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Abstract: In this paper, we study the boundary value problems for two kinds of fractional

differential equations, in which the nonlinear term including the derivative of the unknown function.

Using the properties of the fractional calculus and the Banach contraction principle, we give the

existence results of solutions for these fractional differential equations, which generalize the results

of previous literatures.
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1 Introduction

During the last few years the fractional calculus was applied successfully to a variety
of applied problems. It drew a great applications in nonlinear oscillations of earthquakes,
many physical phenomena such as seepage flow in porous media and in fluid dynamic traffic
model, see [1, 2]. For more details on fractional calculus theory, one can see the monographs
of Kai Diethelm [3], Kilbas et al. [4], Lakshmikantham et al. [1], Podlubny [5]. Fractional
differential equations involving the Riemann-Liouville fractional derivative or the Caputo
fractional derivative were paid more and more attentions [6–9].

Recently, the boundary value problems for fractional differential equations provoked a
great deal attention and many results were obtained, for example [2, 10–12, 14, 16, 17].

In [2], Athinson investigated the following boundary value problem (BVP) of integral
type 




x
′′

+ a(t)xλ = 0,

lim
t→+∞

x(t) = 1,

lim
t→+∞

x
′
(t) = 0,

(1.1)
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where a(t) : [t0,+∞) → (0,+∞), λ > 0.
As a fractional counterpart of (1.1), some scholars introduced another kind of two-point

BVP (see [14])




0D
α
t (x

′
) + a(t)xλ = 0,

lim
t→0

[t1−αx
′
(t)] = 0,

lim
t→+∞

x(t) = 1,

(1.2)

where 0D
α
t f(t) stands for the Riemann-Liouville derivative (see Section 2) of order α of some

function f , here α ∈ (0, 1), xλ = |x|λsignx and Γ(.) stands for Euler’s function Gamma.
Inspired by the work of above papers, the aim of this paper is to solve the BVPs of the

following equations




0D
β
t u(t) + f(t, u(t), u

′
(t)) = 0, t > 0,

lim
t→+∞

u(t) = M,

lim
t→0+

t1−αu
′
(t) = 0,

(1.3)

where 0D
β
t stands for the Riemann-Liouville derivative of order β, and M is a constant,β ∈

(1, 2). And




u
′′

+ f(t, u(t),c0 Dα
t u(t)) = 0,

lim
t→+∞

u(t) = M,

β(t) ≤ u
′
(t) ≤ γ(t), t ≥ t0 > 0,

(1.4)

where M(constant) ∈ (0,+∞), α ∈ (0, 1), f is continuous functions, c
0D

α
t u(t) is Caputo

derivative of order α (see Section 2) and lim
t→+∞

β(t) = lim
t→+∞

γ(t) = 0, β(t) ≤ γ(t), t ≥ t0 > 0.

2 Preliminaries

In this section, we introduce some definitions about fractional differential equation and
theorems that are useful to the proof of our main results. For more details, one can see [3,
5].

Definition 2.1 The fractional Riemann-Liouville integral of order α ∈ (0, 1) of a
function f : [0,+∞) → R given by

aD
−α
t f(t) =

1
Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ, (2.1)

where Γ(.) denotes the Gamma function.
Definition 2.2 The Riemann-Liouville and Caputo fractional derivatives are defined

respectively as

aD
p
t f(t) =

{
f(t), p = 0,
dn

dtn [aD
p−n
t f(t)], p > 0

(2.2)
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and
c
aD

p
t f(t) =a Dp−n

t [
dn

dtn
f(t)], n− 1 < p < n,

where n is the first integer which is not less than p, D(.) and cD(.) are Riemann-Liouville
and Caputo fractional derivatives, respectively.

Definition 2.3 For measurable functions m : R → R, define the norm

‖m‖Lp(R) :=





(
∫

R

|m(t)|pdt)
1
p , 1 ≤ p < ∞,

infµ(R̃)=0{ sup
t∈R−R̃

|m(t)|}, p = ∞,
(2.3)

where µ(R̃) is the Lebesgue measure on R̃. Let Lp(R, R) be the Banach space of all Lebesgue
measurable functions m : R → R with ‖m‖Lp(R) < ∞.

We give some useful theorems to illustrate the relation between Riemann-Liouvill and
Caputo fractional derivative and the operational formula about Riemann-Liouvill derivative.

Theorem 2.1 (see [3, p.54]) Assume that η ≥ 0,m = dηe, and f ∈ Am[a, b]. Then

aD
−η
t (c

aD
η
t f(t)) = f(t)−

m−1∑
k=0

Dkf(a)
k!

(t− a)k. (2.4)

Theorem 2.2 (see [5, p.74]) The composition of two fractional Riemann-Liouville
derivative operators: aD

p
t (m− 1 ≤ p < m), and aD

q
t (n− 1 ≤ q < n), m,n are both positive

integer,

aD
p
t (aD

q
t f(t)) = aD

p+q
t f(t)−

n∑
j=1

[aD
q−j
t f(t)]t=a

(t− a)−p−j

Γ(1− p− j)
. (2.5)

Theorem 2.3 (Banach’s fixed point theorem) Assume (U, d) to be a nonempty complete
metric space, let 0 ≤ α < 1 and let the mapping A: U → U satisfy the inequality

d(Au,Av) ≤ αd(u, v)

for every u, v ∈ U . Then A has a uniquely determined fixed point u∗. Furthermore, for any
u0 ∈ U , the sequence (Aju0)∞j=1 converges to this fixed point u∗.

3 Main Results

The following lemma 3.1 we proved will be used to solve (1.3).
Lemma 3.1 In eq. (1.3), let β = 1 + α, α ∈ (0, 1), and we can have

v(t) = − 1
Γ(α)

∫ t

0

(t− τ)α−1f(τ, M −
∫ +∞

τ

v(s)ds, v(τ))dτ, (3.1)

where v(t) = u
′
(t).
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Proof Using formula (2.5) and the equation 0D
β
t u(t)+ f(t, u(t), u

′
(t)) = 0, we can get

0D
−α
t (0D

β
t u(t)) = u

′
(t)−

2∑
j=1

[0D
β−j
t u(t)]t=0

tα−j

Γ(1+α−j)

= − 1
Γ(α)

∫ t

0

(t− τ)α−1f(τ, u, u
′
)dτ,

that is

u
′
(t) = − 1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, u, u
′
)dτ

+ tα−1

Γ(α)
lim

t→0+

∫ t

0

(t− τ)−β

Γ(1− β)
f(τ, u, u

′
)dτ

+ tα−2

Γ(α−1)
lim

t→0+

∫ t

0

(t− τ)1−β

Γ(2− β)
f(τ, u, u

′
)dτ.

(3.2)

We now prove the following result can hold

lim
t→0+

∫ t

0

(t− τ)−βf(τ, u, u
′
)dτ = lim

t→0+

∫ t

0

(t− τ)1−βf(τ, u, u
′
)dτ = 0. (3.3)

Due to lim
t→0+

t1−αu
′
(t) = 0, then lim

t→0+
t2−αu

′
(t) = 0. With (3.2), we can easily get (3.3).

So (3.2) can be changed into

u
′
(t) = − 1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, u, u
′
)dτ,

and remember
∫ +∞

t

v(s)ds = M − u(t), we can obtain (3.1). The proof is completed.

Now, we introduce the set X and the metric d(v1, v2) of X. We define

X = {v(t)|v(t) ∈ (C ∩ L∞ ∩ L1)([0,+∞), R)}

and

d(v1, v2) = ‖v1 − v2‖L1((0,+∞);R) + sup
t≥0

|v1 − v2| (3.4)

for any v1, v2 ∈ X. One can easily prove that (X, d) is a complete metric space by the
Lebesgue dominated convergence theorem [13].

Some hypothesis will be introduced here.
[H1]: f meets weak Lipschitz condition with the second and the third variables on X:

|f(t, u1, w1)− f(t, u2, w2)| ≤ a(t)(|u1 − u2|+ |w1 − w2|), (3.5)

especially, |f | ≤ a(t)d(v, 0) = a(t)(‖v‖L1 +supt≥0 |v|), v ∈ X. And a(t) can be some nonneg-
ative continuous functions that can make [H2] and [H3] hold.
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[H2]: Let ω0(t) =
∫ t

0

(t − τ)α−1B(τ)dτ +
∫ +∞

t

∫ s

0

(s − τ)α−1B(τ)dτds, we assume

0 < ω0(t) < 1, where B(t) = a(t)[Γ(α)]−1.
Theorem 3.1 Assume that [H1], [H2] are satisfied.Then the problem (1.3) has a

solution u(t) = M −
∫ +∞

0

v(s)ds, t > 0, where v ∈ (C ∩ L∞ ∩ L1)([0,+∞), R).

Proof From Lemma 3.1, the operator T can be defined by T : X → (C ∩ L∞ ∩
L1)([0,+∞), R) with the formula

(Tv)(t) = − 1
Γ(α)

∫ t

0

(t− τ)α−1f(τ, M −
∫ +∞

τ

v(s)ds, v(τ))dτ, t ≥ 0. (3.6)

From [H1] and (3.5), (Tv)(t) satisfies

|(Tv)(t)| ≤ (‖v‖L1 + sup
t≥0

|v|) 1
Γ(α)

∫ t

0

(t− τ)α−1a(τ)dτ,

so TX ⊆ X.
According to (3.4), we get

d(Tv1, T v2) = sup
t≥0

|(Tv1)(t)− (Tv2)(t)|+ ‖(Tv1)− (Tv2)‖L1((0,+∞);R)

for any v1, v2 ∈ X.
First, from (3.5) and (3.6), we have

|(Tv1)(t)− (Tv2)(t)| =
1

Γ(α)
|
∫ t

0

(t− τ)α−1[f(τ, M −
∫ ∞

τ

v1(s)ds, v1)

−f(τ, M −
∫ ∞

τ

v2(s)ds, v2)]dτ |

≤
∫ t

0

a(τ)
Γ(α)

(t− τ)α−1(
∫ +∞

τ

|v1(s)− v2(s)|ds + |v1 − v2|)dτ

≤ d(v1, v2)
∫ t

0

(t− τ)α−1B(τ)dτ. (3.7)

Second,

∫ +∞

t

|(Tv1)(τ)− (Tv2)(τ)|dτ ≤
∫ +∞

t

∫ s

0

(s− τ)α−1B(τ)(
∫ +∞

τ

|v1(h)− v2(h)|dh

+|v1(τ)− v2(τ)|)dτds

≤ d(v1, v2)
∫ +∞

t

∫ s

0

(s− τ)α−1B(τ)dτds. (3.8)

Then (3.7) and (3.8) yield

d(τv1, τv2) ≤ d(v1, v2)ω0(t).
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By using [H2] and Theorem 2.3, Tv has a fixed point v0. This v0 function is the solution
of problem (1.3). The proof is completed.

Remark 3.1 In fact, problem (1.2) is the special case of Theorem 3.1. One can easily
get the existence result from the procedure of proving Theorem 3.1.

Remark 3.2 In the following part, we will prove that some conditions supplied can
make 0 < ω0(t) < 1 true. We can choose a simple candidate for a(t) which is provided by
the restriction a(t) ≤ c · t−2, t ≥ t0 > 0, c is undetermined coefficient. Using the restriction,
we acquire that

0 < ω0(t) ≤ 1
Γ(α)

[
∫ t

0

(t− τ)α−1cτ−2dτ +
∫ +∞

t

∫ s

0

(s− τ)α−1cτ−2dτds].

It is easily found that the integral mean value theorem can be used in here to obtain that

0 < ω0(t) ≤ c
Γ(α)

[(t− θt)α−1(θt)−2t +
∫ +∞

t

(s− θs)α−1(θs)−2sds]

= c
Γ(α)

[(1− θ)α−1θ−2tα−2 + (1− θ)α−1θ−2 sα−1

α−1
|+∞t ]

= c(1−θ)α−1θ−2

Γ(α)
(tα−2

0 + tα−1
0
1−α

)

in which θ ∈ (0, 1). So we can select 0 < c < (1−α)Γ(α)(1−θ)1−αθ2

(1−α)tα−2
0 +tα−1

0
make that true. In fact, if

a(t) ≤ ct−(α+1), we can find a suitable c which achieve that. So if we can find appropriate
a(t) which satisfy [H1] and [H2], we can solve problem (3) with some supplied conditions.

In order to obtain existence theorems of equation (1.4), we introduce the following
definitions and assumption.

Let
X1 = {v ∈ C([t0,+∞];R) | β(t) ≤ v(t) ≤ γ(t), t ≥ t0 > 0}

and consider lim
t→+∞

u(t) = M , we have

X2 = {u ∈ C([t0,+∞];R) | M −
∫ +∞

t

γ(s)ds ≤ u(t) ≤ M −
∫ +∞

t

β(τ)dτ, t ≥ t0 > 0},

where v(t) = u
′
(t).

We still need to give [H3] to solve (1.4).
[H3]: a(t) satisfies the following inequalities

0 < ω1(t) =
∫ +∞

t

a(τ)dτ +
∫ +∞

t

(τ − t)a(τ)dτ < 1

and

0 < ω2(t) =
1

Γ(1− α)

∫ +∞

t

a(τ)τ1−αdτ +
1

Γ(1− α)

∫ +∞

t

a(τ)(τ − t)τ1−αdτ < 1,

a(t) is nonnegative continuous function.
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Theorem 3.2 Assume that [H1], [H3] hold. Problem (1.4) has a solution on X1.
Proof From (2.5) and the conditions with β(t), γ(t) supplied, and lim

t→+∞
u(t) = M , we

can obtain that

v(t) =
∫ +∞

t

f(τ, M −
∫ +∞

τ

v(s)ds,
1

Γ(1− α)

∫ τ

0

v(s)(τ − s)−αds)dτ.

Similar to the definition about d in Theorem 3.1, we have

d(v1, v2) = ‖v1 − v2‖L1((t0,+∞);R) + sup
t≥t0

|v1 − v2|. (3.9)

One can easily prove the matric space E = (X1, d) is complete by using Lebesgue’s dominated
convergence theorem.

In fact, we can define T : X1 → C([t0,+∞);R) given by the formula

(Tv)(t) =
∫ +∞

t

f(τ, M −
∫ +∞

τ

v(s)ds,
1

Γ(1− α)

∫ τ

0

v(s)(τ − s)−αds)dτ, t ≥ t0, (3.10)

where v(t) ∈ X1. It is easy to see that TX1 ⊆ X1 from the definition about X1. The
operator T is contraction in X1, so we have

d(Tv1, T v2) = sup
t≥t0

|(Tv1)(t)− (Tv2)(t)|+ ‖(Tv1)− (Tv2)‖L1((t0,+∞);R). (3.11)

Considering [H1],

|(Tv1(t)− Tv2(t))| ≤
∫ +∞

t

a(τ)(
∫ +∞

τ

|v2(s)− v1(s)|ds

+
1

Γ(1− α)

∫ τ

0

|v2(s)− v1(s)|(τ − s)−αds)dτ

≤ ‖v1 − v2‖L1((0,+∞);R)

∫ +∞

t

a(τ)dτ

+ sup
t≥t0

|v1 − v2| 1
Γ(1− α)

∫ +∞

t

a(τ)τ1−αdτ (3.12)

and
∫ +∞

t

|(Tv1)(τ)− (Tv2)(τ)|dτ ≤
∫ +∞

t

∫ +∞

s

a(τ)(
∫ +∞

τ

|v2(h)− v1(h)|dh

+
1

Γ(1− α)

∫ τ

0

|v2(h)− v1(h)|(τ − h)−αdh)dτds

≤ ‖v1 − v2‖L1((0,+∞);R)

∫ +∞

t

(τ − t)a(τ)dτ

+ sup
t≥t0

|v1 − v2|
∫ +∞

t

a(τ)(τ − t)τ1−α

Γ(1− α)
dτ (3.13)
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and [H3], we yield

d(Tv1, T v2) ≤ ‖v1 − v2‖L1((0,+∞);R)ω1(t) + sup
t≥t0

|v1 − v2|ω2(t)

< d(v1, v2)
(3.14)

for all v1, v2 ∈ X1.

At last, by Theorem 2.3, the function u(t) = M −
∫ +∞

t

v(s)ds, t ≥ t0 > 0, where v is

the fixed point of operator T , which is the solution we want.
Remark 3.3 If α = 1, we will obtain the equation u

′′
(t) + f(t, u(t), u

′
(t)) = 0, t ≥

t0 > 0. This kind of equation was studied by Octavian and Mustafa (see [13]) with some
supplied conditions of u(t) and u

′
(t)





u(t) > 0,

lim
t→+∞

u(t) = M, M ∈ (0,+∞),

β(t) ≤ u
′
(t) ≤ γ(t), t ≥ t0,

where β(t), γ(t) are continuous nonnegative functions satisfying

{
lim

t→+∞
β(t) = lim

t→+∞
γ(t) = 0,

β(t) ≤ γ(t), t ≥ t0 > 0.

The terminal value problem included u
′′
+f(t, u, u

′
) = 0, t ≥ t0 > 0, lim

t→+∞
u(t) = M ∈ R has

a long history as part of the general asymptotic integration theory of ordinary differential
equaitions. In fact, if α = 1, and we know that lim

t→0
|Γ(t)| = +∞, we can get the result in

[13] from Theorem 3.2.
Remark 3.4 From Theorem 2.1, if we have some initial value about u(t) and use

0D
α
t u(t) instead of c

0D
α
t u(t) in problem (1.4), we still can solve that problem by using the

similar way in Theorem 3.2.
Remark 3.5 We concern about that if there exists a(t) can make [H3] true. In fact,

in the u(t) definition domain, let t ≥ t0 > 0, a(t) ≤ ct−h, h > 3 − α, α ∈ (0, 1) and select
0 < c < min{ (h−1)(h−2)

t1−h
0 (t0+h−2)

, Γ(1−α)(α+h−2)(α+h−3)

t2−α−h
0 (α+h+t0−3)

}, one can easily find that [H3] can hold. The
process to get range of c is similar with Remark 3.2.

4 Conclusion

In this paper, we solve two kinds of boundary value problems which include results in
[13, 14]. In fact, some equations with some boundary value conditions can also include results
in this paper. Our future work is just to solve equation as the following one: 0D

β
t u(t) +

f(t, u(t), uα(t)) = 0, α, β are some fractional numbers. To solve this kind of equation also
need some boundary value conditions.
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两类分数阶微分方程的边值问题

吴亚运,李晓艳,蒋 威

(安徽大学数学科学学院, 安徽合肥 230601)

摘要: 本文研究了两类非线性项含有未知函数导数的分数阶微分方程的边值问题. 利用分数阶微积分

的性质及Banach不动点定理, 获得了解的存在唯一性等有关结果, 推广了已有文献的结论.
关键词: 分数阶微分方程; 巴拿赫压缩定理; 边值问题; 单调正解

MR(2010)主题分类号: 34A08; 34A12; 34B15; 34B18 中图分类号: O175.1


