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Abstract: In this paper, we study cyclic codes of length ps over the ring Fpm +uFpm +u2Fpm .

By establishing the homomorphism from ring Fpm + uFpm + u2Fpm to ring Fpm + uFpm , we give

the new classify method for cyclic codes of length ps over the ring Fpm + uFpm + u2Fpm . Using the

method of the classify, we obtain the number of codewords in each of cyclic codes of length ps over

ring Fpm + uFpm + u2Fpm .
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1 Introduction

Let Fpm be a finite field with pm elements, where p is a prime and m is an integer number.
Let R be the commutative ring Fpm + uFpm + u2Fpm = {a + bu + cu2|a, b, c ∈ Fpm} with
u3 = 0. The ring R is a chain ring, which has a unique maximal ideal 〈u〉 = {au|a ∈ Fpm}
(see [3]). A code of length n over R is a nonempty subset of Rn, and a code is linear over R if
it is an R-submodule of Rn. Let C be a code of length n over R and P (C) be its polynomial
representation, i.e.,

P (C) = {
n−1∑
i=0

cix
i|(c0, c1, · · · , cn−1) ∈ C}.

The notions of cyclic shift and cyclic codes are standard for codes over R. Briefly, for
the ring R, a cyclic shift on Rn is a permutation T such that

T (c0, c1, · · · , cn−1) = (cn−1, c0, · · · , cn−2).

A linear code over ring R of length n is cyclic if it is invariant under cyclic shift. It is
known that a linear code over ring R is cyclic if and only if P (C) is an ideal of R[x]

〈xn−1〉 (see
[5]).

The following two theorems can be found in [1].
Theorem 1.1
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Type 1 〈0〉, 〈1〉.
Type 2 I = 〈u(x− 1)i〉, where 0 ≤ i ≤ ps − 1.

Type 3 I = 〈(x−1)i+u
i−1∑
j=0

c1j(x−1)j〉, where 1 ≤ i ≤ ps−1, c1j ∈ Fpm ; or equivalently,

I = 〈(x− 1)i + u(x− 1)th(x)〉, where 1 ≤ i ≤ ps − 1, 0 ≤ t < i, and either h(x) is 0 or h(x)
is a unit where it can be represented as h(x) =

∑
j

hj(x− 1)j with hj ∈ Fpm , and h0 6= 0.

Type 4 I = 〈(x−1)i+u
w−1∑
j=0

c1j(x−1)j , u(x−1)w〉, where 1 ≤ i ≤ ps−1, c1j ∈ Fpm , w < l

and w < T , where T is the smallest integer such that u(x−1)T ∈ 〈(x−1)i+u
i−1∑
j=0

c1j(x−1)j〉; or

equivalently, 〈(x−1)i+u(x−1)th(x), u(x−1)w〉, with h(x) as in Type 3, and deg(h) ≤ w−t−1.
Theorem 1.2 Let C be a cyclic code of length ps over Fpm + uFpm , as classified in

Theorem 1.1. Then the number of codewords nC of C is determined as follows.
If C = 〈0〉, then nC = 1.
If C = 〈1〉, then nC = p2mps

.
If C = 〈u(x− 1)i〉, where 0 ≤ i ≤ ps − 1, then nC = pm(ps−i).
If C = 〈(x− 1)i〉, where 1 ≤ i ≤ ps − 1, then nC = p2m(ps−i).
If C = 〈(x − 1)i + u(x − 1)th(x)〉, where 1 ≤ i ≤ ps − 1, 0 ≤ t < i, and h(x) is a unit,

then

nC =





p2m(ps−i), if 1 ≤ i ≤ ps−1 +
t

2
,

pm(ps−t), if ps−1 +
t

2
< i ≤ ps−1 − 1.

If C = 〈(x− 1)i + u(x− 1)th(x), u(x− 1)κ〉, where 1 ≤ i ≤ ps− 1, 0 ≤ t < i, either h(x)
is 0 or h(x) is a unit, and

κ < T =

{
i, if h(x) = 0 ,

min{i, ps − i + t}, if h(x) 6= 0,

then nC = pm(2ps−i−κ).
Recently, Liu and Xu [3] studied constacyclic codes of length ps over R. In particular,

they classified all cyclic codes of length ps over R. But they did not give the number of
codewords in each of cyclic codes of length ps over R. In this note, we study repeated-
root cyclic codes over R by using the different method from [2], and obtain the number of
codewords in each of cyclic codes of length ps over R.

2 Cyclic Codes of Length ps over R

Cyclic codes of length ps over R are ideals of the residue ring R1 = R[x]
〈xps−1〉 . It is easy

to prove the ring R1 is a local ring with the maximal ideal 〈u, x − 1〉, but it is not a chain
ring.

We can list all cyclic codes of length ps over R1 as follows.
Theorem 2.1 Cyclic codes of length ps over R are
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Type 1 〈0〉, 〈1〉.
Type 2 I = 〈u2(x− 1)k〉, where 0 ≤ k ≤ ps − 1.

Type 3 I = 〈u(x − 1)l + u2
l∑

j=0

c2j(x − 1)j〉, where 0 ≤ l ≤ ps − 1, c2j ∈ Fpm ; or

equivalently, I = 〈u(x−1)l +u2(x−1)th(x)〉, where 0 ≤ l ≤ ps−1, 0 ≤ t < l, and either h(x)
is 0 or h(x) is a unit where it can be represented as h(x) =

∑
j hj(x − 1)j with hj ∈ Fpm ,

and h0 6= 0.

Type 4 I = 〈u(x − 1)l + u2
w∑

j=0

c2j(x − 1)j , u2(x − 1)w〉, where 1 ≤ l ≤ ps − 1, c2j ∈

Fpm , w < l and w is the smallest integer such that u2(x−1)w ∈ 〈u(x−1)l +u2
l−1∑
j=0

c2j(x−1)j〉;
or equivalently, I = 〈u(x − 1)l + u2(x − 1)th(x), u(x − 1)w〉, with h(x) as in Type 3, and
deg(h) ≤ w − t− 1.

Type 5 I = 〈(x− 1)i + u(x− 1)th1(x) + u2(x− 1)zh2(x)〉, where 1 ≤ i ≤ ps − 1, 0 ≤
t < i, 0 ≤ z < i and h1(x), h2(x) are similar to h(x) in Type 3.

Type 6 I = 〈(x− 1)i + u(x− 1)th1(x) + u2(x− 1)zh2(x), u2(x− 1)η〉, where 1 ≤ i ≤
ps − 1, 0 ≤ t < i, 0 ≤ z < i, h1(x), h2(x) are similar to h(x) in Type 3, η < i, and η is the
smallest integer such that u2(x− 1)η ∈ 〈(x− 1)i + u(x− 1)th1(x) + u2(x− 1)zh2(x)〉.

Type 7 I = 〈(x−1)i +u(x−1)th1(x)+u2(x−1)zh2(x), u(x−1)q +u2
q∑

j=0

e2j(x−1)j〉,
where 1 ≤ i ≤ ps − 1, 0 ≤ t ≤ i, 0 ≤ z ≤ i, q < T ≤ i, T is the smallest integer such that
u(x− 1)T ∈ 〈(x− 1)i + u(x− 1)th1(x)〉, and h1(x), h2(x) are similar to h(x) in Type 3.

Type 8 I = 〈(x − 1)i + u(x − 1)th1(x) + u2(x − 1)zh2(x), u(x − 1)q + u2
σ∑

j=0

e2j(x −
1)j , u2(x − 1)σ〉, where 1 ≤ i ≤ ps − 1, σ < q ≤ i, 0 ≤ t ≤ i, 0 ≤ z ≤ i, q < T ≤ i, T is
the smallest integer such that u(x− 1)T ∈ 〈(x− 1)i + u(x− 1)th1(x)〉, and σ is the smallest

integer such that u2(x − 1)σ ∈ 〈u(x − 1)q + u2
q−1∑
j=0

e2j(x − 1)j〉, and h1(x), h2(x) are similar

to h(x) in Type 3.
Proof Ideals of Type 1 are the trivial ideals. Consider an arbitrary nontrivial ideal of

R1.
Start with the homomorphism ϕ : Fpm + uFpm + u2Fpm → Fpm + uFpm with ϕ(a + ub +

u2c) = a + ub. This homomorphism then can be extended to a homomorphism of rings of
polynomials

ϕ : R1 =
(Fpm + uFpm + u2Fpm)[x]

〈xp − 1〉 → R1 =
(Fpm + uFpm)[x]

〈xp − 1〉
by letting ϕ(c0 + c1x + · · ·+ cps−1x

ps−1) = ϕ(c0) + ϕ(c1)x + · · ·+ ϕ(cps−1)xps−1. Note that
Kerϕ = u2 Fpm [x]

〈xps−1〉 .
Now, let us assume that I is a nontrivial ideal of R1. Then ϕ(I) is an ideal of R1. But

ideals of R1 are characterized. So we can make use of these results.
On the other hand, Kerϕ is also an ideal of u2 Fpm [x]

〈xps−1〉 . We can consider it to be u2

times a ideal of Fpm [x]

〈xps−1〉 . This means that we can again use the results in the aforementioned
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papers. By using the characterization in [2], we have

Kerϕ = 0 or Kerϕ = 〈u2(x− 1)k〉, 0 ≤ k ≤ ps.

For ϕ(I), by using the characterization in [1], we shall discuss ϕ(I) by carrying out the
following cases.

Case 1 ϕ(I) = 0. Then I = 〈u2(x− 1)k〉, where 0 ≤ k ≤ ps − 1.
Case 2 ϕ(I) 6= 0. We now have seven subcases.
Case 2a ϕ(I) = 〈u(x− 1)l〉, where 0 ≤ l ≤ ps − 1.

If Kerϕ = 0, then I = 〈u(x−1)l +u2
l∑

j=0

c2j(x−1)j〉, where 0 ≤ l ≤ ps−1, c2j ∈ Fpm , or

equivalently, I = 〈u(x−1)l +u2(x−1)th(x)〉, where 0 ≤ l ≤ ps−1, 0 ≤ t < l, and either h(x)
is 0 or h(x) is a unit where it can be represented as h(x) =

∑
j hj(x − 1)j with hj ∈ Fpm ,

and h0 6= 0.
If Kerϕ 6= 0, then Kerϕ = 〈u2(x− 1)w〉, where 0 ≤ w ≤ ps − 1. Hence

I = 〈u(x− 1)l + u2

w∑
j=0

c2j(x− 1)j , u2(x− 1)w〉,

where 1 ≤ l ≤ ps − 1, c2j ∈ Fpm , w < l and w is the smallest integer such that u2(x− 1)w ∈
〈u(x− 1)l + u2

l−1∑
j=0

c2j(x− 1)j〉, or equivalently, 〈u(x− 1)l + u2(x− 1)th(x), u(x− 1)w〉, with

h(x) as in Type 3, and deg(h) ≤ w − t− 1.

Case 2b ϕ(I) = 〈(x − 1)i + u
i−1∑
j=0

c2j(x − 1)j〉 = 〈(x − 1)i + u(x − 1)th1(x)〉, where

1 ≤ i ≤ ps − 1, c2j ∈ Fpm , and h1(x) as in Type 3.

If Kerϕ = 0, then I = 〈(x − 1)i + u
i−1∑
j=0

c1j(x − 1)j + u2
i−1∑
j=0

c2j(x − 1)j〉 = 〈(x − 1)i +

u(x− 1)th1(x) + u2(x− 1)zh2(x)〉, where 1 ≤ i ≤ ps − 1, c1j , c2j ∈ Fpm , 0 ≤ t < i, 0 ≤ z < i,
and h1(x), h2(x) are similar to h(x) in Type 3.

If Kerϕ 6= 0, then

I = 〈(x− 1)i + u

i−1∑
j=0

c1j(x− 1)j + u2

η∑
j=0

c2j(x− 1)j , u2(x− 1)η〉

or

I = 〈(x− 1)i + u(x− 1)th1(x) + u2(x− 1)zh2(x), u2(x− 1)η〉,

where 1 ≤ i ≤ ps − 1,c1j , c2j ∈ Fpm , η < i, η is the smallest integer such that u2(x − 1)η ∈
〈(x− 1)i +u(x− 1)th1(x)+u2(x− 1)zh2(x)〉, and h1(x), h2(x) are similar to h(x) in Type 3.

Case 2c ϕ(I) = 〈(x − 1)i + u(x − 1)th1(x), u(x − 1)q〉, where 1 ≤ i ≤ ps − 1, 0 ≤ t ≤
i, q < T , and T is the smallest integer such that u(x − 1)T ∈ 〈(x − 1)i + u(x − 1)th1(x)〉,
h1(x) is similar to h(x) in Type 3.
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If Kerϕ = 0, then I = 〈(x−1)i+u(x−1)th1(x)+u2(x−1)zh2(x), u(x−1)q+u2
q−1∑
j=0

e2j(x−
1)j〉, where 1 ≤ i ≤ ps − 1, 0 ≤ t ≤ i, 0 ≤ z ≤ i, q < T ≤ i, T is the smallest integer such
that u(x− 1)T ∈ 〈(x− 1)i + u(x− 1)th1(x)〉, and h1(x), h2(x) are similar to h(x) in Type 3 .

If Kerϕ 6= 0, then I = 〈(x−1)i+u(x−1)th1(x)+u2(x−1)zh2(x), u(x−1)q+u2
σ∑

j=0

e2j(x−
1)j , u2(x − 1)σ〉, where 1 ≤ i ≤ ps − 1, 0 ≤ t ≤ i, 0 ≤ z ≤ i, σ < q ≤ i, q < T ≤ i, T is
the smallest integer such that u(x− 1)T ∈ 〈(x− 1)i + u(x− 1)th1(x)〉, and σ is the smallest

integer such that u2(x − 1)σ ∈ 〈u(x − 1)q + u2
q∑

j=0

e2j(x − 1)j〉, and h1(x), h2(x) are similar

to h(x) in Type 3.

By Theorem 6.2 in [2], each cyclic code of length ps over Fpm is an ideal of the form
〈(x − 1)i〉 of the chain ring Fpm [x]

〈xps−1〉 , where 0 ≤ i ≤ ps, and this code 〈(x − 1)i〉 contains
pm(ps−i) codewords. In light of Theorem 1.2, we can now determine the sizes of all cyclic
codes of length ps over R by multiplying the sizes of ϕ(C) and Kerϕ in each case.

Theorem 2.2 Let C be a cyclic code of length ps over R, as classified in Theorem 2.1.
Then the number of codewords nC of C is determined as follows.

If C = 〈0〉, then nC = 1.

If C = 〈1〉, then nC = p3mps

.

If C = 〈u2(x− 1)k〉, where 0 ≤ k ≤ ps − 1, then nC = pm(ps−k).

If C = 〈u(x−1)l+u2
l∑

j=0

c2j(x−1)j〉, where 0 ≤ l ≤ ps−1, c2j ∈ Fpm , then nC = pm(ps−l).

If C = 〈u(x− 1)l + u2
w∑

j=0

c2j(x− 1)j , u2(x− 1)w〉, where 0 ≤ l ≤ ps− 1, c2j ∈ Fpm , w < l

and w the smallest integer such that u2(x − 1)w ∈ 〈u(x − 1)l + u2
l−1∑
j=0

c2j(x − 1)j〉, then

nC = p2mps−m(l+w).

If C = 〈(x− 1)i〉, where 1 ≤ i ≤ ps − 1, then nC = p2m(ps−i).

If C = 〈(x− 1)i +u(x− 1)th1(x)+u2(x− 1)zh2(x)〉, where 1 ≤ i ≤ ps− 1, 0 ≤ t < i, 0 ≤
z < i and h1(x) is a unit, then

nC =





p2m(ps−i), if 1 ≤ i ≤ ps−1 +
t

2
,

pm(ps−t), if ps−1 +
t

2
< i ≤ ps−1 − 1.

If C = 〈(x−1)i +u(x−1)th1(x)+u2(x−1)zh2(x), u2(x−1)η〉, where 1 ≤ i ≤ ps−1, 0 ≤
t < i, 0 ≤ z < i, h1(x) is a unit, η < i, η is the smallest integer such that u2(x − 1)η ∈
〈(x− 1)i + u(x− 1)th1(x) + u2(x− 1)zh2(x)〉, and h1(x) is a unit, then

nC =





p3mps−2mi−mη, if 1 ≤ i ≤ ps−1 +
t

2
,

p2mps−m(t+η), if ps−1 +
t

2
< i ≤ ps−1 − 1.
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If C = 〈(x−1)i+u(x−1)th1(x)+u2(x−1)zh2(x), u(x−1)q+u2
q∑

j=0

e2j(x−1)j〉, where 1 ≤
i ≤ ps−1, q < T ≤ i, T is the smallest integer such that u(x−1)T ∈ 〈(x−1)i+u(x−1)th1(x)〉,
either h1(x), h2(x) are 0 or h1(x), h2(x) are units, and

q < T =

{
i, if h1(x) = 0,

min{i, ps − i + t}, if h1(x) 6= 0,

then nC = pm(2ps−i−q).

If C = 〈(x− 1)i +u(x− 1)th1(x)+u2(x− 1)zh2(x), u(x− 1)q +u2
σ∑

j=0

e2j(x− 1)j , u2(x−
1)σ〉, where 1 ≤ i ≤ ps − 1, σ < q ≤ i, q < T ≤ i, T is the smallest integer such that
u(x− 1)T ∈ 〈(x− 1)i + u(x− 1)th1(x)〉, and σ is the smallest integer such that u2(x− 1)σ ∈
〈u(x− 1)q + u2

q∑
j=0

e2j(x− 1)j〉, either h1(x), h2(x) are 0 or h1(x), h2(x) are units, and

q < T =

{
i, if h1(x) = 0,

min{i, ps − i + t}, if h1(x) 6= 0,

then nC = p3mps−m(i+q+σ).
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关于环 Fpm + uFpm + u2Fpm 上循环码的注记

刘修生

(湖北理工学院数理学院, 湖北黄石 435003)

摘要: 本文研究了环 Fpm + uFpm + u2Fpm 上长度为 ps 的循环码分类. 通过建立环 Fpm + uFpm +

u2Fpm 到环 Fpm + uFpm 的同态, 给出了环 Fpm + uFpm + u2Fpm 上长度为 ps 的循环码的新分类方法. 应

用这种方法, 得到了环 Fpm + uFpm + u2Fpm 长度为 ps 的循环码的码词数.
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