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Abstract: In this paper, we study the existence of periodic solutions of damped impulsive
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1 Introduction

Impulsive differential equations arising from the real world describe the dynamic of
processes in which sudden discontinuous jumps occur. In recent years, impulsive problems
attracted the attention of a lot of researchers and in consequence the number of papers related
to this topic is huge, see [1–6] and their references. For a second order differential equation
x′′ + f(t, x, x′) = 0, one usually considers impulses in the position x and the velocity x′.
However, in the motion of spacecraft one has to consider instantaneous impulses dependent
only on the position, and the result in jump is discontinuous in velocity, but with no change
in position [7, 8]. Let t0 = 0 < t1 < t2 < · · · < tp < tp+1 = 2π. Recently, the following
Dirichlet boundary value problems with impulses

x′′ + g(t)x′ + f(t, x) = 0 a.e. t ∈ [0, 2π], (1.1)

∆x′(tj) := x′(t+j )− x′(t−j ) = Ij(x(tj)), j = 1, 2, · · · , p, (1.2)

x(0) = x(2π) (1.3)

were studied by variational method in [9, 10], where f : [0, 2π] × R → R is continuous,
g ∈ C[0, 2π], and the impulse functions Ij : R → R is continuous for every j. After that,
impulsive problems (1.1)–(1.2) with periodic boundary

x(0)− x(2π) = x′(0)− x′(2π) = 0 (1.4)
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was also investigated in [6] when g(t) ≡ 0.
Generally, people are used to obtain the critical points of impulsive problems via Moun-

tain pass theorem or Saddle point theorem. In this paper, we use Lagrange multipliers
theorem, that is conditional extremum theory, to investigate impulsive problems (1.1)–(1.2)
with periodic boundary

x(0)− x(2π) = x′(0)− x′(2π) = 0. (1.5)

The organization of the paper is as follows. In Section 2, we give variational structure of
impulsive problem (1.1)–(1.2)–(1.5). In Section 3, critical points corresponding to periodic
solutions of impulsive problems (1.1)–(1.2) are obtained by constrain theory.

2 Variational Structure

In this section, we always assume that f : R × R → R is 2π-periodic in t for all x ∈ R

and satisfies the following carathéodory assumptions:
(1) for every x ∈ R, f(·, x) is measurable on [0, 2π];
(2) for a.e. t ∈ [0, 2π], f(t, ·) is continuous on R;
(3) there exist a ∈ C(R+, R+) and b ∈ L1(0, 2π;R+) such that |F (t, x)| + |f(t, x)| ≤

a(|x|)b(t) for all x ∈ R and a.e. t ∈ [0, 2π], where F (t, x) =
∫ x

0

f(t, s)ds.

We also assume that g ∈ L1(0, 2π;R) is 2π-periodic with
∫ 2π

0

g(s)ds = 0, and the

impulse functions Ij : R → R is continuous for every j.
Multiplying equation (1.1) by eG(t), we can see that impulsive problem (1.1)+(1.2)+(1.5)

is equivalent to

(eG(t)x′)′ + eG(t)f(t, x) = 0 a.e. t ∈ [0, 2π] (2.1)

with (1.2)+(1.5), where G(t) =
∫ t

0

g(s)ds.

We now investigate impulsive system (2.1)+(1.2)+(1.5). Define Hilbert space

H1
2π = {x : [0, 2π] → R | x(0) = x(2π),

2π∫

0

(x′2 + x2)dt < +∞}

with the norm ‖x‖ = (
2π∫
0

(x′2 + x2)dt)1/2. Consider the functional ϕ(x) defined on H1
2π by

ϕ(x) =
1
2

2π∫

0

eG(t)|x′(t)|2dt−
2π∫

0

eG(t)F (t, x)dt +
p∑

j=1

eG(tj)

x(tj)∫

0

Ij(s)ds.

Proposition 2.1 Under our assumptions, functional ϕ(x) is weakly lower semi-continuous
on H1

2π.
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Proof First, it is easy to see that functional

2π∫

0

eG(t)|x′(t)|2dt is convex continuous.

Consequently, by Mazur Theorem,

2π∫

0

eG(t)|x′(t)|2dt is weakly lower semi-continuous on H1
2π.

On the other hand, by Proposition 1.2 in [13], we know that if sequence {xk} converges

weakly to x in H1
2π, then {xk} converges uniformly to x on [0, 2π]. Hence

2π∫

0

eG(t)F (t, x)dt−

p∑
j=1

eG(tj)

x(tj)∫

0

Ij(s)ds is weakly continuous on H1
2π. Thus we complete the proof.

The following result is evident.
Proposition 2.2 Under our assumptions, ϕ(x) is continuously differentiable on H1

2π,
and for every v ∈ H1

2π, one has

〈ϕ′(x), v〉 =

2π∫

0

eG(t)x′(t)v′(t)dt−
2π∫

0

eG(t)f(t, x)vdt +
p∑

j=1

eG(tj)Ij(x(tj))v(tj).

Proposition 2.3 Under our assumptions, if x ∈ H1
2π is a critical point of ϕ, then x is

one 2π-periodic solution of problem (2.1)+(1.2)+(1.5).
Proof Let x be a critical point of ϕ in H1

2π, then for every v ∈ H1
2π we have

〈ϕ′(x), v〉 =

2π∫

0

eG(t)x′v′dt−
2π∫

0

eG(t)f(t, x)vdt +
p∑

j=1

eG(tj)Ij(x(tj))v(tj) = 0. (2.2)

We now check that x satisfies (2.1)+(1.2)+(1.5).
Since x ∈ H1

2π, we have x(0) = x(2π). Evidently, the Sobolev space H1
0 (0, 2π) ⊆ H1

2π.
For any fixed j ∈ {0, 1, 2, · · · , p}, let H1

0 (tj , tj+1) = {v ∈ H1
0 (0, 2π) : v(t) = 0,∀t ∈ [0, tj ] ∪

[tj+1, 2π]}. Then

tj+1∫

tj

eG(t)x′v′dt−
tj+1∫

tj

eG(t)f(t, x)vdt = 0,∀ v ∈ H1
0 (tj , tj+1).

It implies that (eG(t)x′)′ + eG(t)f(t, x) = 0 a.e. t ∈ [tj , tj+1]. Hence x satisfies

(eG(t)x′)′ + eG(t)f(t, x) = 0 a.e. t ∈ [0, 2π]. (2.3)

That is, x satisfies equation (2.1).
Take v ∈ H1

0 (0, 2π) and multiply (2.3) by v, then integrate between 0 and 2π. (2.3) gives

that

2π∫

0

(eG(t)x′)′vdt+

2π∫

0

eG(t)f(t, x)vdt = 0. That is
p∑

j=0

tj+1∫

tj

(eG(t)x′)′vdt+

2π∫

0

eG(t)f(t, x)vdt =
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0. By integration by parts, we have

−
2π∫

0

eG(t)x′v′dt−
p∑

j=1

eG(tj)∆x′(tj)v(tj) +

2π∫

0

eG(t)f(t, x)vdt = 0.

Combining with (2.2), which implies that

p∑
j=1

eG(tj)∆x′(tj)v(tj) =
p∑

j=1

eG(tj)Ij(x(tj))v(tj), ∀v ∈ H1
0 (0, 2π).

Hence
∆x′(tj) = Ij(x(tj)) for every j = 1, 2, · · · , p. (2.4)

This is just condition (1.2).
On the other hand, in (2.2), let v = 1, then

−
2π∫

0

eG(t)f(t, x)dt +
p∑

j=1

eG(tj)Ij(x(tj) = 0. (2.5)

Moreover, integrating (2.3) between 0 and 2π, we get

2π∫

0

(eG(t)x′)′dt +

2π∫

0

eG(t)f(t, x)dt = 0.

It gives that

−
p∑

j=1

eG(tj)(x′(t+j )− x′(t−j )) + eG(2π)x′(2π)− eG(0)x′(0) = −
2π∫

0

eG(t)f(t, x)dt. (2.6)

At last, by (2.4), (2.5), (2.6) and G(2π) = G(0) since
∫ 2π

0

g = 0, one has x′(0) = x′(2π).

Thus we complete the proof.

Remark 2.4 Since g ∈ L1(0, 2π;R) with
∫ 2π

0

g(s)ds = 0, G(t) is absolutely continuous

and 2π-periodic, from which one has that eG(t) is continuous , 2π-periodic and positive
function. Hence, from the viewpoint of variational functional ϕ, there are no difference
between problem (1.1)–(1.2)–(1.5) and equation x′′+f(t, x) = 0 with (1.2)–(1.5). Therefore,
with a similar proof as [6], we can obtain critical points by saddle point theorem using similar
conditions.

3 Critical Points in Constraints

The following Lagrange multipliers theorem is well known (see Theorem 2.1 in [11] or
Theorem 3.1.31 in [12]).

Lemma 3.1 Let ϕ ∈ C1(H1
2π, R) and M = {x ∈ H1

2π : ψj(x) = 0, j = 1, · · · , n},
where ψj ∈ C1(H1

2π, R), j = 1, · · · , n, and ψ′1(x), · · · , ψ′n(x) are linearly independent for
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each x ∈ H1
2π. Then if u ∈ M is a critical point of ϕ|M , there exist λj ∈ R j = 1, · · · , n,

such that

ϕ′(u) =
n∑

j=1

λjψ
′
j(u). (3.1)

We now give the following minimization principle in constraint M .
Lemma 3.2 (see Theorem 1.1 in [11]) Let M be a weakly closed subset of a Hilbert

space X. Suppose a functional ϕ : M → R is
(i) weakly lower semi-continuous,
(ii) ϕ(u) → +∞ as ‖u‖ → ∞, u ∈ M ,

then ϕ is bounded from below and there exists u0 ∈ M such that ϕ(u0) = inf
M

ϕ.

Using the above lemmas, the author of [11] consider the following Neumann problem
{
−∆u = f(u) in Ω,

∂u
∂n

= 0 on ∂Ω

for some suitable Ω ⊂ RN and f(u) under natural constraints (see [11]). Inspired by his
work, in this section, we take our attention to find the critical points of functional ϕ over a
set of constraints M ⊆ H1

2π.

For x ∈ H1
2π, let x̄ = 1

2π

∫ 2π

0

x(t)dt, x̃(t) = x(t)− x̄ and H̃1
2π = {x ∈ H1

2π| x̄ = 0}, then

one has

‖x̃‖2
∞ ≤ π

6

2π∫

0

x′2(t)dt (3.2)

and
2π∫

0

x̃2(t)dt ≤
2π∫

0

x′2(t)dt. (3.3)

By (3.3), we have

(

2π∫

0

x′2(t)dt)1/2 ≤ ‖x̃‖ ≤
√

2(

2π∫

0

x′2(t)dt)1/2. (3.4)

It is easy to see that H1
2π = R⊕ H̃1

2π.

Besides those conditions given to f(t, x), g(t) and Ij(x), j = 1, · · · , k in Section 2, we
also assume that there exist constants α, β > 0, ξj ∈ R, j = 1, · · · , k, such that

f(t, x)f(t,−x) < 0, a.e. t ∈ [0, 2π],∀|x| > α, (3.5)

f ′2(t, x) , ∂f(t, x)
∂x

> 0, a.e. t ∈ [0, 2π], (3.6)

Ij(ξj) = 0, −β < I ′j(x) ≤ 0, j = 1, · · · , k, (3.7)

a(x) ≤ x2 + o(xη), (3.8)
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where constant 0 ≤ η < 2 and the function a is from carathéodory assumption (3).

For convenience, we denote A = max{eG(t)} and B = min{eG(t)}, then A,B > 0.

Theorem 3.3 If above assumptions hold and 6B−A(2‖b‖1 + pβ)π > 0, then problem
(1.1)–(1.2)–(1.5) has at least one solution.

Remark 3.4 We only need to prove that problem (2.1)–(1.2)–(1.5) has at least one
solution.

Consider the subset M of H1
2π defined by

M = {x ∈ H1
2π :

2π∫

0

eG(t)f(t, x)dt−
p∑

j=1

eG(tj)Ij(x(tj)) = 0}.

Since

2π∫

0

eG(t)F (t, x)dt−
p∑

j=1

eG(tj)

x(tj)∫

0

Ij(s)ds is weakly continuous, one obtains that the set

M is weakly closed.

Let functional Γ(x) =

2π∫

0

eG(t)f(t, x)dt−
p∑

j=1

eG(tj)Ij(x(tj)). For ∀ v ∈ H1
2π, we have

(Γ′(x), v) =

2π∫

0

eG(t)f ′2(t, x)vdt−
p∑

j=1

eG(tj)I ′j(x(tj))v(tj).

Then by conditions (3.6) and (3.7), one has Γ′(x) 6= 0, which indicates that Γ′(x) linearly
independent for each x ∈ H1

2π.

Remark 3.5 It is easy to see that, by conditions (3.5)–(3.7), we have that, ∀ u ∈ H̃1
2π,

there exists a unique c ∈ R such that u + c ∈ M . In fact, ∀ u ∈ H̃1
2π, one has that u is

continuous and the function Γ̃(c) =

2π∫

0

eG(t)f(t, u + c)dt −
p∑

j=1

eG(tj)Ij(u(tj) + c) defined on

R is continuous and strictly increasing, moreover, Γ̃(−∞) < 0, Γ̃(+∞) > 0.

Lemma 3.6 Under our assumptions, x ∈ H1
2π is a critical point of ϕ if and only if

x ∈ M and x is a critical point of ϕ|M .

Proof If x ∈ H1
2π is a critical point of ϕ, by choosing v = 1 in (2.2), we have

2π∫

0

eG(t)f(t, x)dt−
p∑

j=1

eG(tj)Ij(x(tj)) = 0,

i.e., x ∈ M , and hence x is a critical point of ϕ|M .

On the other hand, if x is a critical point of ϕ|M , by Lemma 3.1, there exists λ ∈ R
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such that for every v ∈ H1
2π,

2π∫

0

eG(t)x′(t)v′(t)dt−
2π∫

0

eG(t)f(t, x)vdt +
p∑

j=1

eG(tj)Ij(x(tj))v(tj)

= λ(

2π∫

0

eG(t)f ′2(t, x)vdt−
p∑

j=1

eG(tj)I ′j(x(tj))v(tj)). (3.9)

Choosing v = 1 and observing that x ∈ M , we have

λ(

2π∫

0

eG(t)f ′2(t, x)dt−
p∑

j=1

eG(tj)I ′j(x(tj))) = 0,

which follows that λ = 0 since f ′2 > 0 and I ′j ≤ 0. Putting it into (3.9), one has ϕ′(x) = 0.
Thus we complete the proof.
To functional

Φ(x) =

2π∫

0

eG(t)F (t, x)dt−
p∑

j=1

eG(tj)

x(tj)∫

0

Ij(s)ds,

we have the following results.
Lemma 3.7 Under our assumptions, we have
(i) Φ(u + c) ≤ Φ(u), ∀ u + c ∈ M , where u ∈ H̃1

2π, c ∈ R.
(ii) Let un + cn ∈ M , where un ∈ H̃1

2π and cn ∈ R. Then if ‖un + cn‖ → ∞, one has
‖un‖ → ∞.

Proof First, by conditions f ′2 > 0 and I ′j ≤ 0, j = 1, · · · , k, one has the convexity of

F (t, ·) and −
∫ x(tj)

0

Ij(s)ds, that is F (t, u) ≥ F (t, u + c) + f(u + c)(u− (u + c)) and

−
∫ u(tj)

0

Ij(s)ds ≥ −
∫ u(tj)+c

0

Ij(s)ds− Ij(u(tj) + c)(u(tj)− (u(tj) + c)).

The above two inequalities give that

2π∫

0

eG(t)F (t, u)dt−
p∑

j=1

eG(tj)

u(tj)∫

0

Ij(s)ds ≥
2π∫

0

eG(t)F (t, u + c)dt−
p∑

j=1

eG(tj)

u(tj)+c∫

0

Ij(s)ds

−c

2π∫

0

eG(t)f(t, u + c)dt + c

p∑
j=1

eG(tj)Ij(u(tj) + c),

which follows (i).
Next, we turn to prove (ii). Define functional Ψ : H̃1

2π ×R → R by the following

Ψ(u, c) =

2π∫

0

eG(t)f(t, u + c)dt−
p∑

j=1

eG(tj)Ij(u(tj) + c).
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Since f ′2 > 0 and I ′j ≤ 0, Ψ(u, ·) is strictly increasing. From Remark 3.5, we know that,
∀u ∈ H̃1

2π, there exists a unique c = c(u) ∈ R such that u + c ∈ M . By contradiction, we
assume that, going to a subsequence if necessary, un + cn ∈ M , ‖un + cn‖ → ∞ and {‖un‖}
is bounded. Then we may assume un ⇀ v weakly in H1

2π and cn → +∞ (similar analysis
for cn → −∞). Since un ⇀ v weakly in H1

2π, then by the Proposition 1.2 in [13], one has
un → v uniformly on [0, 2π].

Because of the strict increase of Ψ(u, ·), when n is big enough, we have

0 = Ψ(v, c(v)) < Ψ(v, cn) = Ψ(v, cn)−Ψ(vn, cn)

=

2π∫

0

eG(t)[f(t, v + cn)− f(t, vn + cn)]dt−
p∑

j=1

eG(tj)[Ij(v(tj) + cn)− Ij(vn(tj) + cn)]

≤ A‖vn − v‖∞
2π∫

0

η(t)dt + pAβ‖vn − v‖∞ → 0

as n →∞. It is contradictory.
Thus we complete the proof.
Proof of Theorem 3.3 Without loss of generality, we may assume that a(x) ≤ x2 in

condition (3.8) and ξj = 0, j = 1, 2, · · · , p in condition (3.7). Then under our assumptions,
one has

F (t, x) ≤ b(t)x2, |
∫ x

0

Ij(s)ds| ≤ 1
2
βx2.

It implies that

|Φ(u)| ≤ A

2π∫

0

|u(t)|2b(t)dt +
1
2

p∑
j=1

Aβu2(tj)

≤ A‖b‖1‖u‖2
∞ +

pAβ

2
‖u‖2

∞ ≤ (A‖b‖1 +
pAβ

2
)
π

6
‖u′(t)‖2

2

by (3.2) if u ∈ H̃1
2π. Hence ∀ u + c ∈ M , where u ∈ H̃1

2π and c ∈ R, using (i) of Lemma 3.7,
we have

ϕ(u + c) =
1
2

2π∫

0

eG(t)|u′(t)|2dt− Φ(u + c) ≥ 1
2

2π∫

0

eG(t)|u′(t)|2dt− Φ(u)

≥ B

2
‖u′(t)‖2

2 − (A‖b‖1 +
pAβ

2
)
π

6
‖u′(t)‖2

2 ≥
6B −A(2‖b‖1 + pβ)π

12
‖u′(t)‖2

2.

Since 6B −A(2‖b‖1 + pβ)π > 0, by (3.4) and (ii) of Lemma 3.7, we have ϕ(u + c) → +∞ as
‖u + c‖ → ∞, u + c ∈ M .

On the other hand, M is weakly closed and ϕ is weakly lower semi-continuous, therefore
by Lemma 3.2, there exists at least one critical point x ∈ M of ϕ|M . Then by Lemma 3.6,
we complete the proof.
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带阻尼项的脉冲系统的周期解
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摘要: 本文利用变分法研究了带阻尼项的脉冲系统的周期解. 采用一种新的方法, 在一些条件下证明

了带周期边界条件的脉冲系统存在临界点. 本文不仅推广了已有的结果而且还丰富了研究脉冲系统的方法.
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