_{j=0}^{w} c_{2 j}(x-1)^{j}, u^{2}(x-1)^{w}\right\rangle$, where $1 \leq l \leq p^{s}-1, c_{2 j} \in$ $\mathbb{F}_{p^{m}}, w<l$ and w is the smallest integer such that $u^{2}(x-1)^{w} \in\left\langle u(x-1)^{l}+u^{2} \sum_{j=0}^{l-1} c_{2 j}(x-1)^{j}\right\rangle ;$ or equivalently, $I=\left\langle u(x-1)^{l}+u^{2}(x-1)^{t} h(x), u(x-1)^{w}\right\rangle$, with $h(x)$ as in Type 3 , and $\operatorname{deg}(h) \leq w-t-1$.

Type $5 I=\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)+u^{2}(x-1)^{z} h_{2}(x)\right\rangle$, where $1 \leq i \leq p^{s}-1,0 \leq$ $t<i, 0 \leq z<i$ and $h_{1}(x), h_{2}(x)$ are similar to $h(x)$ in Type 3.

Type $6 I=\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)+u^{2}(x-1)^{z} h_{2}(x), u^{2}(x-1)^{\eta}\right\rangle$, where $1 \leq i \leq$ $p^{s}-1,0 \leq t<i, 0 \leq z<i, h_{1}(x), h_{2}(x)$ are similar to $h(x)$ in Type $3, \eta<i$, and η is the smallest integer such that $u^{2}(x-1)^{\eta} \in\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)+u^{2}(x-1)^{z} h_{2}(x)\right\rangle$.

Type $7 \quad I=\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)+u^{2}(x-1)^{z} h_{2}(x), u(x-1)^{q}+u^{2} \sum_{j=0}^{q} e_{2 j}(x-1)^{j}\right\rangle$, where $1 \leq i \leq p^{s}-1,0 \leq t \leq i, 0 \leq z \leq i, q<T \leq i, T$ is the smallest integer such that $u(x-1)^{T} \in\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)\right\rangle$, and $h_{1}(x), h_{2}(x)$ are similar to $h(x)$ in Type 3.

Type $8 \quad I=\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)+u^{2}(x-1)^{z} h_{2}(x), u(x-1)^{q}+u^{2} \sum_{j=0}^{\sigma} e_{2 j}(x-\right.$ $\left.1)^{j}, u^{2}(x-1)^{\sigma}\right\rangle$, where $1 \leq i \leq p^{s}-1, \sigma<q \leq i, 0 \leq t \leq i, 0 \leq z \leq i, q<T \leq i, T$ is the smallest integer such that $u(x-1)^{T} \in\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)\right\rangle$, and σ is the smallest integer such that $u^{2}(x-1)^{\sigma} \in\left\langle u(x-1)^{q}+u^{2} \sum_{j=0}^{q-1} e_{2 j}(x-1)^{j}\right\rangle$, and $h_{1}(x), h_{2}(x)$ are similar to $h(x)$ in Type 3.

Proof Ideals of Type 1 are the trivial ideals. Consider an arbitrary nontrivial ideal of R_{1}.

Start with the homomorphism $\varphi: \mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}+u^{2} \mathbb{F}_{p^{m}} \rightarrow \mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}$ with $\varphi(a+u b+$ $\left.u^{2} c\right)=a+u b$. This homomorphism then can be extended to a homomorphism of rings of polynomials

$$
\varphi: R_{1}=\frac{\left(\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}+u^{2} \mathbb{F}_{p^{m}}\right)[x]}{\left\langle x^{p}-1\right\rangle} \rightarrow \overline{R_{1}}=\frac{\left(\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}\right)[x]}{\left\langle x^{p}-1\right\rangle}
$$

by letting $\varphi\left(c_{0}+c_{1} x+\cdots+c_{p^{s}-1} x^{p^{s}-1}\right)=\varphi\left(c_{0}\right)+\varphi\left(c_{1}\right) x+\cdots+\varphi\left(c_{p^{s}-1}\right) x^{p^{s}-1}$. Note that $\operatorname{Ker} \varphi=u^{2} \frac{\mathbb{F}_{p^{m}}[x]}{\left\langle x^{p^{s}}-1\right\rangle}$.

Now, let us assume that I is a nontrivial ideal of R_{1}. Then $\varphi(I)$ is an ideal of $\overline{R_{1}}$. But ideals of $\overline{R_{1}}$ are characterized. So we can make use of these results.

On the other hand, $\operatorname{Ker} \varphi$ is also an ideal of $u^{2} \frac{\mathbb{F}_{p^{m}}[x]}{\left\langle x^{p^{s}}-1\right\rangle}$. We can consider it to be u^{2} times a ideal of $\frac{\mathbb{F}_{p^{m}}[x]}{\left\langle x^{p^{s}}-1\right\rangle}$. This means that we can again use the results in the aforementioned
papers. By using the characterization in [2], we have

$$
\operatorname{Ker} \varphi=0 \text { or } \operatorname{Ker} \varphi=\left\langle u^{2}(x-1)^{k}\right\rangle, 0 \leq k \leq p^{s}
$$

For $\varphi(I)$, by using the characterization in [1], we shall discuss $\varphi(I)$ by carrying out the following cases.

Case $1 \varphi(I)=0$. Then $I=\left\langle u^{2}(x-1)^{k}\right\rangle$, where $0 \leq k \leq p^{s}-1$.
Case $2 \varphi(I) \neq 0$. We now have seven subcases.
Case 2a $\varphi(I)=\left\langle u(x-1)^{l}\right\rangle$, where $0 \leq l \leq p^{s}-1$.
If $\operatorname{Ker} \varphi=0$, then $I=\left\langle u(x-1)^{l}+u^{2} \sum_{j=0}^{l} c_{2 j}(x-1)^{j}\right\rangle$, where $0 \leq l \leq p^{s}-1, c_{2 j} \in \mathbb{F}_{p^{m}}$, or equivalently, $I=\left\langle u(x-1)^{l}+u^{2}(x-1)^{t} h(x)\right\rangle$, where $0 \leq l \leq p^{s}-1,0 \leq t<l$, and either $h(x)$ is 0 or $h(x)$ is a unit where it can be represented as $h(x)=\sum_{j} h_{j}(x-1)^{j}$ with $h_{j} \in \mathbb{F}_{p^{m}}$, and $h_{0} \neq 0$.

If $\operatorname{Ker} \varphi \neq 0$, then $\operatorname{Ker} \varphi=\left\langle u^{2}(x-1)^{w}\right\rangle$, where $0 \leq w \leq p^{s}-1$. Hence

$$
I=\left\langle u(x-1)^{l}+u^{2} \sum_{j=0}^{w} c_{2 j}(x-1)^{j}, u^{2}(x-1)^{w}\right\rangle
$$

where $1 \leq l \leq p^{s}-1, c_{2 j} \in \mathbb{F}_{p^{m}}, w<l$ and w is the smallest integer such that $u^{2}(x-1)^{w} \in$ $\left\langle u(x-1)^{l}+u^{2} \sum_{j=0}^{l-1} c_{2 j}(x-1)^{j}\right\rangle$, or equivalently, $\left\langle u(x-1)^{l}+u^{2}(x-1)^{t} h(x), u(x-1)^{w}\right\rangle$, with $h(x)$ as in Type 3 , and $\operatorname{deg}(h) \leq w-t-1$.

Case 2b $\varphi(I)=\left\langle(x-1)^{i}+u \sum_{j=0}^{i-1} c_{2 j}(x-1)^{j}\right\rangle=\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)\right\rangle$, where $1 \leq i \leq p^{s}-1, c_{2 j} \in \mathbb{F}_{p^{m}}$, and $h_{1}(x)$ as in Type 3.

If $\operatorname{Ker} \varphi=0$, then $I=\left\langle(x-1)^{i}+u \sum_{j=0}^{i-1} c_{1 j}(x-1)^{j}+u^{2} \sum_{j=0}^{i-1} c_{2 j}(x-1)^{j}\right\rangle=\left\langle(x-1)^{i}+\right.$ $\left.u(x-1)^{t} h_{1}(x)+u^{2}(x-1)^{z} h_{2}(x)\right\rangle$, where $1 \leq i \leq p^{s}-1, c_{1 j}, c_{2 j} \in \mathbb{F}_{p^{m}}, 0 \leq t<i, 0 \leq z<i$, and $h_{1}(x), h_{2}(x)$ are similar to $h(x)$ in Type 3.

If $\operatorname{Ker} \varphi \neq 0$, then

$$
I=\left\langle(x-1)^{i}+u \sum_{j=0}^{i-1} c_{1 j}(x-1)^{j}+u^{2} \sum_{j=0}^{\eta} c_{2 j}(x-1)^{j}, u^{2}(x-1)^{\eta}\right\rangle
$$

or

$$
I=\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)+u^{2}(x-1)^{z} h_{2}(x), u^{2}(x-1)^{\eta}\right\rangle
$$

where $1 \leq i \leq p^{s}-1, c_{1 j}, c_{2 j} \in \mathbb{F}_{p^{m}}, \eta<i, \eta$ is the smallest integer such that $u^{2}(x-1)^{\eta} \in$ $\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)+u^{2}(x-1)^{z} h_{2}(x)\right\rangle$, and $h_{1}(x), h_{2}(x)$ are similar to $h(x)$ in Type 3 .

Case 2c $\varphi(I)=\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x), u(x-1)^{q}\right\rangle$, where $1 \leq i \leq p^{s}-1,0 \leq t \leq$ $i, q<T$, and T is the smallest integer such that $u(x-1)^{T} \in\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)\right\rangle$, $h_{1}(x)$ is similar to $h(x)$ in Type 3.

If $\operatorname{Ker} \varphi=0$, then $I=\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)+u^{2}(x-1)^{z} h_{2}(x), u(x-1)^{q}+u^{2} \sum_{j=0}^{q-1} e_{2 j}(x-\right.$ $\left.1)^{j}\right\rangle$, where $1 \leq i \leq p^{s}-1,0 \leq t \leq i, 0 \leq z \leq i, q<T \leq i, T$ is the smallest integer such that $u(x-1)^{T} \in\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)\right\rangle$, and $h_{1}(x), h_{2}(x)$ are similar to $h(x)$ in Type 3 .

If $\operatorname{Ker} \varphi \neq 0$, then $I=\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)+u^{2}(x-1)^{z} h_{2}(x), u(x-1)^{q}+u^{2} \sum_{j=0}^{\sigma} e_{2 j}(x-\right.$ 1) $\left.{ }^{j}, u^{2}(x-1)^{\sigma}\right\rangle$, where $1 \leq i \leq p^{s}-1,0 \leq t \leq i, 0 \leq z \leq i, \sigma<q \leq i, q<T \leq i, T$ is the smallest integer such that $u(x-1)^{T} \in\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)\right\rangle$, and σ is the smallest integer such that $u^{2}(x-1)^{\sigma} \in\left\langle u(x-1)^{q}+u^{2} \sum_{j=0}^{q} e_{2 j}(x-1)^{j}\right\rangle$, and $h_{1}(x), h_{2}(x)$ are similar to $h(x)$ in Type 3.

By Theorem 6.2 in [2], each cyclic code of length p^{s} over $\mathbb{F}_{p^{m}}$ is an ideal of the form $\left\langle(x-1)^{i}\right\rangle$ of the chain ring $\frac{\mathbb{F}_{p^{m}}[x]}{\left\langle x^{p^{s}}-1\right\rangle}$, where $0 \leq i \leq p^{s}$, and this code $\left\langle(x-1)^{i}\right\rangle$ contains $p^{m\left(p^{s}-i\right)}$ codewords. In light of Theorem 1.2, we can now determine the sizes of all cyclic codes of length p^{s} over R by multiplying the sizes of $\varphi(C)$ and $\operatorname{Ker} \varphi$ in each case.

Theorem 2.2 Let C be a cyclic code of length p^{s} over R, as classified in Theorem 2.1. Then the number of codewords n_{C} of C is determined as follows.

If $C=\langle 0\rangle$, then $n_{C}=1$.
If $C=\langle 1\rangle$, then $n_{C}=p^{3 m p^{s}}$.
If $C=\left\langle u^{2}(x-1)^{k}\right\rangle$, where $0 \leq k \leq p^{s}-1$, then $n_{C}=p^{m\left(p^{s}-k\right)}$.
If $C=\left\langle u(x-1)^{l}+u^{2} \sum_{j=0}^{l} c_{2 j}(x-1)^{j}\right\rangle$, where $0 \leq l \leq p^{s}-1, c_{2 j} \in \mathbb{F}_{p^{m}}$, then $n_{C}=p^{m\left(p^{s}-l\right)}$.
If $C=\left\langle u(x-1)^{l}+u^{2} \sum_{j=0}^{w} c_{2 j}(x-1)^{j}, u^{2}(x-1)^{w}\right\rangle$, where $0 \leq l \leq p^{s}-1, c_{2 j} \in \mathbb{F}_{p^{m}}, w<l$ and w the smallest integer such that $u^{2}(x-1)^{w} \in\left\langle u(x-1)^{l}+u^{2} \sum_{j=0}^{l-1} c_{2 j}(x-1)^{j}\right\rangle$, then $n_{C}=p^{2 m p^{s}-m(l+w)}$.

If $C=\left\langle(x-1)^{i}\right\rangle$, where $1 \leq i \leq p^{s}-1$, then $n_{C}=p^{2 m\left(p^{s}-i\right)}$.
If $C=\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)+u^{2}(x-1)^{z} h_{2}(x)\right\rangle$, where $1 \leq i \leq p^{s}-1,0 \leq t<i, 0 \leq$ $z<i$ and $h_{1}(x)$ is a unit, then

$$
n_{C}= \begin{cases}p^{2 m\left(p^{s}-i\right)}, & \text { if } 1 \leq i \leq p^{s-1}+\frac{t}{2} \\ p^{m\left(p^{s}-t\right)}, & \text { if } p^{s-1}+\frac{t}{2}<i \leq p^{s-1}-1\end{cases}
$$

If $C=\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)+u^{2}(x-1)^{z} h_{2}(x), u^{2}(x-1)^{\eta}\right\rangle$, where $1 \leq i \leq p^{s}-1,0 \leq$ $t<i, 0 \leq z<i, h_{1}(x)$ is a unit, $\eta<i, \eta$ is the smallest integer such that $u^{2}(x-1)^{\eta} \in$ $\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)+u^{2}(x-1)^{z} h_{2}(x)\right\rangle$, and $h_{1}(x)$ is a unit, then

$$
n_{C}= \begin{cases}p^{3 m p^{s}-2 m i-m \eta}, & \text { if } 1 \leq i \leq p^{s-1}+\frac{t}{2} \\ p^{2 m p^{s}-m(t+\eta)}, & \text { if } p^{s-1}+\frac{t}{2}<i \leq p^{s-1}-1\end{cases}
$$

If $C=\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)+u^{2}(x-1)^{z} h_{2}(x), u(x-1)^{q}+u^{2} \sum_{j=0}^{q} e_{2 j}(x-1)^{j}\right\rangle$ ，where $1 \leq$ $i \leq p^{s}-1, q<T \leq i, T$ is the smallest integer such that $u(x-1)^{T} \in\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)\right\rangle$, either $h_{1}(x), h_{2}(x)$ are 0 or $h_{1}(x), h_{2}(x)$ are units，and

$$
q<T= \begin{cases}i, & \text { if } h_{1}(x)=0 \\ \min \left\{i, p^{s}-i+t\right\}, & \text { if } h_{1}(x) \neq 0\end{cases}
$$

then $n_{C}=p^{m\left(2 p^{s}-i-q\right)}$.
If $C=\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)+u^{2}(x-1)^{z} h_{2}(x), u(x-1)^{q}+u^{2} \sum_{j=0}^{\sigma} e_{2 j}(x-1)^{j}, u^{2}(x-\right.$ 1）$\left.{ }^{\sigma}\right\rangle$ ，where $1 \leq i \leq p^{s}-1, \sigma<q \leq i, q<T \leq i, T$ is the smallest integer such that $u(x-1)^{T} \in\left\langle(x-1)^{i}+u(x-1)^{t} h_{1}(x)\right\rangle$ ，and σ is the smallest integer such that $u^{2}(x-1)^{\sigma} \in$ $\left\langle u(x-1)^{q}+u^{2} \sum_{j=0}^{q} e_{2 j}(x-1)^{j}\right\rangle$ ，either $h_{1}(x), h_{2}(x)$ are 0 or $h_{1}(x), h_{2}(x)$ are units，and

$$
q<T= \begin{cases}i, & \text { if } h_{1}(x)=0 \\ \min \left\{i, p^{s}-i+t\right\}, & \text { if } h_{1}(x) \neq 0\end{cases}
$$

then $n_{C}=p^{3 m p^{s}-m(i+q+\sigma)}$.

References

［1］Dinh H Q．Constacyclic codes of length p^{s} over $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}[J]$ ．J．Alg．，2010，324：940－950．
［2］Dinh H Q．On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions $[J]$ ．Finite Field Appl．，2008，14：22－40．
［3］Liu X S，Xu X．Some classes of repeated－root constacyclic codes over $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}+u^{2} \mathbb{F}_{p^{m}}[\mathrm{~J}]$ ．J． Korean Math．Soc．，2014，51（4）：853－866．
［5］Hammous A，Kumar P V，Calderbark A R，Sloame J A，Solé P．The \mathbb{Z}_{4}－linearity of Kordock， Preparata，Goethals，and releted codes［J］．IEEE Trans．Inform．The．，1994，40：301－319．
［5］Huffman W C，Pless V．Fundamentals of error－correcting codes［M］．Cambridge：Cambridge Univ． Press， 2003.

关于环 $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}+u^{2} \mathbb{F}_{p^{m}}$ 上循环码的注记

刘修生
（湖北理工学院数理学院，湖北黄石 435003）
摘要：本文研究了环 $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}+u^{2} \mathbb{F}_{p^{m}}$ 上长度为 p^{s} 的循环码分类．通过建立环 $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}+$ $u^{2} \mathbb{F}_{p^{m}}$ 到环 $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}$ 的同态，给出了环 $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}+u^{2} \mathbb{F}_{p^{m}}$ 上长度为 p^{s} 的循环码的新分类方法。应用这种方法，得到了环 $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}+u^{2} \mathbb{F}_{p^{m}}$ 长度为 p^{s} 的循环码的码词数。

关键词：局部环；循环码；重根循环码；码词数
$\operatorname{MR}(2010)$ 主题分类号：94B05；94B15 中图分类号：O157．4

[^0]: ${ }^{*}$ Received date：2015－11－16 Accepted date：2016－03－04
 Foundation item：Supported by Scientific Research Foundation of Hubei Provincial Education Department of China（D20144401；B2015096）and the National Science Foundation of Hubei Polytechnic University of China（12xjz14A）．

 Biography：Liu Xiusheng（1960－），male，born at Daye，Hubei，professor，major in groups and algebraic coding，multiple linear algebra．

