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Abstract: In this paper, we study a differential-algebraic biological economic system with

time delay and non-selective harvesting which is a reasonable catch-rate function instead of usual

catch-per-unit-effort hypothesis. By using the normal form approach and the center manifold the-

ory, we obtain the stability and the Hopf bifurcation of the differential-algebraic biological economic

system, which generalize and improve some known results. Finally, numberical simulations are per-

formed to illustrate the analytical results.
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1 Introduction

In recent decades, there was a spate of interest in bioeconomic analysis of exploitation
of renewable resources like fisheries, exploitation of natural resources has become a matter of
concern throughout the world. Therefore, it became imperative to ensure scientific manage-
ment of exploitation of biological resources. To insure the long-term benefits of humanity,
there is a wide-range of interest in analysis and modelling of biological systems especially on
predator-prey systems with or without delay. The inclusion of delays in these has illustrated
more complicated and richer dynamics in terms of stability, bifurcation, periodic solutions
and so on [1–10].

In this paper, the basic model we consider is based on the following coupled delayed-
differential equations {

u̇ = a− u− 4uv(t−τ)
1+u2 ,

v̇ = σb(u− uv(t−τ)
1+u2 ),

(1)

where a, b represent growth rate of the prey and predator, and τ denotes the delay time
for the prey density, u and v can be interpreted as the densities of prey and predator prey
populations at time t .
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It is well know that the harvesting has a strong impact on the dynamics of a model.
The aim is to determine how much we can harvest, and there are basically several types of
harvesting reported in the our usual literature:

(i) Constant harvesting where a constant number of individuals are harvested per unit
of time [12,13].

(ii) Proportional harvesting h(x) = qEx that means the number of individuals harvested
per unit of time is proportional to the current population.

It was noticed that the proportionate harvesting embodies several unrealistic features
like random search for prey, equal likelihood of being captured for every prey species, un-
bounded linear increase of h(x) with x for fixed E and unbounded linear increase of h(x)
with E for fixed x. These restrictive features were largely removed in the nonlinear har-
vesting H(x, E) = qEx

m1E+m2x
[14–16], where q is the catchability coefficient, E is the effort

applied to harvest individuals which is measured in terms of number of vessels being used
to harvest the individuals population and m1,m2 are suitable positive constants. The func-
tional H(x, E) = qEx

m1E+m2x
is more realistic in the sense that the above unrealistic features

are largely removed. It may be noted that H(x,E) → qE
m2

as x → ∞ and H(x, E) → qx
m1

as E → ∞. This shows that the nonlinear harvesting function exhibits saturation effects
with respect to both the stock abundance and the effort-level. Also the parameter m1 is
proportional to the ratio of the stock-level to the harvesting rate (catch-rate) at higher levels
of effort and m2 is proportional to the ratio of the effort-level to the harvesting rate at higher
stock-levels.

In order to utilize the harvest rate that leads to the largest possible value for the total
discounted net revenue which depends on the population level,we assume joint harvesting of
prey where we use a more realistic form of the catch-rate function by Clark [15], we consider
the following system {

u̇ = a− u− 4uv(t−τ)
1+u2 − qEu

m1E+m2u
,

v̇ = σb(u− uv(t−τ)
1+u2 ).

(2)

In daily life, economic profit is a very important factor for governments, merchants and
even every citizen, so it is necessary to research biological systems, which can be described by
differential-algebraic equations or differential-difference-algebraic equations. In 1954, Gorden
[11] studied the effect of the harvest effort on ecosystem from an economic perspective and
proposed the following economic principle:

Net Economic Revenue (NER) = Total Revenue (TR) - Total Cost (TC).

Associated with system (2), an algebraic equation which consider the economic profit
m of the harvest effort on prey can be established as follows:

qE

m1E + m2u
(pu(t)− c) = m.
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And then we obtain a predator-prey biological economic model which takes the form of




u̇ = a− u− 4uv(t−τ)
1+u2 − qEu

m1E+m2u
,

v̇ = σb(u− uv(t−τ)
1+u2 ),

0 = qE
m1E+m2u

(pu(t)− c)−m.

(3)

For convenience, let

f(X(t), E(t)) =

(
f1(X(t), E(t))
f2(X(t), E(t))

)

=

(
a− u− 4uv(t−τ)

1+u2 − qEu
m1E+m2u

σb(u− uv(t−τ)
1+u2 )

)
,

g(X(t), E(t)) =
qE

m1E + m2u
(pu(t)− c)−m,

where X(t) = (u(t), v(t))T , τ is a bifurcation parameter, which will be difined in what
follows.

In this paper, we mainly discuss the effects of the economic profit on the dynamics of
system (3) in region

R3
+ = Y (t) = ((u(t), v(t), E(t))|u(t) ≥ 0, v(t) ≥ 0, E(t) ≥ 0).

The organization of this paper is as follows: regarding τ as bifurcation parameter, we
study the stability of the equilibrium point of system (3) and Hopf bifurcation of the positive
equilibrium depending on τ where we show that positive equilibrium loses its stability and
system (3) exhibits Hopf bifurcation in the second section. Then based on the new normal
form of the differential-algebraic system introduced by Chen et al. [17] and the normal form
approach theory and center manifold theory introduced by Hassard et al. [18], we derive
the formula for determining the properties of Hopf bifurcation of the system in the third
section. Numerical simulations aimed at justifying the theoretical analysis will be reported
in Section 4. Finally, this paper ends with a discussion.

2 Local Stability Analysis

For system (3), we can see that there an equilibrium in R3
+ if and equations





a− u− 4uv(t−τ)
1+u2 − qEu

m1E+m2u
= 0,

σb(u− uv(t−τ)
1+u2 ) = 0,

qE
m1E+m2u

(pu(t)− c)−m = 0.

(4)

Through a simple calculation, we obtain

X0 = (
(m2a− 5m1E0 − qE0) +

√
(m2a− 5m1E0 − qE0)2 + 20m1m2aE0

10m2

,

1 + u2
0,

mm2u0

q(pu0 − c)−mm1

).
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In this paper we only concentrate on the interior equilibrium of system (2), since the
biological meaning of the interior equilibrium implies that the prey, the predator and the
harvest effort on prey all exist, which are relevant to our study. Thus we assume that
m2a−5m1E0− qE0 > 0, q(pu0− c)−mm1 > 0. In order to analyze the local stability of the
positive equilibrium point for system (3), we first use the linear transformationXT = QNT ,
where

N = (x, y, Ē)T , Q =




1 0 0
0 1 0

−pm2E2+m2cE
m2u0(pu0−c)

0 1


 .

Then we have DXg(X0)Q = (0, 0, m2u0q(pu0−c)
(m1E+m2u)2

), x = u, y = v, Ē = pm2E2
0+m2cE0

m2u0(pu0−c)
x + E, for

which system (2) is transformed into




ẋ = a− x− 4xy(t−τ)
1+x2 − q(Ē− pm2E2

0+m2cE0
m2u0(pu0−c) x)x

m1(Ē− pm2E2
0+m2cE0

m2u0(pu0−c) x)+m2x
,

ẏ = σb(x− xy(t−τ)
1+x2 ),

0 =
q(Ē− pm2E2

0+m2cE0
m2u0(pu0−c) x)

m1(Ē− pm2E2
0+m2cE0

m2u0(pu0−c) x)+m2x
(px(t)− c)−m.

(5)

Now we derive the formula for determining the properties of the positive equilibrium
point of system (5). First we consider the local parametric ψ the third equation of system
(4) as the literature, which defined as follows:

[x(t), y(t), Ē(t)]T = ψ(Z(t)) = NT
0 + U0Z(t) + V0h(Z(t)), g(ψ(Z(t))) = 0,

where

U0 =




1 0
0 1
0 0


 , V0 =




1
0
0


 ,

Z(t) = (y1(t), y2(t))T ,

N0 = (u0, v0, Ē0), h(Z(t)) = h(y1(t), y2(t)),

R2 → R is a smooth mapping. Then we can obtain the parametric system of (4) as follows:
{

ẏ1 = −a1y1(t)− a2y2(t− τ) + a3y
2
1(t) + a4y1(t)y2(t− τ),

ẏ2 = b1y1(t)− b2y2(t− τ) + b3y
2
1(t) + b4y1(t)y2(t− τ),

(6)

where

a1 =
4y0 − 4x2

0y0

(1 + x2
0)2

− mc

(px0 − c)2
+ 1, a2 =

4x0

1 + x2
0

,

a3 =
12x0y0 − 4x3

0y0

(1 + x2
0)3

− mc

(px0 − c)3
, a4 = −4(1− x2

0)
(1 + x2

0)2
,

b1 =
σb(1 + x2

0 + x2
0y0 − y0)

(1 + x2
0)2

, b2 =
σbx0

1 + x2
0

,

b3 = −σb(3x0y0 − x3
0y0)

(1 + x2
0)3

, b4 = −σb((1− x2
0))

(1 + x2
0)2

,
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so we can get the linearized system of parametric system (6) as follows:
{

ẏ1 = −a1y1(t)− a2y2(t− τ),
ẏ2 = b1y1(t)− b2y2(t− τ).

(7)

The associated characteristic equation of system (7) is

det

(
λ + a1 a2e

−λτ

−b1 λ + b2e
−λτ

)
= 0.

This characteristic equation determines the local stability of the equilibrium solution

λ2 + (a1 + b2e
−λτ )λ + (a1b2 + a2b1)e−λτ = 0. (8)

Case 1 When there is no time delay, i.e., τ = 0 in eq. (8), it becomes

λ2 + (a1 + b2)λ + (a1b2 + a2b1) = 0.

The associate eigenvalues are λ1,2 = −(a1+b2)±
√

(a1+b2)2−4(a1b2+a2b1))

2
so that one has the

following lemma.
Lemma 1 If a1 + b2 > 0 , then the equilibrium point of system (2) with τ = 0 is

asymptotically stable.
Case 2 Suppose now that τ 6= 0 in eq. (8). We will investigate location of the roots

of the transcendental equation. First, we examine when this equation has pure imaginary
roots λ = ±iω with ω real number and ω > 0 . This is given by the following lemma.

Lemma 2 The characteristic equation (8) associated with eq. (8) has one pure imagi-
nary root.

Proof Let λ = ±iω be a root of characteristic equation (8) where ω > 0, then we have

−ω2 + iω(a1 + b2(cos ωτ − i sinωτ)) + (a1b2 + a2b1)(cos ωτ − i sinωτ) = 0.

Separating real and imaginary parts, we have the following two equation

(a1b2 + a2b1) cos ωτ + b2ω sinωτ = ω2, (9)

b2ω cos ωτ − (a1b2 + a2b1) sin ωτ = −a1ω. (10)

By taking square of both sides of (9) and (10) and then adding them up, one obtains
the following equation

ω4 + (a2
1 − b2

2)ω
2 − (a1b2 + a2b1)2 = 0. (11)

Solving now this for ω2 leads to

ω =

√
b2
2 − a2

1 +
√

(a2
1 − b2

2)2 + 4(a1b2 + a2b1)2)
2

. (12)
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Which is a unique positive root of (8). From (9) and (10), we also obtain a sequence of
the critical values of τ defined by

τk =
1
ω
{cos−1(

ω2a2b1

(a1b2 + a2b1)2 + b2
2ω

2
)}+

2kπ

ω
(k = 0, 1, 2, 3, · · · ), (13)

this completes the proof. Notice that it may be seen easily that the purely imaginary root
ω is simple. Let λ(τ) = α(τ) + iω(τ) denote the roots of eq. (8) near τ = τk satisfying
conditions α(τk) = 0 and ω(τk) = ω , then we have the following transversality condition.

Lemma 3 The following transversality condition

dRe{λ(τk)}
dτ

> 0 (k = 0, 1, 2, 3, · · · )

hold.
Proof Differentiating eq. (8) with respect to τ , we get

dλ

dτ
=

(a1b2 + a2b1)λ + b2λ
2e−λτ

2λ + a1 + b2e−λτ − b2λτe−λτ − (a1b2 + a2b1)τe−λτ
. (14)

First substituting λ = iω into it and then flipping it over and finally taking its real part, one
obtains

sign{Re(
dλ

dτ
)}|λ=iω = sign{Re(

dλ

dτ
)−1}|λ=iω

=
(a1b2 + a2b1)2(2w2 + a2

1 + b2
2) + ((a1b2)2 + 2b2

2ω
2 + b4

2)ω
2

(ω2b2
2 + (a1b2 + a2b1)2)2

.
(15)

Therefore sign{Re(dλ
dτ

)}|λ=iω > 0. This completes the proof. Summarizing the above remarks
and combining Lemmas, we have the following results on the distribution of roots of eq. (8).

Theorem 1 For system (3), the following statements are true
(i) the equilibrium point (u0, v0, E0) is asymptotically stable for τ = 0 if a + b > 0;
(ii) (u0, v0, E0) is asymptotically stable for τ < τ0 and unstable τ > τ0 , where

τ0 = 1
ω
{cos−1( ω2a2b1

(a1b2+a2b1)2+b22ω2 )}. Furthermore, system (2) undergoes a Hopf bifurcation at
(u0, v0, E0) when τ = τ0 .

3 Direction and Stability of the Hopf Bifurcation

In this section, we investigate the direction of Hopf bifurcation and the stability of the
bifurcating periodic solutions based on the new normal form of the differential-algebraic
system introduced by Chen et al. [17] and the normal form approach theory and center
manifold theory introduced by Hassard et al. [18].

In the following part, we assume that system (3) undergoes Hopf bifurcations at the
positive equilibrium Y0 for τ = τk, that is, system (5) undergoes Hopf bifurcations at the
positive equilibrium N0 for τ = τk, and we let iω is the corresponding purely imaginary root
of the characteristic equation at the positive equilibrium N0. In order to investigate the
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direction of Hopf bifurcation and the stability of the bifurcating periodic solutions system
(3), we consider the parametric system (6) of system (5). First by the transformation ȳ1 = y1,
ȳ2 = y2, t = t

τ
, τ = τk + µ, Z̄ = (ȳ1, ȳ2), for simplicity, we continue to use Z said Z̄, then

the parametric system (5) of system (4) is equivalent to the following functional differential
equation system in C = C([−1, 0], <2),

Z̄(t) = Lµ(Z(t)) + f(µ, Z(t)), (16)

where Z̄ = (ȳ1, ȳ2)T , and Lµ : C → R, f : R → R are given, respectively, by

Lµ(φ) = (τk + µ)

(
−a1 0
b1 0

)
φT (0) + (τk + µ)

(
0 −a2

0 −b2

)
φT (−1)

and

f(µ, φ) = (τk + µ)

(
f11

f22

)
,

where

f11 = a3φ
2
1(0) + a4φ1(0)φ2(−1),

f22 = b3φ
2
1(0) + b4φ1(0)φ2(−1),

and φ = (φ1, φ2). By the Riesz representation theorem, there exists a matrix function whose
components are bounded Variation function η(θ, µ) in θ ∈ [−1, 0] such that

Lµφ =
∫ 0

−1

dη(θ, µ)φ(θ), φ ∈ C.

In fact, we can choose

η(θ, µ) = (τk + µ)

(
−a1 0
b1 0

)
δ(θ) + (τk + µ)

(
0 −a2

0 −b2

)
δ(θ + 1),

where

δ(θ) =

{
0, θ 6= 0,

1, θ = 0.

For φ1([−1, 0], <2), define

A(µ)φ(θ) =





dφ(θ)
dθ

, −1 ≤ θ < 0,∫ 0

−1

dη(θ, µ)φ(θ), θ = 0.

Then system (15) is equivalent to

Ż(t) = A(µ)Zt + R(µ)Zt. (17)
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For ψ ∈ C([−1, 0], (R2)∗) , the adjoint operator A∗ of A is defined as

A∗ψ(s) =





−dψ(s)
ds

, 0 ≤s< −1,∫ 0

−1

dηT (s, 0)φ(−s), s = 0,
(18)

and a bilinear inner product is given by

〈φ(s), ψ(θ)〉 = ψ̄(0)φ(0)−
∫ 0

θ=−1

∫ θ

ξ=0

ψ̄(ξ − θ)dη(θ)φ(ξ)dξ, (19)

where η(θ) = η(θ, 0) . It is easy to verify that A(0) and A∗(0) are a pair of adjoint operators.
From the discussions in Section 2, we know that ±iω are eigenvalues of A(0). Thus,

they are also eigenvalues of A∗(0). Next we calculate the eigenvector q(θ) of A belonging to
iω and eigenvector q∗(s) of A∗ belonging to −iω . Then it is not difficult to show that

q(θ) = (1, β)T eiωτkθ, q∗(s) = G(β∗, 1)eiωτks,

where

β = −a1 + iω

a2e−iω
, β∗ =

iω − b2e
−iω

a2e−iω
,

Ḡ = {β̄∗ + β + βτk(a2β
∗ + b2)e−iωτk}−1.

Moreover, 〈q∗(s), q(θ)〉 = 1, and 〈q∗(s), ¯q(θ)〉 = 0.
Next, we study the stability of bifurcated periodic solutions. Using the same notations

as in Hassard et al. [18]. We first compute the coordinates to describe the centre manifold
C0 at µ = 0. Define

ż(t) = 〈q∗, Zt〉, W (t, θ) = Zt − 2Re{z(t)q(θ)}. (20)

On the center manifold C0 , we have

W (t, θ) = W (z(t), z̄(t), θ) = W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ · · · . (21)

In fact, z and z̄ are local coordinates for center manifold C0 in the direction of q and q∗ .
Note that W is real if Zt is real. We consider only real solutions. For the solution Zt ∈ C0,
since µ = 0 and eq. (15), we have

ż =iωτkz + 〈q∗(θ), f(0, W (z, z̄, θ) + 2Re[z(t)q(θ)])〉
=iωτkz + q̄∗(0)f(0, W (z, z̄, 0) + 2Re[z(t)q(θ)]),

(22)

rewrite it as
ż = iωτkz + g(z, z̄), (23)

where

g(z, z̄) = g20(θ)
z2

2
+ g11(θ)zz̄ + g02(θ)

z̄2

2
+ · · · . (24)
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From (16) and (22), we have

Ẇ = Żt − ż − ˙̄zq̄ =

{
AW − 2Re{q̄∗(0)f(z, z̄)}q(θ), −1 ≤ θ < 0,

AW − 2Re{q̄∗(0)f(z, z̄)}q(θ) + f, θ = 0.
(25)

Rewrite (25) as
Ẇ = AW + H(z, z̄, θ), (26)

where

H(z, z̄, θ) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ · · · . (27)

Substituting the corresponding series into (25) and comparing the coefficient, we obtain

(A− 2iω0τ0)W20 = −H20(θ), AW11(θ) = −H11(θ). (28)

Notice that q(θ) = (1, β)T eiωτkθ, q∗(0) = G(β∗, 1), and (20) we obtain

y1t(0) = z + z̄ + W
(1)
20 (0)(θ)

z2

2
+ W

(1)
11 (0)(θ)zz̄ + W

(1)
02 (0)(θ)

z̄2

2
+ o(| z, z̄ |3),

y2t(0) = βz + β̄z + W
(2)
20 (0)(θ)

z2

2
+ W

(2)
11 (0)(θ)zz̄ + W

(2)
02 (0)(θ)

z̄2

2
+ o(| z, z̄ |3),

y1t(−1) = ze−iωθ + z̄eiωθ + W
(1)
20 (−1)(θ)

z2

2
+ W

(1)
11 (−1)(θ)zz̄ + W

(1)
02 (−1)(θ)

z̄2

2
+o(| z, z̄ |3),

y2t(−1) = βze−iωθ + β̄zeiωθ + W
(2)
20 (−1)(θ)

z2

2
+ W

(2)
11 (−1)(θ)zz̄ + W

(2)
02 (−1)(θ)

z̄2

2
+o(| z, z̄ |3).

According to (22) and (23), we know

g(z, z̄) = q̄∗(0)f0(z, z̄) = Ḡτk(β̄∗, 1)

(
f11

f22

)
, (29)

where

f0
11 = a3y

2
1t(0) + a4y1t(0)y2t(−1),

f0
22 = b3y

2
1t(0) + b4y1t(0)y2t(−1).

By (21), it follows that

g(z, z̄) = Ḡτk{a3β̄∗(z + z̄ + W
(1)
20 (0)(θ)

z2

2
+ W

(1)
11 (0)(θ)zz̄ + W

(1)
02 (0)(θ)

z̄2

2
+ o(| z, z̄ |3))2

+a4β̄∗(z + z̄ + W
(1)
20 (0)(θ)

z2

2
+ W

(1)
11 (0)(θ)zz̄ + W

(1)
02 (0)(θ)

z̄2

2
+ o(| z, z̄ |3))

×(βze−iωθ + β̄zeiωθ + W
(2)
20 (−1)(θ)

z2

2
+ W

(2)
11 (−1)(θ)zz̄ + W

(2)
02 (−1)(θ)

z̄2

2

+o(| z, z̄ |3)) + b3(z + z̄ + W
(1)
20 (0)(θ)

z2

2
+ W

(1)
11 (0)(θ)zz̄ + W

(1)
02 (0)(θ)

z̄2

2

+o(| z, z̄ |3))2 + b4β̄∗(z + z̄ + W
(1)
20 (0)(θ)

z2

2
+ W

(1)
11 (0)(θ)zz̄ + W

(1)
02 (0)(θ)

z̄2

2
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+o(| z, z̄ |3))× (βze−iωθ + β̄zeiωθ + W
(2)
20 (−1)(θ)

z2

2
+ W

(2)
11 (−1)(θ)zz̄

+W
(2)
02 (−1)(θ)

z̄2

2
+ o(| z, z̄ |3))}.

That is

g(z, z̄) = Ḡτk{z2[a3β̄∗ + a4β̄∗βe−iωθ + b3 + b4βe−iωθ]

+zz̄[2a3β̄∗ + a4β̄∗(βe−iωθ + β̄eiωθ) + 2b3 + b4(βe−iωθ + β̄eiωθ)]

+z̄2[a3β̄∗ + a4β̄∗βeiωθ + b3 + b4βeiωθ]

+z2z̄[(a3β̄∗ +
1
2
a4β̄∗βeiωθ + b3 +

1
2
b4β̄eiωθ)W (1)

20 (0)]

+(a3β̄∗ + a4β̄∗βe−iωθ + 2b3 + b4βe−iωθ)W (1)
11 (0)

+(
1
2
a4β̄∗ + b4)W

(2)
20 (−1) + (a4β̄∗ + b4)W

(2)
11 (−1)}.

By comparing the coefficients with (23), it follows that

g20 = 2Ḡτk[a3β̄∗ + a4β̄∗βe−iωθ + b3 + b4βe−iωθ],

g11 = Ḡτk[2a3β̄∗ + a4β̄∗(βe−iωθ + β̄eiωθ) + 2b3 + b4(βe−iωθ + β̄eiωθ)],

g02 = 2Ḡτk[a3β̄∗ + a4β̄∗βeiωθ + b3 + b4βeiωθ],

g21 = 2Ḡτk{(a3β̄∗ +
1
2
a4β̄∗βeiωθ + b3 +

1
2
b4β̄eiωθ)W (1)

20 (0)

+(a3β̄∗ + a4β̄∗βe−iωθ + 2b3 + b4βe−iωθ)W (1)
11 (0)

+(
1
2
a4β̄∗ + b4)W

(2)
20 (−1) + (a4β̄∗ + b4)W

(2)
11 (−1)}.

Since W20(θ) and W11(θ) appear in g21, we still need to compute them.
From (16) and (24), we know that for θ ∈ [−1, 0),

H(z, z̄, θ) = −q̄∗(0)F0q(θ)− q∗(0)F̄0q̄(θ) = −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ). (30)

Comparing the coefficients of (24) with (25) gives that

H20(θ) = −g20q(θ)− ḡ02q̄(θ), (31)

H11(θ) = −g11q(θ)− ḡ11q̄(θ). (32)

From (27) and the definition of A, we get

Ẇ20(θ) = 2iω0τ0W20(θ) + g20q(θ) + ḡ02q̄(θ).

Noting that q(θ) = q(0)eiω0τ0θ, we have

W20(θ) =
ig20

ω0τ0

q(0)eiω0τ0 +
iḡ20

3ω0τ0

q̄(0)e−iω0τ0 + M1e
2iω0τ0θ. (33)
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Similarly, from the definition of A, we have

Ẇ11(θ) = g11(θ)q(θ) + ḡ11(θ)q̄(θ),

W11(θ) = − ig11

ω0τ0

q(0)eiω0τ0 +
iḡ11

ω0τ0

q̄(0)e−iω0τ0 + M2. (34)

In what follows we shall seek appropriate M1 and M2 in (32) and (33). From (25) and (29),
we have

H20(θ) = −g20q(θ)− ḡ02q̄(θ) + 2τkA1, (35)

H11(θ) = −g11q(θ)− ḡ11q̄(θ)2τkA2, (36)

where

A1 =

(
A

(1)
1

A
(2)
1

)
=

(
a3 + a4βe−iωθ

b3 + b4βe−iωθ

)
,

A2 =

(
A

(1)
2

A
(2)
2

)
=

(
2a3 + a4(βe−iωθ + β̄eiωθ)
2b3 + b4(βe−iωθ + β̄eiωθ)

)
.

Substituting (32)–(35) into (27) and noticing

(iωτkI −
∫ 0

−1

eiωτkθdη(θ))q(0) = 0,

(−iωτkI −
∫ 0

−1

e−iωτkθdη(θ))q(0) = 0,

we obtain (
a1 + 2iω a2e

−2iωτk

−b1 2iω + b2e
−2iωτk

)
M1 = 2A1, (37)

(
a1 a2

−b1 b2

)
M2 = 2A2. (38)

It is easy to obtain M1 and M2 from (36) and (37), that is

M
(1)
1 =

(4iω + 2b2e
−2iωτk)A(1)

1 + 2a2e
−2iωτkA

(2)
1

2iω(a1 + b2e−2iωτk) + (a1b2 + a2b1)e−2iωτk − 4ω2
,

M
(2)
1 =

2b1A
(1)
1 + 2(a1 + 2iω)A(2)

1

2iω(a1 + b2e−2iωτk) + (a1b2 + a2b1)e−2iωτk − 4ω2
,

M
(1)
2 =

2b2A
(1)
2 − 2a2A

(2)
2

a1b2 + a2b1

, M
(2)
2 =

2b1A
(1)
2 + 2a1A

(2)
2

a1b2 + a2b1

.

Therefore we can compute the following values

C1(0) =
i

2ωτk

(g11g20 − 2|g11|2 − 1
3
|g02|2) +

g21

2
,

µ2 = − Re{C1(0)}
Re{λ′(ττk

)} , β2 = 2Re{C1(0)},

T2 = − Im{C1(0)}+ µ2Im{λ′(ττk
)}

ωττk

.
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Theorem 2 µ2 determines the direction of Hopf bifurcation: If µ2 > 0, then the Hopf
bifurcation is supercritical and bifurcating periodic solutions exist for τ > τ0; and if µ2 < 0,
then the Hopf bifurcation is subcritical and bifurcating periodic solutions exist for τ < τ0.
β2 determines the stability of the bifurcating periodic solutions: Bifurcating periodic are
stable if β2 < 0 ; unstable if β2 > 0. T2 determines the period of the bifurcating solution:
The period increase if T2 > 0, decreases if T2 < 0.

4 Numerical Simulations

In this section,we present some numerical results of system (4) at different values of τ .
From Section 3, we have determined the direction of a Hopf bifurcation and the stability of
the bifurcating periodic solutions. We consider the following system





u̇ = 4− u− 4uv(t−τ)
1+u2 − Eu

0.5E+1.5u
,

v̇ = 16(u− uv(t−τ)
1+u2 ),

0 = E
0.5E+1.5u

(4u(t)− 2)− 0.01,

(39)

which has an only positive equilibrium X0 = (0.7987, 1.6379, 0.0101). By algorithms in
Section 2, we obtain τ0 = 0.143, w = 6.8630. So by Theorem 1, the equilibrium point E∗ is
asymptotically stable when τ ∈ [0, τ0) = [0, 0.143) and unstable when τ > 0.143 and also
Hopf bifurcation occurs at τ = τ0 = 0.143 as it illustrated by computer simulations.
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Fig. 1: When τ = 0.141 < τ0 and with the initial condition x(0) = 0.9, y(0) = 1.5, E(0) = 0.01,

that show the positive equilibrium point E∗ is locally asymptotically.
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Fig. 2: When τ = 0.145 > τ0 and with the same initial condition above that shows the

bifurcating periodic solutions from the positive equilibrium point X0.

Now we determine the direction of a Hopf bifurcation with τ0 = 0.143 and the other
properties of bifurcating periodic solutions based on the theory of Hassard et al. [18], as
it is discussed before. By means of software Matlab7.0, we can obtain the following values
c1(0) = −0.7922 − 0.4937i, λ′(τ0) = 0.0137 + 0.0011i, it follows that µ2 = 0.0109 > 0,
β2 = −1.5844 < 0, T2 = 0.4958 > 0, from which and Theorem 2 we can conclude that the
Hopf bifurcation of system (3) occurring at τ0 = 0.143 is supercritical and the bifurcating
periodic solution exist for τ > τ0 and the bifurcating periodic solution is stable. So by
Theorem 2, the positive equilibrium point X0 of system (3) is locally asymptotically stable
when τ = 0.141 < τ0 as is illustrated by computer simulations in Fig. 1. And periodic
solutions occur from X0 when τ = 0.145 > τ0 as is illustrated by computer simulation in
Fig. 2. Here, we choose the initial conditions x(0) = 0.9, y(0) = 1.5, E(0) = 0.01 in our
simulations.

5 Conclusion

Nowadays, biological resources in the predator-prey system are mostly harvested and
sold with the purpose of achieving the economic profit, and economic profit is a very impor-
tant factor for governments, merchants and even every citizen, so it is necessary to research
biological economic systems, which motivates the introduction of harvesting in the predator-
prey system, in this paper, we provided a new and efficacious method for the qualitative
analysis of the Hopf bifurcation of a differential-algebraic biological economic system with
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time delay, via numerical simulations we can conclude that the stability properties of the
system could switch with parameter τ that is incorporated on the time delay on prey den-
sity in the differential-algebraic biological economic system. Form an economic perspective,
the persistence and sustainable development of the predator-prey ecosystem will be very
important, so with the purpose of maintaining the sustainable development of the biological
resources in practice and application, more precise mathematic or physical architectures of
the differential-algebraic biological economic system may be proposed, demonstrating a ma-
ture strategy rather than a concept, and dynamic property of differential-algebraic economic
system should be analysed in practice or from experimental point of views in future works.
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一类带有比例相关捕获函数的时滞微分代数经济系统的

Hopf分支分析

汪 淦,陈伯山,李 蒙,李震威

(湖北师范大学数学与统计学院,湖北黄石 435002)

摘要: 本文研究了一类用更为合理的无选择性捕获函数来代替普通的单位捕捞鱼获量函数的微分代

数经济系统. 利用范式定理和中心流形定理, 获得了生物经济系统内平衡点局部稳定和Hopf分支的稳定性,

改进和推广了已有的结果. 最后, 用数值模拟来证明分析结果的有效性.
关键词: 局部稳定性; 时滞; Hopf分支; 比例相关
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