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Abstract: In this paper, we study with robust stabilization problem of uncertain stochas-

tic time-varying delay systems with nonlinear perturbation. Constructing a suitable Lyapunov-

Krasovskii functional and employ the free weighting matrix method, in terms of the linear matrix

inequality (LMI) technique, we design a memoryless state feedback controller, and obtain delay

dependent robust stabilization criterion for the uncertain stochastic time-varying delay systems. A

numerical example and its simulation curve are given to show that the proposed theoretical result

is effective.
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1 Introduction

The problem of the stabilization of time-delayed systems was often explored in recent
years. Time delays are common in engineering processes. They frequently arose in chemical
processes, in long transmission lines and in pneumatic, hydraulic and rolling mill systems.
The problem of stability analysis in time-delayed systems was one of the main concerns of
research into the attributes of such systems. Many works on this subject were published [1–
7]. Depending on the information about the size of time-delays of the systems, criteria for
time-delay systems can be classified into two categories, namely, delay-independent criteria
[1, 2] and delay-dependent criteria [3–7]. Generally speaking, for the cases of small delays
, the latter ones are less conservative than the former ones. To obtain delay-dependent
conditions, many efforts were made in the literature, among which the model transformation
and bounding technique for cross terms [8] were often used. However, it is well known that
these two kinds of methods are the main sources of conservatism. Recently, in order to reduce
the conservatism, a free-weighting matrix method was proposed in [9, 10] to investigate
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delay-dependent stability, in which neither model transformation nor bounding technique is
involved.

In recent years, the non-fragile control problem was an attractive topic in theory analysis
and practical implement, because of perturbations often appearing in the controller gain,
which may result from either the actuator degradations or the requirements for readjustment
of controller gains. The non-fragile control concept is how to design a feedback control that
will be insensitive to some error in gains of feedback control [11] . Xu et al. [12] concerned the
problem s of robust non-fragile stochastic stabilization and H∞ control for uncertain time-
delay stochastic systems with time-varying norm-bounded parameter uncertainties in both
the state and input matrices, when the delay was assumed to be constant. Zhang et al. [13]
dealt with the same problem for uncertain nonlinear stochastic systems at the time-varying
delay case. However, there was the restriction that time-derivative of time-varying delay must
be less than one, which limits the application scope of the existing results. Wang et al. [14]
dealt with the problems of non-fragile robust stochastic stabilization and robust H∞ control
for uncertain stochastic nonlinear single time-varying delay systems. By introducing the
homogeneous domination approach to stochastic systems, Liu et al. [15] investigated a class
of stochastic feedforward nonlinear systems with time-varying delay. By constructing delay-
partitioning dependent Lyapunov–Krasovskii functional with reciprocally convex approach,
Xia et al. [16] dealt with the problem of state robust H∞ tracking control for uncertain
stochastic systems with interval time-varying delay.

In this paper, our objective is to solve the problem of robust stabilization of uncertain
stochastic systems with time-varying delay and nonlinearity. Parameter uncertainty in the
state and input matrices, It is assumed to be norm bounded. Time delay is unknown, but
in the known range changes with time. The goal of this paper is to design a memoryless
state feedback controller, for all admissible parametric uncertainties, and make the closed-
loop system is robustly stochastically stable. The present results are derived by choosing
an appropriate Lyapunov functional and by making use of free-weighting matrices method.
Numerical example and its simulation curve are given to show the proposed theoretical result
is effective.

Notation Through this paper, the superscript T stands for matrix transposition; Rn

denotes the n-dimensional Euclidean space, Rn×m is the set of n × m real matrices, I is
the identity matrix of appropriate dimensions; the notation X > 0 (respectively, X ≥ 0),
for X ∈ Rn×n means that the matrix X is real positive definite (respectively, positive semi-
definite); the symbol ∗ is used to denote the transposed elements in the symmetric positions
of a matrix. Matrices, if the dimensions are not explicitly stated, are assumed to have
compatible dimensions for algebraic operation.

2 System Descriptions and Preliminaries

Consider the following uncertain linear stochastic differential delay system with nonlin-
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ear perturbation and parameter uncertainties




dx(t) = [A(t)x(t) + A1(t)x(t− h(t)) + B1(t)u(t) + σ(t, x(t), x(t− h(t)))]dt

+[C(t)x(t) + C1(t)x(t− h(t)) + B2(t)u(t)]dω(t),
x(t) = φ(t), t ∈ [−h, 0],

(2.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rn is the control input, φ(t) is a continuous-
time real valued function representing the initial condition of the system, and ω(t) is one-
dimensional Brownian motion defined on a complete probability space (Ω,F,P) satisfying
E{dω(t)} = 0, E{dω(t)2} = dt. In the system descriptive equation (2.1), the time-varying
matrices are given by A(t) = A + 4A(t), A1(t) = A1 + 4A1(t), B1(t) = B1 + 4B1(t),
C(t) = C + 4C(t), C1(t) = C1 + 4C1(t), and B2(t) = B2 + 4B2(t), where A,A1, B1,
C, C1 and B2 are known constant matrices and 4A(t),4A1(t), 4B1(t), 4C(t), 4C1(t)
and 4B2(t) are unknown matrices representing time-varying parametric uncertainties in the
system. They are assumed to be norm-bounded of the form

[
4A(t) 4A1(t) 4B1(t)
4C(t) 4C1(t) 4B2(t)

]
=

[
D1

D2

]
F (t)

[
E1 E2 E3

]
, (2.2)

where D1, D2, E1, E2 and E3 are known real constant matrices with appropriate dimen-
sions and F (t) is unknown time-varying matrix which is Lebesgue measurable satisfying
F T (t)F (t) ≤ I,∀t. The time-varying delay h(t) is a differentiable function satisfying the
following condition

0 ≤ h(t) ≤ h, ḣ(t) ≤ µ < ∞, (2.3)

where h and µ are constant scalars. The term σ(t, x(t), x(t − h(t))) ∈ Rn represents the
unknown nonlinear perturbation with respect to the state x(t) and the delayed state x(t −
h(t)), which is assumed to be bounded with the following form

‖ σ(t, x(t), x(t− h(t))) ‖≤ α ‖ x(t) ‖ +β ‖ x(t− h(t)) ‖, ∀t > 0, (2.4)

where α, β are the known non-negative constants.
Before formulating the problems to be coped with, we first introduce the following

concept of robust stability for system (2.1).
Definition 1 The uncertain stochastic system in (2.1) with u(t) = 0 is said to be

robustly stochastically stable if there exists a positive scalar ε > 0 such that

lim
T→0

E

{∫ T

0

‖ x(t) ‖2 dt

}
≤ ε sup

−h≤s≤0
E ‖ φ(s) ‖2

for all admissible uncertainties 4A(t), 4A1(t), 4B1(t), 4C(t), 4C1(t) and 4B2(t).
The objective of this paper is to develop delay-dependent stochastic stabilization crite-

rion for the existence of a memoryless state feedback controller for system (2.1) satisfying
the time-varying delay (2.3). The state feedback controller is given by

u(t) = Kx(t), (2.5)
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where K being the controller gain to be designed. Following lemma is indispensable for
deriving the criterion.

Lemma 1 For any symmetric positive-definite matrices G and Z, of appropriate
dimensions, the following inequality holds

−GZ−1G ≤ Z − 2G.

Proof Since Z > 0, we have (Z −G)Z−1(Z −G) ≥ 0. The proof follows immediately.
Lemma 2 [17] Given appropriately dimensioned matrices ψ, D,E with ψ = ψT . Then

ψ + DF (t)E + ET F T (t)DT < 0

holds for all F (t) satisfying F T (t)F (t) ≤ I if and only if for some η > 0,

ψ + ηDDT + η−1ET E < 0.

3 Main Results

Now we provide a novel delay-dependent stabilization criterion for system (2.1) as follows
Theorem 1 For given positive scalars h, µ and λ, if there exist symmetric positive-

definite matrices X, S1, S2, Z, appropriately dimensioned matrices Y , Uj , Vj(j = 1, 2, 3), and
positive scalars ε1, ε2, such that the following LMI hold




Θ11 Θ12 Θ13 ρI Θ15 Θ16 XET
1 Y T ET

3 αX 0 hU1 hV1

∗ Θ22 Θ23 0 Θ25 Θ26 XET
2 0 0 βX hU2 hV2

∗ ∗ Θ33 0 0 0 0 0 0 0 hU3 hV3

∗ ∗ ∗ −ρI 0 hρI 0 0 0 0 0 0
∗ ∗ ∗ ∗ Θ55 Θ56 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Θ66 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε1I 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρI

2
0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρI
2

0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ11,11 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ12,12




< 0,

(3.1)
where

Θ11 = AX + XAT + B1Y + Y T BT
1 + S1 + S2 + U1 + UT

1 + (ε1 + ε2)D1D
T
1 ,

Θ12 = A1X − U1 + V1 + UT
2 ,

Θ22 = −(1− µ)S1 − U2 − UT
2 + V2 + V T

2 ,

Θ13 = −V1 + UT
3 ,

Θ23 = −V2 − UT
3 + V T

3 ,
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Θ33 = −S2 − V3 − V T
3 ,

Θ15 = XCT + Y T BT
2 + (ε1 + ε2)D1D

T
2 ,

Θ25 = XCT
1 ,

Θ55 = −X + (ε1 + ε2)D2D
T
2 ,

Θ16 = hXAT + hY T BT
1 + h(ε1 + ε2)D1D

T
1 ,

Θ26 = hXAT
1 ,

Θ56 = h(ε1 + ε2)D2D
T
1 ,

Θ66 = −hZ + h2(ε1 + ε2)D1D
T
1 ,

Θ11,11 = hλ2Z − 2hλX,

Θ12,12 = hλ2Z − 2hλX.

Then the uncertain linear stochastic differential delay system (2.1) with time-varying para-
metric uncertainties (2.2) and nonlinear perturbation (2.4) is robust stabilization, in this
case, an appropriate memoryless state feedback controller can be chosen by

u(t) = Y X−1x(t).

Proof Substituting the state feedback controller (2.5) into system (2.1), we obtain the
resulting closed-loop system as

dx(t) = f(t)dt + g(t)dω(t),

where

f(t) = (A(t) + B1(t)K)x(t) + A1(t)x(t− h(t)) + σ(t, x(t), x(t− h(t))),

g(t) = (C(t) + B2(t)K)x(t) + C1(t)x(t− h(t)).

Now, choose a Lyapunov functional candidate as

V (x(t), t) = xT (t)Px(t) +
∫ t

t−h(t)

xT (s)Q1x(s)ds +
∫ t

t−h

xT (s)Q2x(s)ds

+
∫ 0

−h

∫ t

t+s

fT (v)Rf(v)dvds,

where P, Q1, Q2 and R are symmetric positive-definite matrices to be chosen.
By Itô’s differential formula, we obtain stochastic differential as follows

dV (x(t), t) = LV (x(t), t)dt + 2xT (t)Pg(t)dω(t), (3.2)

where

LV (x(t), t) ≤ 2xT (t)Pf(t) + gT (t)Pg(t) + xT (t)(Q1 + Q2)x(t)

−(1− µ)xT (t− h(t))Q1x(t− h(t))− xT (t− h)Q2x(t− h)

+hfT (t)Rf(t)−
∫ t

t−h

fT (s)Rf(s)ds. (3.3)
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From the Leibniz-Newton formula, the following equations are true for any matrices M

and N with appropriate dimensions

2ξT (t)M
[
x(t)− x(t− h(t))−

∫ t

t−h(t)

f(s)ds−
∫ t

t−h(t)

g(s)dω(s)
]

= 0, (3.4)

2ξT (t)N

[
x(t− h(t))− x(t− h)−

∫ t−h(t)

t−h

f(s)ds−
∫ t−h(t)

t−h

g(s)dω(s)

]
= 0, (3.5)

where

ξT (t) =
[
xT (t) xT (t− h(t)) xT (t− h) σT (t, x(t), x(t− h(t)))

]
,

MT =
[
MT

1 MT
2 MT

3 0
]
, NT =

[
NT

1 NT
2 NT

3 0
]
.

On the other hand, the following equation is also true

−
∫ t

t−h

fT (s)Rf(s)ds = −
∫ t

t−h(t)

fT (s)Rf(s)ds−
∫ t−h(t)

t−h

fT (s)Rf(s)ds. (3.6)

For any positive scalar δ, it follows from (2.4) that

δ
[
2α2xT (t)x(t) + 2β2xT (t− τi(t))x(t− τi(t))− ζT (t)ζ(t)

] ≥ 0, (3.7)

where ζ(t) = σ(t, x(t), x(t− h(t))).
Combining (3.3)–(3.7), we can obtain the following inequality

LV (x(t), t) ≤ ξT (t)(Ξ(t) + hMR−1MT + hNR−1NT )ξ(t) + F (dω(t))

−
∫ t

t−h(t)

(
ξT (t)M + fT (s)R

)
R−1

(
MT ξ(t) + Rf(s)

)
ds

−
∫ t−h(t)

t−h

(
ξT (t)N + fT (s)R

)
R−1

(
NT ξ(t) + Rf(s)

)
ds, (3.8)

where

Ξ(t) =




Ξ11 Ξ12 Ξ13 P + h(A(t) + B1(t)K)T R

∗ Ξ22 Ξ23 hAT
1 (t)R

∗ ∗ Ξ33 0
∗ ∗ ∗ hR− δI


 ,

Ξ11 = P (A(t) + B1(t)K) + (A(t) + B1(t)K)T P + Q1 + Q2 + M1 + MT
1 + 2α2δI

+(C(t) + B2(t)K)T P (C(t) + B2(t)K) + h(A(t) + B1(t)K)T R(A(t) + B1(t)K),

Ξ12 = PA1(t)−M1 + N1 + MT
2 + (C(t) + B2(t)K)T PC1(t) + h(A(t) + B1(t)K)T RA1(t),

Ξ22 = −(1− µ)Q1 −M2 −MT
2 + N2 + NT

2 + CT
1 (t)PC1(t) + hAT

1 (t)RA1(t) + 2β2δI,

Ξ13 = −N1 + MT
3 ,

Ξ23 = −N2 −MT
3 + NT

3 ,

Ξ33 = −Q2 −M3 −MT
3 ,

F (dω(t)) = −2ξT (t)M
∫ t

t−h(t)

g(s)dω(s)− 2ξT (t)N
∫ t−h(t)

t−h

g(s)dω(s).
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Since R > 0, then the last two parts in inequality (3.8) are all less than 0. So, taking the
mathematical expectation on both sides of equation (3.2) and using inequality (3.8), since
E{F (dω(t))} = 0, we can obtain that

E

{
d

dt
V (x(t), t)

}
= ELV (x(t), t) ≤ E

{
ξT (t)(Ξ(t) + hMR−1MT + hNR−1NT )ξ(t)

}
.

(3.9)
It remains to show that Ξ(t) + hMR−1MT + hNR−1NT < 0. Using Schur complement

formula, we see that Ξ(t) + hMR−1MT + hNR−1NT < 0 if and only if the following matrix
inequality holds




Σ11 Σ12 Ξ13 P Σ15 Σ16 hM1 hN1

∗ Σ22 Ξ23 0 CT
1 (t)P hAT

1 (t)R hM2 hN2

∗ ∗ Ξ33 0 0 0 hM3 hN3

∗ ∗ ∗ −δI 0 hR 0 0
∗ ∗ ∗ ∗ −P 0 0 0
∗ ∗ ∗ ∗ ∗ −hR 0 0
∗ ∗ ∗ ∗ ∗ ∗ −hR 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −hR




< 0, (3.10)

where

Σ11 = P (A(t) + B1(t)K) + (A(t) + B1(t)K)T P + Q1 + Q2 + M1 + MT
1 + 2α2δI,

Σ12 = PA1(t)−M1 + N1 + MT
2 ,

Σ22 = −(1− µ)Q1 −M2 −MT
2 + N2 + NT

2 + 2β2δI,

Σ15 = (C(t) + B2(t)K)T P,

Σ16 = h(A(t) + B1(t)K)T R.

Then premultiplying and postmultiplying inequality (3.10) by

diag
[
P−1, P−1, P−1, δ−1I, P−1, R−1, P−1, P−1

]
,

and defining X = P−1, Z = R−1, XQ1X = S1, XQ2X = S2, XMiX = Ui, XNiX = Vi,
i = 1, 2, 3, ρ = δ−1, we have




Γ11 Γ12 Θ13 ρI Γ15 Γ16 hU1 hV1

∗ Γ22 Θ23 0 XCT
1 (t) hXAT

1 (t) hU2 hV2

∗ ∗ Θ33 0 0 0 hU3 hV3

∗ ∗ ∗ −ρI 0 hρI 0 0
∗ ∗ ∗ ∗ −X 0 0 0
∗ ∗ ∗ ∗ ∗ −hZ 0 0
∗ ∗ ∗ ∗ ∗ ∗ −hXZ−1X 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −hXZ−1X




< 0, (3.11)
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where

Γ11 = (A(t) + B1(t)K)X + X(A(t) + B1(t)K)T + S1 + S2 + U1 + UT
1 + 2α2ρ−1XX,

Γ12 = A1(t)X − U1 + V1 + UT
2 ,

Γ22 = −(1− µ)S1 − U2 − UT
2 + V2 + V T

2 + 2β2ρ−1XX,

Γ15 = X(C(t) + B2(t)K)T ,

Γ16 = hX(A(t) + B1(t)K)T ,

and Θ13, Θ23 and Θ33 are defined in inequality (3.1).
Noting equation (2.2), and let Y = KX, inequality (3.11) can be written as




Π11 Π12 Θ13 ρI Π15 Π16 hU1 hV1

∗ Π22 Θ23 0 XCT
1 hXAT

1 hU2 hV2

∗ ∗ Θ33 0 0 0 hU3 hV3

∗ ∗ ∗ −ρI 0 hρI 0 0
∗ ∗ ∗ ∗ −X 0 0 0
∗ ∗ ∗ ∗ ∗ −hZ 0 0
∗ ∗ ∗ ∗ ∗ ∗ −hXZ−1X 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −hXZ−1X




+L1F (t)LT
2 + L2F

T (t)LT
1 + L1F (t)LT

3 + L3F
T (t)LT

1 < 0, (3.12)

where

Π11 = AX + XAT + B1Y + Y T BT
1 + S1 + S2 + U1 + UT

1 + 2α2ρ−1XX,

Π12 = A1X − U1 + V1 + UT
2 ,

Π22 = −(1− µ)S1 − U2 − UT
2 + V2 + V T

2 + 2β2ρ−1XX,

Π15 = XCT + Y T BT
2 ,

Π16 = hXAT + hY T BT
1 ,

LT
1 =

[
DT

1 0 0 0 DT
2 hDT

1 0 0
]
,

LT
2 =

[
E1X E2X 0 0 0 0 0 0

]
,

LT
3 =

[
E3Y 0 0 0 0 0 0 0

]
.

For given scalar λ > 0, the nonlinear term −hXZ−1X in the matrix inequality (3.12)
can be rewritten as −h(λX)(λ2Z)−1(λX). Therefore, by Lemma 1, we have the inequality
−hXZ−1X ≤ hλ2Z − 2hλX. Applying Lemma 2 and Schur complement to inequality
(3.12), we can obtain the LMI (3.1) stated in Theorem 1, which means that system (2.1)
under control law u(t) = Y X−1x(t) is robust stabilization. This completes the proof.

Remark 1 When the differential of h(t) is unknown, and the delay h(t) satisfies
0 ≤ h(t) ≤ h, by setting S1 = 0, a delay-dependent and rate-independent criterion for
robust stabilization of systems (2.1) from Theorem 1 can be obtained.
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Table 1: (MAUB) h of the time-varying delay h(t) for different µ.

µ 0 0.1 0.5 0.9
C.Wang [14] 0.1370 0.1246 0.0766 0.0650
λ = 2.0 0.0685 0.0623 0.0456 0.0456
λ = 1.0 0.1370 0.1246 0.0766 0.0650
λ = 0.5 0.2740 0.2492 0.1431 0.0757
λ = 0.2 0.6850 0.6230 0.3108 0.0649
λ = 0.1 1.3700 1.2461 0.6096 0.0646

Remark 2 When α = 0, β = 0, a uncertain linear stochastic differential delay sys-
tem criterion without nonlinear perturbation for robust stabilization of systems (2.1) from
Theorem 1 can be obtained.

4 Numerical Example

In this section, in order to demonstrate the effectiveness of the proposed method, we
provide the following numerical example.

Example 1 Consider the uncertain nonlinear single time-delay system (2.1) with the
following parameters

A =

[
−3 0
1 4

]
, A1 =

[
1 0
−1 3

]
, B1 =

[
1
3

]
, C =

[
0.5 0.2
0.1 0.3

]
,

C1 =

[
−1 1.5
−0.5 2

]
, B2 =

[
0.2
−0.1

]
, D1 =

[
0.1 0
0 0.2

]
, D2 =

[
0.2 0
0 0.3

]
,

E1 =

[
0.3 0
0 0.4

]
, E2 =

[
0.4 0
0 0.5

]
, E3 =

[
0
0

]
, α = 0.1, β = 0.5.

By using matlab solver feasp, for given µ = 0.5, λ = 0.2, the feasibility upper bound of
h(t) is 0.3108. Choosing h = 0.3, according to Theorem 1, solve LMI in inequality (3.1) ,
and get a set of solutions as follows

X =

[
2.0317 0.8467
0.8467 1.4721

]
, S1 =

[
10.4893 10.4257
10.4257 21.0523

]
, S2 =

[
0.6142 0.2361
0.2361 0.2781

]
,

Z =

[
11.8632 6.6515
6.6515 14.1387

]
, U1 =

[
0.3290 0.0884
1.4220 0.3305

]
, U2 =

[
0.0423 −0.0058
−0.7172 −0.1623

]
,

U3 =

[
0.0754 0.0148
0.0114 0.0016

]
, V1 =

[
−0.4550 −0.0974
−0.6036 −0.1512

]
, V2 =

[
−0.4343 −0.0913
0.2040 0.0317

]
,

V3 =

[
0.5853 0.1225
0.0947 0.0434

]
, Y =

[
−4.4817− 12.7889

]
,

ε1 = 0.0349, ε2 = 1.5686, ρ = 1.1266.
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Therefore the robust problem is solvable, and the memoryless feedback gains in control
are computed as

K =
[

1.8603 −9.7574
]
.

Using the controller K =
[

1.8603 −9.7574
]

on system (2.1) simulation, the state
response curve as shown Figure 1. This indicates that the design of the memoryless state
feedback controller can ensure the robust stabilization of stochastic system.
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Figure 1: Trajectory of the solution to such system in Example 1
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具有非线性扰动的不确定随机时变时滞系统的鲁棒镇定

李伯忍

(东莞理工学院计算机学院, 广东东莞 523808)

摘要: 本文研究了具有非线性扰动的不确定随机时变时滞系统的鲁棒镇定的问题. 构造了适当

的Lyapunov-Krasovskii泛函并利用自由权矩阵方法, 借助于线性矩阵不等式(LMI)技术, 设计了一个无记忆

状态反馈控制器, 并获得了不确定随机时变时滞系统的时滞依赖鲁棒镇定判据. 数值例子及其仿真曲线表明

所提出的理论结果是有效的.
关键词: 自由权矩阵; 非线性扰动; 时变时滞; 反馈控制
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