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Abstract: In this paper, we study the problem of a minimal solution to a special class of

anticipated backward stochastic differential equation. When the generator is continuous and sat-

isfying a similar linear growth condition, we prove the existence of minimal solutions. Here, our

hypotheses are weaker than the before papers, however, we obtain a better lemma and the same

result.
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1 Introduction

The notions of non-linear backward stochastic differential equations (BSDEs) were in-
troduced by Pardoux and Peng [11]. A solution of this equation, associated with a terminal
value ξ and a generator or coefficient f(t, ω, y, z), is a couple of adapted stochastic processes
(Y (t), Z(t)){t∈[0,T ]} such that

Y (t) = ξ +
∫ T

t

f(s, Y (s), Z(s))ds−
∫ T

t

Z(s)dW (s),

where W is a d-dimensional standard Brownian motion. This type of nonlinear backward
stochastic differential equations were first studied by Pardoux and Peng in [11], and they
established the existenceness and uniqueness of adapted solution under the global Lipschitz
condition. Since then, many people try to weaken the conditions of generators to get the
same results and study some different forms of BSDEs. For examples, Aman and Nz’i [1]
studied BSDEs with oblique reflection and local Lipschitz. Bahlali [2] studied backward
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stochastic differential equations with locally Lipschitz coefficients. Situ [9] and Royer [10]
studied BSDEs with jumps. It is now well-known that BSDEs provide a useful framework for
formulating a lot of mathematical problems such as used in financial mathematics, optimal
control, stochastic games and partial differential equations (see [12–14] ). Based on the above
applications, specially in the field of finance, and optimal control, recently, a new type of
BSDEs, called anticipated BSDEs (ABSDEs), were introduced by Peng and Yang [4] as the
following




Y (t) = ξ(T ) +
∫ T

t

f(s, Y (s), Z(s), Y (s + θ(s)), Z(s + ϑ(s)))ds−
∫ T

t

Z(s)dW (s), t ∈ [0, T ],

Y (t) = ξ(t), t ∈ [T, T + K],

Z(t) = η(t), t ∈ [T, T + K],

(1.1)

where θ(·) : [0, T ] → R+, ϑ(·) : [0, T ] → R+ are continuous functions and satisfy that
(i) there exists a constant K > 0 such that for each t ∈ [0, T ],

t + θ(t) 6 T + K, t + ϑ(t) 6 T + K;

(ii) there exists a constant L > 0 such that for each t ∈ [0, T ] and each nonnegative
integrable function g(·),

∫ T

t

g(s + θ(s))ds 6 L

∫ T+K

t

g(s)ds,

∫ T

t

g(s + ϑ(s))ds 6 L

∫ T+K

t

g(s)ds.

Under global Lipschitz conditions, Peng and Yang proved the existencenee and uniqueness
of solution (see Theorem 4.2 in [4]).

For anticipated BSDEs, we mention that the generator includes not only the values
of solutions of presents but also the future. So ABSDEs may be used in finance. From
Theorem 2.1 in [4], we know that there is a duality between stochastic differential equations
with delay and anticipated BSDEs which can be used in optimal control. We also mention
that, following Peng and Pardoux [11], many papers were devoted to BSDEs with continuous
coefficients. Especially, many scholars studied the minimal solution of BSDEs, it is refered
to [3, 5–8].

Motivated by the above papers, in this paper, we study a special class of 1-dimension
ABSDEs as the following




Y (t) = ξ(T ) +
∫ T

t

f(s, Y (s), Z(s),EFsY (s + θ(s))ds−
∫ T

t

Z(s)dW (s), t ∈ [0, T ],

Y (t) = ξ(t), t ∈ [T, T + K].

(1.2)

Set g(t, y, z, µ(r)) .= f(t, y, z, EFtµ(r)), where t ∈ [0, T ], y ∈ R, z ∈ Rd, µ(·) ∈ L2(Fr;R),
r ∈ [t, T + K]. We get the minimal solution of this type of ABSDEs with continuous
coefficients. Furthermore, we give an application of the minimal-solution theorem.



942 Journal of Mathematics Vol. 36

2 Main Reaults

Before starting our main results, we give some necessary notions and hypotheses.

2.1 Preliminaries

Let (Ω,F , P ) be a complete probability space, and let (W (t))t∈[0,T ] be a d-dimensional
standard Brownian motion on (Ω,F , P ). Let {Ft}t∈[0,T ] be the natural filtration generated
by W .

Now, we give the definitions of some spaces and norms, which will be used later. For
x, y ∈ Rk, we denote by |x| the Euclidean norm of x, and denote by (x, y) the Euclidean
inner product. For a ∈ Rk×d, let |a| .=

√
Traa∗.

• L2(FT ;R) .= {R-valued FT -measurable random variables such that E[|ξ|2] < ∞};
• L2

F(0, T ;Rd) .= {Rd-valued Ft-adapted random processes such that

E
∫ T

0

|ϕ(t)|2dt < ∞};

• S2
F(0, T ;R) .= {continuous processes in L2

F(0, T ;R) such that E[ sup
t∈[0,T ]

|ϕ(t)|2] < ∞}.
We also need the following assumptions.
(H1) Assume that for all t ∈ [0, T ], g(t, ω, y, z, µ) : [0, T ] × Ω × R × Rd × L2(Fr;R) →

L2(Ft;R), where r ∈ [t, T + K], and g satisfies the following conditions

E
[∫ T

0

|g(t, 0, 0, 0)|2ds

]
< ∞.

(H2) For all t ∈ [0, T ], y ∈ R, z ∈ Rd, µ(·) ∈ L2(Fr;R), r ∈ [t, T + K], we have

|g(t, y, z, µ(r))| 6 u1(t)(ft + |y|+ EFt [(µ(r))−]) + u2(t)|z|,

where ft = g(t, 0, 0, 0) is a adapted process which satisfies E
∫ T

0

|ft|2dt < ∞. u1(t) and u2(t)

are nonnegative, deterministic real functions and satisfy
∫ ∞

0

(u1(t) + u2
1(t))dt +

∫ ∞

0

u2
2(t)dt < ∞,

moreover, u1(t) 6 u1(t + θ(t)), θ(t) satisfies (i) and (ii).
(H3) For any t ∈ [0, T ], y ∈ R, z ∈ Rd, g(t, y, z, ·) is increasing, and for fixed t ∈

[0, T ], g(t, ·, ·, ·) satisfies the following jointly continuous condition: y, yn ∈ R, z, zn ∈ Rd,

µ(·), µn(·) ∈ L2(Fr;R), r ∈ [t, T + K], and if |yn − y| → 0, |zn − z| → 0, E sup
s∈[t,T+K]

|µn(s)−
µ(s)|2 → 0, n →∞, we have |g(t, yn, zn, µn(r))− g(t, y, z, µ(r))| → 0, n →∞.

Lemma 2.1 Set

gn(t, y, z, µ(r)) = inf
(u,q)∈Rd+1; ν∈L2(Fr;R)

[
g(t, u, q, ν(r)) + u1(t)n|u− y|

+ u2(t)n|q − z|+ u1(t)nEFt(µ(r)− ν(r))+
]
,
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then gn(t, y, z, µ(r)) has the following properties.
(a) Linear growth: for any t ∈ [0, T ], y ∈ R, z ∈ Rd, µ(·) ∈ L2(Fr;R), r ∈ [t, T + K], we

have
|gn(t, y, z, µ(r)| 6 u1(t)(ft + |y|+ EFt [(µ(r))−]) + u2(t)|z|.

(b) Monotone property in n : for any t ∈ [0, T ], y ∈ R, z ∈ Rd, µ(·) ∈ L2(Fr;R), r ∈
[t, T +K], gn(t, y, z, µ(r)) 6 gn+1(t, y, z, µ(r)) 6 g(t, y, z, µ(r)), and gn(t, y, z, ·) is increasing.

(c) Lipschitz condition: for any t ∈ [0, T ], y, y′ ∈ R, z, z′ ∈ Rd, µ(·), µ′(·) ∈ L2(Fr;R), r ∈
[t, T + K],

|gn(t, y, z, µ(r))− gn(t, y′, z′, µ′(r))| 6 u1(t)|y − y′|+ u2(t)|z − z′|+ u1(t)EFt |µ(r)− µ′(r)|.

(d) Strong convergence: if (yn, zn) → (y, z), y, yn ∈ R, z, zn ∈ Rd, µ(·), µn(·) ∈
L2(Fr;R), r ∈ [t, T + K] and E sup

s∈[t,T+K]

|µn(s)− µ(s)|2 → 0, we have

gn(t, yn, zn, µn(r)) → g(t, y, z, µ(r)), n →∞.

Proof We use the similar method as used in [3, 6] to prove (a), (b) and (c) are obvious.
We only need to prove (d). By the definition of infimum, for each n ∈ N, n > 1, there exist
un ∈ R, qn ∈ Rd, νn ∈ L2(Ft;R), r ∈ [t, T + K], such that

g(t, yn, zn, µn(r)) > gn(t, yn, zn, µn(r))

> g(t, un, qn, νn(r)) + u1(t)n|un − yn|+ u2(t)n|qn − zn|+ u1(t)nEFt(µn(r)− νn(r))+ − 1

n

> −[u1(t)(ft + |yn|+ EFt(µn(r))−) + u2(t)|zn|]− [u1(t)(ft + |un|+ EFt(νn(r))−) + u2(t)|qn|]
+[u1(t)(ft + |yn|+ EFt(µn(r))−) + u2(t)|zn|] + u1(t)n|un − yn|+ u2(t)n|qn − zn|
+u1(t)nEFt(µn(r)− νn(r))+ − 1

n

> −[u1(t)(ft + |yn|+ EFt(µn(r))+) + u2(t)|zn|]− [u1(t)|un − yn|+ u2(t)|qn − zn|
+u1(t)EFt(µn(r)− νn(r))−] + u1(t)n|un − yn|+ u2(t)n|qn − zn|
+u1(t)nEFt(µn(r)− νn(r))+ − 1

n

> −[u1(t)(ft + |yn|+ EFt(µn(r))−) + u2(t)|zn|] + u1(t)(n− 1)|un − yn|+ u2(t)(n− 1)|qn − zn|
+u1(t)(n− 1)EFt(µn(r)− νn(r))+ − 1

n
. (2.1)

For the above proof, we apply the triangle inequality a± − b± 6 (a− b)± and a− = (−a)+.

Thus we have

u1(t)(n− 1)|un − yn|+ u2(t)(n− 1)|qn − zn|+ u1(t)(n− 1)EFt(µn(r)− νn(r))+ − 1
n

6 2[u1(t)(ft + |yn|+ EFt(µn(r))−) + u2(t)|zn|]. (2.2)

Since E[|EFt(µn(r))−|2] 6 E[EFt |(µn(r))|2] 6 E|µn(r)|2 < ∞, then when n ∈ N, n > 1,
we derive

lim sup
n→∞

u1(t)(n− 1)|un − yn| < ∞, lim sup
n→∞

u2(t)(n− 1)|qn − zn| < ∞,

lim sup
n→∞

u1(t)(n− 1)EFt(µn(r)− νn(r))+ < ∞,
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and lim
n→∞

un = y, lim
n→∞

qn = z. By (2.2), we have

E[|2u1(t)(ft + |yn|+ EFt(µn(r))−) + 2u2(t)|zn|+ 1
n
|2]

6 4E[4u2
1(t)|yn|2 + 4u2

2(t)|zn|2 + 4u2
1(t)|EFt(µn(r))−|2 + (2u1(t)ft +

1
n

)2]

6 4E[4u2
1(t)|yn|2 + 4u2

2(t)|zn|2 + 4u2
1(t)|(µn(r))−|2] + C ′ < ∞,

therefore

lim sup
n→∞

E[(u1(t)(n− 1)EFt(µn(r)− νn(r))+)2] < ∞. (2.3)

For an appropriate A > 0, there exists a N > 0, such that for any n > N,

u1(t)(n− 1)EFt(µn(r)− νn(r))+ 6 A

and
( sup
t∈[0,T ]

u1(t) + 1)(n− 1)EFt(µn(r)− νn(r))+ 6 A.

Then

EFt(µn(r)− νn(r))+ 6 A

(n− 1)( sup
t∈[0,T ]

u1(t) + 1)
. (2.4)

By the above inequality, we know {EFt(µn(r) − νn(r))+;n ∈ N, n > 1} is bounded in
L2(Ft;R), with (2.4), we get

lim
n→∞

E[(EFt(µn(r)− νn(r))+)2] = 0.

From (2.4), we also have EFt [νn(r)] > EFt [µn(r)]− A
(n−1)( sup

t∈[0,T ]
u1(t)+1)

.

On the other hand, since g(t, y, z, ·) is increasing and (2.3), we have

g(t, yn, zn, µn(r)) > gn(t, yn, zn, µn(r)) > g

(
t, un, qn, µn(r)− A

(n− 1)( sup
t∈[0,T ]

u1(t) + 1)

)
− 1

n
.

Since g is continuous in L2(F ;R), we have

lim
n→∞

g(t, u2, q2, µn(r)− A

(n− 1)( sup
t∈[0,T ]

u1(t) + 1)
) = g(t, y, z, µ).

From assumption (H3), we obtain lim
n→∞

gn(t, yn, zn, µn(r)) = g(t, y, z, µ(r)).
Consider the following equations




Y n(t) = ξ(T ) +
∫ T

t

gn(s, Y n(s), Zn(s), Y n(s + θ(s)))ds−
∫ T

t

Zn(s)dW (s), t ∈ [0, T ],

Y n(t) = ξ(t), t ∈ [T, T + K].




U(t) = ξ(T ) +
∫ T

t

l(s, U(s), V (s), U(s + θ(s)))ds−
∫ T

t

V (s)dW (s), t ∈ [0, T ],

U(t) = ξ(t), t ∈ [T, T + K],
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where l(t, y, z, µ(r)) = C(ft + |y|+ |z|+ EFt(µ(r))−), by the comparison theorem in [4], for
any t ∈ [0, T + K], n > m,m, n ∈ N, U(t) > Y n(t) > Y m(t) a.e..

Before giving our main result, we give the following lemma.
Lemma 2.2 Assume that ξ(·) ∈ S2

F(T, T + K;R), then there exists a constant M > 0

which only depends on T +K, L, E sup
t∈[T,T+K]

|ξ(t)|2,
∫ ∞

0

(u1(t)+u2
2(t))dt, E

∫ T

0

|ft|2dt such

that

E sup
t∈[0,T+K]

|Y n(t)|2dt 6 M, E
∫ T

0

|Zn(t)|2dt 6 M.

Proof Using Itô’s formula to |Y n(t)|2, we have

E|ξ(T )|2 = E|Y n(t)|2 − 2E
∫ T

t

Y n(s)gn(s, Y n(s), Zn(s), Y n(s + θ(s)))ds

+ E
∫ T

t

|Zn(s)|2ds. (2.5)

Thus by (H1)–(H3), (i), (ii) in introduction and Lemma 2.1 (b), Young’s inequality, Fubini’s
lemma, (a + b + c)2 6 C(a2 + b2 + c2), Hölder’s inequality, we have

E|Y n(t)|2 + E
∫ T

t

|Zn(s)|2ds

= E|ξ(T )|2 + 2E
∫ T

t

Y n(s)gn(s, Y n(s), Zn(s), Y n(s + θ(s)))ds

6 E|ξ(T )|2 + 2E
∫ T

t

Y n(s)(u1(s)fs + u1(s)|Y n(s)|+ u2(s)|Zn(s)|

+u1(s)EFs |Y n(s + θ(s))|)ds

6 E|ξ(T )|2 + E
∫ T

t

(3β +
L

β
)u1(s)|Y n(s)|2ds + E

∫ T

t

1
β
|Zn(s)|2ds + E

∫ T

t

1
β

u1(s)f2
s ds

+E
∫ T+K

T

L

β
u1(s)|ξ(s)|2ds

6 C ′
β + C ′

βE
∫ T

t

|Y n(s)|2ds +
1
β
E

∫ T

t

|Zn(s)|2ds. (2.6)

So choose a fixed β > 0 such that 1
β

= 1
2
, we have

E|Y n(t)|2 +
1
2
E

∫ T

t

|Zn(s)|2ds 6 C ′{1 + E
∫ T

t

|Y n(s)|2ds}. (2.7)

By Gronwall’s lemma, we obtain

sup
n
E

∫ T

0

|Y n(s)|2ds < ∞.

Thus

sup
n
E

∫ T

0

|Zn(s)|2ds < ∞.
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At last, by BDG inequality, there exists a constant M , which only depends on T + K, L,

E sup
t∈[T,T+K]

|ξ(t)|2,
∫ ∞

0

(u1(t) + u2
2(t))dt, E

∫ T

0

|ft|2dt such that

E sup
t∈[0,T+K]

|Y n(t)|2 6 M, E
∫ T

0

|Zn(t)|2dt 6 M.

Theorem 2.3 (Minimal-solution theorem) Under assumptions (H1)–(H3), (i), (ii),
equation (1.2) has a minimal solution, that is if Y ′ is another solution of equation (1.2).
Then for any given terminal value ξ(·) ∈ S2

F(T, T + K;R), we have

Y (t) 6 Y ′(t), a.e., for all t ∈ [0, T + K].

Proof Due to for any t ∈ [0, T + K], n > m,m, n ∈ N, U(t) > Y n(t) > Y m(t) a.e.,
there exists a stochastic process {Y (t), t ∈ [0, T + K]} such that Y n(t) ↑ Y (t), n →∞. Due

to the monotone convergence theorem, E
∫ T+K

0

|Y n(t) − Y (t)|2dt → 0, n → ∞. Using Itô’s

formula to |Y n(t)− Y m(t)|2, we obtain

E|Y n(t)− Y m(t)|2 + E
∫ T

t

|Zn(s)− Zm(s)|2ds

6 2E
∫ T

t

(Y n(s)− Y m(s))(gn(s, Y n(s), Zn(s), Y n(s + θ(s)))

−gm(s, Y m(s), Zm(s), Y m(s + θ(s)))ds.

By Lemma 2.1, Lemma 2.2, we have

E
∫ T

t

|Zn(s)− Zm(s)|2ds

6 2
(
E

∫ T

0

|Y n(s)− Y m(s)|2ds

) 1
2
(
E

∫ T

0

|gn(s, Y n(s), Zn(s), Y n(s + θ(s)))

−gm(s, Y m(s), Zm(s), Y m(s + θ(s)))|2ds

) 1
2

6 C ′
(
E

∫ T

0

|Y n(s)− Y m(s)|2ds

) 1
2

.

Thus

E
∫ T

0

|Zn(s)− Zm(s)|2ds → 0, n, m →∞.

So there exists a Z ∈ L2
F(0, T ;Rd) such that lim

n→∞
E

∫ T

0

|Zn(s) − Z(s)|2ds = 0. Using Itô’s

formula, BDG inequality and Lemma 2.1, Lemma 2.2, we can easily obtain

lim
n→∞

E sup
t∈[0,T+K]

|Y n(t)− Y (t)|2dt = 0.
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Furthermore, there exists a subsequence of {n}, which we still denote this subsequence by
{n} such that

E
∫ T+K

0

|Y n(t)− Y (t)|dt 6 1
2n

, E
∫ T

0

|Zn(t)− Z(t)|dt 6 1
2n

.

By the linear growth, we get

|gn(s, Y n(s), Zn(s), Y n(s + θ(s)))|
6 u1(s)(fs + |Y n(s)|+ EFs |Y n(s + θ(s))|) + u2(s)|Zn(s)|
6 u1(s)(fs + sup

n
|Y n(s)|+ sup

n
EFs |Y n(s + θ(s))|) + u2(s) sup

n
|Zn(s)|,

while

E
∫ T

0

u1(s) sup
n
EFs |Y n(s + θ(s))|ds 6 E

∫ T

0

u2
1(s)ds + E

∫ T

0

EFs |Y n(s + θ(s))|2ds

6 2E
∫ T

0

sup
n
EFs |Y n(s + θ(s))− Y (s + θ(s))|2ds + 2E

∫ T

0

EFs |Y (s + θ(s))|2ds + C ′

6 2LE
∫ T+K

0

∞∑
n=1

|Y n(s)− Y (s)|ds + 2LE
∫ T+K

0

|Y (s)|ds + C ′ < ∞.

Thus
sup

n
EFt |Y n(t + θ(t))| ∈ L2([0, T ],dt).

Using the similar method, we get

sup
n
|Y n(t)| ∈ L2([0, T + K],dt), sup

n
|Zn(t)| ∈ L2([0, T + K],dt).

Controled convergence theorem leads to
∫ T

0

gn(s, Y n(s), Zn(s), Y n(s + θ(s)))ds →
∫ T

0

g(s, Y (s), Z(s), Y (s + θ(s)))ds, n →∞.

By BDG inequality, we have

E sup
t∈[0,T ]

∣∣∣∣
∫ T

t

Zn(s)dW (s)−
∫ T

t

Z(s)dW (s)
∣∣∣∣
2

6 C ′E
∫ T

t

|Zn(s)− Z(s)|2ds → 0, n →∞.

Thus there exists a subsequence, which we still denote by {n} such that

sup
t∈[0,T ]

∣∣∣∣
∫ T

t

Zn(s)dW (s)−
∫ T

t

Z(s)dW (s)
∣∣∣∣ → 0, n →∞.

Then (Y, Z) is a solution of equation (1.2). Now, we are going to prove Y is a minimal
solution of equation (1.2). Assume (Y ′, Z ′) is another solution of equation (1.2), by the
comparison theorem in [4], we have Y (t) 6 Y ′(t) a.e. for any t ∈ [0, T + K]. The proof is
completed.
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一类特殊的延迟倒向随机微分方程的最小解

凃淑恒1,廖俊俊2

(1. 河南工业大学理学院,河南郑州 450002)

(2. 华中科技大学数学与统计学院,湖北武汉 430074)

摘要: 本文研究一类特殊的延迟倒向随机微分方程最小解的相关问题. 当假设生成子满足连续性假设

和类似线性增长条件时, 证明了最小解的存在性. 本文推广了最小解存在的一般假设条件, 这里假设要弱于

之前的文献, 然而本文得到了更好的引理, 并且得到了相同的结论.
关键词: 延迟倒向随机微分方程; 最小解; 比较定理
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