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A NOTE ON CYCLIC CODES OVER. F,n + uF,n + u2Fn
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Abstract: In this paper, we study cyclic codes of length p*® over the ring Fpm +ulFpm —|—u2Fpm.
By establishing the homomorphism from ring Fpm + uFpm + UQIFpm to ring Fpm 4+ ulF,m, we give
the new classify method for cyclic codes of length p* over the ring Fpm + uFpm +u?Fym. Using the
method of the classify, we obtain the number of codewords in each of cyclic codes of length p® over
ring Fpm + u]Fpm + uszm .
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1 Introduction

Let F,m be a finite field with p™ elements, where p is a prime and m is an integer number.
Let R be the commutative ring Fym + uFym + u?Fpm = {a + bu + cu?|a,b, ¢ € Fym} with
u® = 0. The ring R is a chain ring, which has a unique maximal ideal (u) = {aula € Fym }
(see [3]). A code of length n over R is a nonempty subset of R™, and a code is linear over R if
it is an R-submodule of R"™. Let C be a code of length n over R and P(C) be its polynomial

representation, i.e.,
n—1
P(C) = {Z Cixi|(007 Ciy- 7Cn—1) S C}
i=0

The notions of cyclic shift and cyclic codes are standard for codes over R. Briefly, for

the ring R, a cyclic shift on R"™ is a permutation 7" such that

T(CO7CI7" : 7cn71) = (Cnflyc()y” : 7cn72)'

A linear code over ring R of length n is cyclic if it is invariant under cyclic shift. It is

known that a linear code over ring R is cyclic if and only if P(C) is an ideal of <§L[f]1>

[5])-
The following two theorems can be found in [1].
Theorem 1.1
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Type 1 (0), (1).
Type 2 I = (u(x —1)%), where 0 < i < p* — 1.
i—1
Type 3 I = ((z—1)'4u Y c1j(x—1)7), where 1 <i < p*—1,¢;; € Fym; or equivalently,
j=0
I={(z—-1)+u(x—1)h(x)), where 1 <i <p*—1,0 <t <4, and either h(x) is 0 or h(x)
is a unit where it can be represented as h(z) = > h;(z — 1)7 with h; € Fym, and hy # 0.
J
w—1
Typed [ = ((z—1)'4+u > c1j(x—1)7, u(z—1)"), where 1 <i < p*—1,¢1; € Fpm,w <
=0
i—1
and w < T, where T is the smallest integer such that u(z—1)" € ((z—1)'4+u >_ ¢1;(z—1)7); or
j=0
equivalently, ((z—1)*+u(z—1)'h(z), u(x—1)"), with h(x) as in Type 3, and deg(h) < w—t—1.
Theorem 1.2 Let C be a cyclic code of length p°® over Fy,m + ulF,m, as classified in
Theorem 1.1. Then the number of codewords ng of C is determined as follows.
If C = (0)
If C = (1), then ng = p>™" .
If C = (u(x —1)"), where 0 < i < p° — 1, then ng = p™® 9,
If C = ((x— 1)), where 1 <i < p* — 1, then ng = p?>™® 9,
If C = ((x—1) +u(x—1)"h(x)), where 1 <i <p°—1,0<t <4, and h(x) is a unit,
then

, then ng = 1.

s ' t
PO <pt 4 o,

"o = m(p®—t) e s—1 t . s—1
P , if p°7* + 3 <i<p -1

If C={((x—1)"+u(x—1)h(z),u(lr — 1)), where 1 <i <p°—1, 0 <t < i, either h(x)

is 0 or h(z) is a unit, and

i, if h(z) =0,
k<T =
min{i, p® — i +t}, if h(z) # 0,

then ng = pmr —i=x),

Recently, Liu and Xu [3] studied constacyclic codes of length p* over R. In particular,
they classified all cyclic codes of length p* over R. But they did not give the number of
codewords in each of cyclic codes of length p® over R. In this note, we study repeated-
root cyclic codes over R by using the different method from [2], and obtain the number of

codewords in each of cyclic codes of length p* over R.

2 Cyclic Codes of Length p® over R

Cyclic codes of length p°® over R are ideals of the residue ring R, = RMD. It is easy

(P 1)
to prove the ring R; is a local ring with the maximal ideal (u,z — 1), but it is not a chain
ring.

We can list all cyclic codes of length p® over R; as follows.

Theorem 2.1 Cyclic codes of length p® over R are
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Type 1 (0), (1).
Type 2 I = (u?(x — 1)), where 0 < k < p* — 1.

!
Type 3 [ = (u(x —1)' +u® > co5(x — 1)7), where 0 < [ < p* — 1,¢9; € Fym; or

=
equivalently, I = (u(z—1)'+ 2(gcflj)th( )), where 0 < l <p*—1,0 <t <, and either h(z)
is 0 or h(z) is a unit where it can be represented as h(z) = > . hj(z — 1)/ with h; € Fym,
and hg # 0.
Type 4 I = (u(x — 1) +u? i caj(r — 1), u?(z — 1)V), where 1 <1 < p° —1,¢9; €
=0

-1
F,m,w < [ and w is the smallest integer such that u?(z—1)" € (u(z—1)"+u?® > coj(x—1)7);
=0
or equivalently, I = (u(x — 1)! + u?(x — 1)*h(x),u(z — 1)¥), with h(x) as in Type 3, and

deg(h) <w—t—1.

Type 5 [ = {((z— 1) +u(x —1)'hi(z) + v*(z — 1)*hy(z)), where 1 < i <p* — 1,0 <
t <i,0 <z <iand hy(x),hs(x) are similar to h(z) in Type 3.

Type 6 = ((x —1)" +u(z — 1)*hy(z) + v*(x — 1)*ha(z),u*(z — 1)7), where 1 < i <
p*—1,0<t<i,0<z<i, hi(z),ha(z) are similar to h(z) in Type 3, n < i, and 7 is the
smallest integer such that u?(x — 1)" € ((x — 1)* + u(x — 1)thy(z) + u?(x — 1) ho(z)).

Type 7 I = ((x—1)"+u(x—1)"hy(z) +u*(z—1)*he(z), u(z — 1)7 +u? Z eaj(z—1)7),

where 1 <i<p*—1,0<t<i,0<2<14, g<T <14, Tlsthesmallestmtegersuchthat
wxz—1)T € {(z - 1) +u(x —1)'hy(z)), and hy(x), he(x) are similar to h(z) in Type 3.

Type 8 I = ((x —1)"+u(z — 1)'hy(x) + v*(z — 1)*hy(x), u(z — 1)? + u? Eezj(x—
7=0
)7 u?(x— 1)), where 1 <i<p*—1,0<q<i,0<t<i,0<2<4,q<T <4 Tis

the smallest integer such that u(z — 1)T € ((x — 1)* + u(x — 1)*hy(z)), and o is the smallest
-1
integer such that u?(z —1)? € (u(z — 1) +u Z eaj(xz — 1)7), and hq(z), he(z) are similar

to h(x) in Type 3.

Proof Ideals of Type 1 are the trivial ideals. Consider an arbitrary nontrivial ideal of
R;.

Start with the homomorphism ¢ : Fpm + uFpm 4+ u*Fpm — Fym + uFy,m with p(a + ub +
u?c) = a + ub. This homomorphism then can be extended to a homomorphism of rings of

polynomials
2
o: Ry = (Fpm + uFpm + u?Fpm ) [2] o (Fpm + uFpm)[x]
(xp — 1) (xp —1)
by letting p(co + 12+ -+ cpe 127 1) = @(co) + @(er)x + - + p(cps 1 )P L. Note that
Kerp = u? g@?ﬁ%.

Now, let us assume that I is a nontrivial ideal of R;. Then (1) is an ideal of R;. But

ideals of R; are characterized. So we can make use of these results.
2 ]Fp"" [=]
@ -1y

. This means that we can again use the results in the aforementioned

On the other hand, Kerp is also an ideal of u We can consider it to be u?

]Fm[l

times a ideal of
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papers. By using the characterization in [2], we have
Kerp =0 or Kergp = (u(z — 1)*), 0 <k <p°.

For (1), by using the characterization in [1], we shall discuss ¢(I) by carrying out the
following cases.

Case 1 ¢(I) =0. Then I = (u?(x — 1)*), where 0 < k < p* — 1.

Case 2 ¢(I) # 0. We now have seven subcases.

Case 2a ¢(I) = (u(x — 1)"), where 0 <[ < p* — 1.

If Kerp = 0, then I = (u(z —1)! +u? i c2j(x—1)7), where 0 <[ < p*—1, cg; € Fym, or

=0

equivalently, I = (u(z —1)'+u?(z—1)"h( ])> where 0 <1 <p*—1,0 <t <, and either h(z)
is 0 or h(z) is a unit where it can be represented as h(z) = >, hj(x — 1)? with h; € Fym,
and hg # 0.

If Kerp # 0, then Kerp = (u?(z — 1)*), where 0 < w < p* — 1. Hence

I=(u x—ll—i—uZZcQJx—l u?(x — 1)),

=0
where 1 <1 < p —1, ¢g; € Fpym, w < I and w is the smallest integer such that u?(z — 1)* €
(u(z — 1) +u? E 25 (z — 1)), or equivalently, (u(z — 1) + u?(z — 1)*h(z), u(z — 1)™), with
h(z) as in Type 3 and deg(h) <w — t—1.

Case 2b ¢(I) = ((z — 1)' +u Z caj(x —1)7) = ((x = 1)" + u(x — 1)*h1(z)), where

=0
1<i<p®—1,cy €Fpm, and hy(x )asmType3

i—1
If Kerp = 0, then I = ((x — 1)° —I—chl](az—l +u? Y egi(x— 1)) = ((z—1)" +
J=0 Jj=0
w(x — 1)'hy(x) + u?*(x — 1)*ha(x)), where 1 < i < p* — 1, ¢15,¢05 € Fpm, 0 <t <i,0 < 2 < 4,
and hy(z), ha(z) are similar to h(x) in Type 3.

If Kery # 0, then

I={(z—1) —I—UZCU(:C — 1) +u2202j(m — 1), uP(z— 1))

I={(x—1)"+u(x—1)h(z) +u*(@ — 1)hy(z),u?(x — 1)),

where 1 < i < p* — 1,¢15, 05 € Fpm, n < i, 1 is the smallest integer such that u?(z — 1)" €
(= 1) +u(x —1)*hy(z) + u?(x — 1)*hy(x)), and hy(z), ha(x) are similar to h(x) in Type 3.

Case 2¢ ¢(I) = ((x — 1)" + u(x — 1)*hy(z),u(x — 1)7), where 1 <i <p*—1,0< ¢t <
i, ¢ < T, and T is the smallest integer such that u(zx — 1)7 € {(z — 1) + u(z — 1)*hy(2)),
hi(z) is similar to h(z) in Type 3.
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. q-1
If Kerp = 0, then I = ((x—1)'+u(z—1)"hy () +u?(x—1)ha(x), u(z—1)T4+u? Y eq;(z—
=0

1)7), where 1 <i<p*—1,0<t <4, 0<2z<1i, q<T <i T is the smallest integer such
that uw(x —1)7 € {(x — 1) + u(x —1)*hy(z)), and hy(z), hao(x) are similar to h(z) in Type 3 .
If Kerp # 0, then I = ((x—1)'+u(x—1)"hy (@) +u?(z—1)*ha(z), u(z—1)1+u? Y eq;(z—
j=0
I u?(z—1)9), where 1 <i<p*—1,0<t<4,0<2<i,0<q<i,q<T <4 Tis
the smallest integer such that u(z — 1)T € ((x — 1)* + u(x — 1)*hy(z)), and o is the smallest
q _
integer such that u?(z —1)7 € (u(zx — 1)+ u? >_ eyj(x — 1)7), and hy(x), he(z) are similar
j=0
to h(z) in Type 3.
By Theorem 6.2 in [2], each cyclic code of length p® over F,= is an ideal of the form
((z — 1)") of the chain ring = o [1] where 0 < i < p®, and this code ((x — 1)*) contains
p" "= codewords. In light of Theorem 1.2, we can now determine the sizes of all cyclic

codes of length p* over R by multiplying the sizes of p(C) and Kery in each case.
Theorem 2.2 Let C be a cyclic code of length p°® over R, as classified in Theorem 2.1.
Then the number of codewords ne of C' is determined as follows.
If C = (0), then ngc = 1.
If C = (1), then ng = p>™*".
2

If C = (u*(z — 1)), where 0 < k < p* — 1, then ng = pm Pk
!
IfC = (u(z—1)"+ u’ 'y ch(m—l)j>, where 0 <1 <p°—1,cy; € Fpm, then ng = pm P =0
7=0
If C = (u(z—1)"+u* Y coj(z— 1), u?(x — 1)”), where 0 < [ < p* — 1,¢o5 € Fpm,w <1
=0

-1
and w the smallest integer such that u?(z — 1)* € (u(z — 1)' + u® > co;(z — 1)7), then
j=0
ne = p2mps—m(l+w)_
If C = ((x— 1)), where 1 < i < p* — 1, then ng = p*>™®" 9,
IfC=(z—-1)+ulx—1)h(z) +u?(x —1)%hy(z)), where 1 <i <p*—1,0 <t <,0 <

z < i and hy(z) is a unit, then

PO i<y
e = . t
pm(p _f‘), if p*=t + 3 <i<pTl—1.
IfC = {((z—1)4ulx—1)hi(z)+u?(x—1)*he(z),u?(x — 1)), where 1 <i <p*—1,0 <
t <1i,0 <z <14, hi(z) is a unit, n < i, 1 is the smallest integer such that u?(z — 1)"
{((z = 1) +u(x — 1)'hi(x) + v*(z — 1)*ha(z)), and hi(x) is a unit, then

s 5 t

p3mp —QTrn—mn7 ifl< i < ps—l -

ne =
s t

p2mp —m(t-i—n)7 if ps—1 - 5 <1< ps—l 1.
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. q .
IfC = ((z—1)+u(z—1)"hi (z)+u?(z—1)*he(z), u(z—1)1+u? Y eg;(x—1)7), where 1 <
=0
i <p*—1,q < T <i, T is the smallest integer such that u(z—1)" € ((z—1)"+u(z—1)*h,(2)),

either hy(z), ha(z) are 0 or hy(z), ha(x) are units, and

fi’ if hl(.’E) = 0,
g<T=
min{i,p® — i + t}, if hy(z) #£ 0,

then ng = pm2 -9,

IfC={((x—1)+u(z—1)hi(z) +u(x — 1)%ha(x),u(x — 1)T+u? Y eg;(z — 1)/, u?(z —

=0
1)7), where 1 < i < p* —1l,0 < q < i, q < T < i, T is the smallest integer such that
wlx —1)T € ((x —1)" + u(x — 1)*hy(x)), and o is the smallest integer such that u?(z —1)° €

q .
(u(z — 1)1+ u? Y ey;(x — 1)7), either hy(x), ha(z) are 0 or hy(z), ha(z) are units, and

j=0
i, if hi(x) =0,
g<T= 1)
min{i,p® — i + t}, if hy(z) #0,

then ng = p¥mr’—mlitato)
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