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Abstract: In this paper, we study the local maximum likelihood estimations for a dinite mix-

ture of regression models with Laplace distribution. By using the kernel regression method and the

EM algorithm for maximizing the local weighted likelihood functions, we obtain the local maximum

likelihood estimations of the parametric functions, and discuss their asymptotic biases, asymptotic

variances and asymptotic normality, which extend the results of the local non-parametric estima-

tions for the finite mixture of regression models.
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1 Introduction

Mixture models were widely used in social science and econometrics. The work for
mixture models were well studied, for example, see [1]. The finite mixture model is a useful
class of mixture model. Various efforts were made to explicitly express the finite mixture
models, see [2–5].

The main aim of this paper is to provide a finite mixture of regression model with Laplace
distribution. The parametric functions are allowed to vary smoothly. Based on the constant
fitting, the local maximum likelihood estimations of the unknown parametric functions are
obtained. Furthermore, an EM algorithm is proposed to carry out the estimation procedure.
The EM algorithm has been used to maximize the likelihood functions when the models
contain unobserved latent variables. One main important application of the EM algorithm
is to find the maximum likelihood estimations for finite mixture models, see [6–7]. In this
paper, we want to evaluate the unknown parametric functions at a set to grid points over an
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interval of a given point by using the EM algorithm. In addition, the monotone ascending
property of the proposed EM algorithm is proved.

This article is organized as follows. In Section 2, we define the model. The local
maximum likelihood estimations of the unknown parametric functions are obtained in Section
3. The EM algorithm for a finite mixture of regression model is provided in Section 4. The
monotone ascending property of the proposed EM algorithm is proved in the last section.

2 Model

Assume that {(Xi, Yi), i = 1, 2, · · · , n} is a random sample from the population (X, Y ),
where the co-variable X is univariate. Let Z be a latent class variable. Suppose that Z

has a discrete distribution P{Z = k|X = x} = pk(x) given X = x, where k = 1, 2, · · · ,M .
Conditioning on Z = k and X = x, Y follows an Laplace distribution with mean µk(x) and
variance 2λ2

k(x). We further assume that pk(x), µk(x) and λ2
k(x) are unknown but smooth

functions. Hence, conditioning on X = x, Y follows a finite mixture of regression models
with Laplace distribution as follows:

Y |X=x ∼
M∑

k=1

pk(x)
1

2λk(x)
exp

{
−|y − µk(x)|

λk(x)

}
. (2.1)

In this paper, we assume that M is fixed. Model (2.1) is called the finite mixture of regression
model with Laplace distribution. Model (2.1) can be viewed as a natural extension of finite
mixture of linear regression model. For example, when pk(x) and λ2

k(x) are constants and
µk(x) is linear in x, model (2.1) yields to a finite mixture of linear regression models.

It is well known that identifiability is a critical issue for mixture models. Various efforts
were made to study the identifiability of the finite mixture distributions, see [8]. We first
introduce the concept of transversality.

Definition 2.1 Let a(x) = (a1(x), a2(x))T and b(x) = (b1(x), b2(x))T be two smooth
curves in R2, where x ∈ R, ai(x) and bi(x) are differentiable, i = 1, 2. If

‖a(x)− b(x)‖2 + ‖a′(x)− b′(x)‖2 6= 0

for any x ∈ R, then we say that a(x) and b(x) are transversal.
From Definition 2.1, it can be seen that the transversality of two smooth curves a(x)

and b(x) implies if a(x) = b(x), then a′(x) 6= b′(x). Now we have the following theorem.
Theorem 2.2 Suppose that three conditions as following hold.
(c1) pk(x) > 0 are continuous functions, and µk(x) and λ2

k(x) are differentiable func-
tions, k = 1, 2, · · · ,M .

(c2) Any two curves (µi(x), λ2
i (x))T and (µj(x), λ2

j(x))T , i 6= j, are transversal.
(c3) The range χ of x is an interval in R.

Then model (2.1) is identifiable.
Theorem 2.2 shows a sufficient conditions of the identifiability for finite mixture of

regression models.
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3 Local Maximum Likelihood Estimations

In this section, we study the local maximum likelihood estimations of the parametric
functions pk(x), µk(x) and λ2

k(x), k = 1, 2, · · · ,M . The log-likelihood function for the
collected data {(Xi, Yi), i = 1, 2, · · · , n} is

n∑
i=1

log

[
M∑

k=1

pk(Xi)
1

2λk(Xi)
exp

{
−|Yi − µk(Xi)|

λk(Xi)

}]
. (3.1)

Note that pk(x), µk(x) and λ2
k(x) are parametric functions. In this paper, we will employ

the local constant fitting for model (2.1), see [9]. That is, for a given point x, we use local
constants pk, µk and λ2

k to approximate pk(x), µk(x) and λ2
k(x), respectively. So the local

weighted log-likelihood function for data {(Xi, Yi), i = 1, 2, · · · , n} is

ln(p, µ, λ;x) =
n∑

i=1

log

[
M∑

k=1

pk
1

2λk

exp
{
−|Yi − µk|

λk

}]
Kh(Xi − x), (3.2)

where p = (p1, p2, · · · , pM )T , µ = (µ1, µ2, · · · , µM )T , λ = (λ1, λ2, · · · , λM )T , Kh(·) =
K(·/h)/h, K(·) be a nonnegative weighted function and h is a properly selected bandwidth.
Let (p̃, µ̃, λ̃) be the maximizer of the local weighted log-likelihood function (3.2). Then the
local maximum likelihood estimations of pk(x), µk(x) and λ2

k(x) are

p̃k(x) = p̃k, µ̃k(x) = µ̃k, and λ̃2
k(x) = λ̃2

k, (3.3)

respectively.
Now we study the asymptotic bias, asymptotic variance and asymptotic normality as

the following. Let θ = (pT , (λ2)T , µT )T and denote

η(y|θ) =
M∑

k=1

pk
1

2λk

exp
{
−|y − µk|

λk

}
, l(θ, y) = log η(y|θ).

Furthermore, let θ(x) = (pT (x), (λ2(x))T , µT (x))T , and denote

I(x) = −E

[
∂2l(θ(X), Y )

∂θ∂θT
|X = x

]

and
Λ(u|x) =

∫

Y

∂l(θ(x), y)
∂θ

η(y|θ(u))dy.

For k = 1, 2, · · · ,M , denote µ̃∗k = {µ̃k − µk}, (λ̃2
k)
∗ = {λ̃2

k − λ2
k}. For k = 1, 2, · · · ,M − 1,

denote p̃∗k = {p̃k − pk}. Let µ̃∗ = (µ̃∗1, µ̃
∗
2, · · · , µ̃∗M )T , (λ̃2)∗ = ((λ̃2

1)
∗, (λ̃2

2)
∗, · · · , (λ̃2

M )∗)T ,
p̃∗ = (p̃∗1, p̃

∗
2, · · · , p̃∗M−1)

T and θ̃∗ = ((p̃∗)T , (2λ̃2)∗)T , (µ̃∗)T )T . Furthermore, Let g(·) be the

marginal density function of X, ν0(K) =
∫

K2(z)dz and κ2(K) =
∫

z2K(z)dz. Then the

asymptotic bias and asymptotic variance of θ̃∗ are

bias(θ̃∗) = I−1(x)
{

g′(x)Λ′u(x|x)
g(x)

+
1
2
Λ′′u(x|x)

}
κ2(K)h2
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and

Var(θ̃∗) =
ν0(K)I−1(x)

g(x)
,

respectively.
Under some regularity conditions, θ̃∗ has the asymptotic normal distribution. That is,

it follows that √
nh{θ̃∗ − bias(θ̃∗) + o(h)} →L N

(
0,

ν0(K)
I(x)g(x)

)
,

where →L means the convergence in distribution.
The proofs of above results are similar to that of Theorem 2 in Huang, Li and Wang [5].

In this paper, our main aim is the EM algorithm of local estimations for the finite mixture
of regression model with Laplace distribution.

4 The EM Algorithm of Local Estimations

For a given point x, the EM algorithm is an effective method to maximize the local
weighted log-likelihood function (3.1). In practice, we evaluate the unknown functions at a
set of grid points over an interval of x, which requires us to maximize the local weighted
log-likelihood function (3.1) at different grid points. First, we introduce component labels for
each of the observation, and define a set of local weighted complete log-likelihood function
with the same labels. Second, we estimate these labels in the E-step of the EM algorithm. In
the M-step of the EM algorithm, we simultaneously update the estimated curves at all grid
points for the same probabilistic label obtained in the E-step, which ensure that the resulting
functional estimations are continuous and smooth at each iteration of the EM algorithm.

The mixture problem is formulated as an incomplete-data problem in the EM frame-
work. The observed data (Xi, Yi)s are viewed as being incomplete, and the unobserved
Bernoulli random variables are introduced as following:

ξik =

{
1, if (Xi, Yi) is in the kth group,

0, otherwise.

Let ξi = (ξi1, ξi2, · · · , ξiM )T , the associated component identity or label of (Xi, Yi). Then
{(Xi, Yi, ξi), i = 1, 2, · · · , n} are the complete data, and complete log-likelihood function
corresponding to (3.1) is

n∑
i=1

M∑
k=1

ξik

[
log pk(Xi)− log[2λk(Xi)]− |Yi − µk(Xi)|

λk(Xi)

]
.

For x ∈ {u1, u2, · · · , uN}, the set of grid points at which the unknown functions are to be
evaluated. We define a local weighted complete log-likelihood function as

n∑
i=1

M∑
k=1

ξik

[
log pk − log[2λk]− |Yi − µk|

λk

]
Kh(Xi − x).
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Note that ξiks do not depend on the choice of x. We have µ
(l)
k (·), λ

(l)
k (·) and p

(l)
k (·) in the lth

cycle of the EM algorithm iteration. Then in the E-step of (l + 1)th cycle, the expectation
of the latent variable ξik is given by

r
(l+1)
ik =

p
(l)
k (Xi) 1

2λ
(l)
k (Xi)

exp
{
− |Yi−µ

(l)
k (Xi)|

λ
(l)
k (Xi)

}

M∑
k=1

p
(l)
k (Xi) 1

2λ
(l)
k (Xi)

exp
{
− |Yi−µ

(l)
k (Xi)|

λ
(l)
k (Xi)

} . (4.1)

In the M-step of the (l + 1)th cycle, we maximize

n∑
i=1

M∑
k=1

r
(l+1)
ik

[
log pk − log[2λk]− |Yi − µk|

λk

]
Kh(Xi − x) (4.2)

for x = uj , j = 1, 2, · · · , N . The maximization of equation (4.2) is equivalent to maximizing

n∑
i=1

M∑
k=1

r
(l+1)
ik [log pk]Kh(Xi − x) (4.3)

and for k = 1, 2, · · · ,M ,

n∑
i=1

r
(l+1)
ik

[
− log[2λk]− |Yi − µk|

λk

]
Kh(Xi − x), (4.4)

separately. For x ∈ {u1, u2, · · · , uN}, the solution for maximization of equation (4.3) is

p
(l+1)
k (x) =

n∑
i=1

r
(l+1)
ik Kh(Xi − x)

n∑
i=1

Kh(Xi − x)
. (4.5)

To obtain the solution for maximization of equation (4.4), we first fix the parameter λk.
Denote µ̂k be the solution for maximization of equation (4.4) with respect to µk. Let

µ
(l+1)
k (x) = µ̂k. (4.6)

Then let µ
(l+1)
k (x) be fixed, the solution for maximization of equation (4.4) with respect to

λk is

λ
(l+1)
k (x) =

n∑
i=1

r
(l+1)
ik |Yi − µ

(l+1)
k (x)|Kh(Xi − x)

n∑
i=1

r
(l+1)
ik Kh(Xi − x)

. (4.7)

Furthermore, we update p
(l+1)
k (Xi), µ

(l+1)
k (Xi) and λ

(l+1)
k (Xi), i = 1, 2, · · · , n by linearly in-

terpolating p
(l+1)
k (uj), µ

(l+1)
k (uj) and λ

(l+1)
k (uj), j = 1, 2, · · · , N , respectively. We summarize

the EM algorithm as the following.
The EM Algorithm
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Initial value Conduct a mixture of polynomial regressions with constant proportions
and variance, and obtain the estimations of mean function µ̄k(x), variance σ̄2

k, and parameter
p̄k. Set the initial values µ

(1)
k (x) = µ̄k, λ

(1)
k (x) =

√
σ̄2

k/2 and p
(1)
k (x) = p̄k.

E-step Use equation (4.1) to calculate r
(l+1)
ik for i = 1, 2, · · · , n and k = 1, 2, · · · ,M .

M-step For k = 1, 2, · · · ,M and j = 1, 2, · · · , N , evaluate p
(l+1)
k (uj) in (4.5), µ

(l+1)
k (uj)

in (4.6) and λ
(l+1)
k (uj) in (4.7). Further, we obtain p

(l+1)
k (Xi), µ

(l+1)
k (Xi) and λ

(l+1)
k (Xi)

using linear interpolation.
Iteratively update the E-step and the M-step with l = 2, 3, · · · , until the algorithm

converges.
It is well known that the bandwidth selection can be tuned to optimize the performance

of the estimated parametric functions. At the end of this section, we select the bandwidth
of the local estimations for the parametric functions. We select bandwidth h via the Cross-
validation method, which is discussed in detail in [10].

5 Ascent Property of the EM Algorithm

Note that the EM algorithm for constant parameters possesses an ascent property,
which is a desired property. The EM algorithm for the parametric functions in this paper
can be viewed as a generalization of the EM algorithm for constant parameters. So it is
very interesting to discuss whether the EM algorithm we proposed still preserves the ascent
property. Now we first give the following assumptions.

(A1) The sample {(Xi, Yi), i = 1, 2, · · · , n} is independent and identically distribution
from population (X, Y ), and the support for X, denoted by χ, is a compact subset of R.

(A2) The marginal density function g(x) of X is twice continuously differentiable and
positive for all x ∈ χ.

(A3) There exists a function M(y) with E[M(y)] < ∞, such that for all y, and all θ in
a neighborhood of θ(x), we have

∣∣∣ ∂3l(θ,y)
∂θj∂θk∂θl

∣∣∣ < M(y).
(A4) The parametric function θ(x) has continuous second derivatives. Furthermore, for

k = 1, 2, · · · ,M , λk(x) > 0 and pk(x) > 0 hold for all x ∈ χ.

(A5) The kernel function K(·) has a bounded support and satisfies that
∫

K(z)dz = 1,
∫

zK(z)dz = 0,
∫

z2K(z)dz < ∞,
∫

K2(z)dz < ∞ and
∫
|K3(z)|dz < ∞.

Let θ(l) = (p(l)(·), 2λ2(l)(·), µ(l)(·)) be the estimated functions in the lth cycle of the EM
algorithm proposed. The local weighted log-likelihood function (3.2) is rewritten as

ln(θ) =
n∑

i=1

l(θ, Yi)Kh(Xi − x). (5.1)

Then we have the following theorem.
Theorem 4.1 Assume that conditions (A1)–(A5) hold. For any given point x, suppose

that θ(l)(·) has a continuous first derivative, and h → 0 and nh → ∞ as n → ∞. Then we
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have

lim inf
n→∞

1
n

[
ln(θ(l+1)(x))− ln(θ(l)(x))

] ≥ 0 (5.2)

in probability.
Proof Suppose that the unobserved data {Zi, i = 1, 2, · · · , n} is a random sample

from population Z. Then, the complete data {(Xi, Yi, Zi), i = 1, 2, · · · , n} can be viewed as
a sample from (X, Y, Z). Let h(y, k|θ(x)) be the joint distribution of (Y, Z) given X = x,
and g(x) be the marginal density of X. Conditioning on X = x, Y follows a distribution
η(y|θ(x)). Then, the local weighted log-likelihood function (3.2) can be rewritten as

ln(θ) =
n∑

i=1

log[η(Yi|θ)]Kh(Xi − x). (5.3)

The conditional probability of Z = k given y and θ is

f(k|y, θ) = h(y, k|θ)/η(y|θ) =
pk

1
2λk

exp
{
− |y−µk|

λk

}

M∑
k=1

pk
1

2λk
exp

{
− |y−µk|

λk

} . (5.4)

For given θ(l)(Xi), i = 1, 2, · · · , n, it is clear that
∫

f(k|Yi, θ
(l)(Xi))dk = 1. Then we have

ln(θ) =
n∑

i=1

log[η(Yi|θ)]
[∫

f(k|Yi, θ
(l)(Xi))dk

]
Kh(Xi − x)

=
n∑

i=1

{∫
log[η(Yi|θ)][f(k|Yi, θ

(l)(Xi))]dk

}
Kh(Xi − x). (5.5)

By equation (5.4), we have

log[η(Yi|θ)] = log[h(Yi, k|θ)]− log[f(k|Yi, θ)]. (5.6)

Thus we have

ln(θ) =
n∑

i=1

log[η(Yi|θ)]
[∫

f(k|Yi, θ
(l)(Xi))dk

]
Kh(Xi − x)

=
n∑

i=1

{∫
log[h(Yi, k|θ)][f(k|Yi, θ

(l)(Xi))]dk

}
Kh(Xi − x)

−
n∑

i=1

{∫
log[f(k|Yi, θ)][f(k|Yi, θ

(l)(Xi))]dk

}
Kh(Xi − x), (5.7)

where θ(l)(Xi) is the estimation of θ(Xi) at the lth iteration. Taking expectation leads to
calculating equation (4.1). In the M-step of the EM algorithm, we update θ(l+1)(x) such
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that

1
n

n∑
i=1

{∫
log[h(Yi, k|θ(l+1)(x))][f(k|Yi, θ

(l)(Xi))]dk

}
Kh(Xi − x)

≥ 1
n

n∑
i=1

{∫
log[h(Yi, k|θ(l)(x))][f(k|Yi, θ

(l)(Xi))]dk

}
Kh(Xi − x).

It suffices to show that

1
n

n∑
i=1

{∫
log

[
f(k|Yi, θ

(l+1)(x))
f(k|Yi, θ(l)(x))

]
f(k|Yi, θ

(l)(Xi))dk

}
Kh(Xi − x) ≤ 0 (5.8)

in probability. Let

Ln1 =
1
n

n∑
i=1

φ(Yi, Xi)Kh(Xi − x),

where

φ(Yi, Xi) =
∫

log
[
f(k|Yi, θ

(l+1)(x))
f(k|Yi, θ(l)(x))

]
f(k|Yi, θ

(l)(Xi))dk.

By using assumptions (A1)–(A4), we have f(k|Y, θ(l)(x)) > a > 0 for some small value a,
and E{[φ(Y, X)]2} < ∞. Then by Assumption (A5) and Theorem A in [11], we have

sup
J
|Ln1 − g(x)E[φ(Y, X)]| = op(1),

where J is a compact interval on which the density of X is bounded below from 0. The
proof follows that

E[φ(Y, x)] = E

{∫
log

[
f(Z|Y, θ(l+1)(x))
f(Z|Y, θ(l)(x))

]
f(k|Y, θ(l)(x))dk

}

≤ E

{
log

[∫ [
f(Z|Y, θ(l+1)(x))
f(Z|Y, θ(l)(x))

]
f(k|Y, θ(l)(x))dk

]}
.

This completes the proof of Theorem 5.1.
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有限混合Laplace分布回归模型局部估计的EM算法

王继霞, 汪春峰, 苗 雨

(河南师范大学数学与信息科学学院, 河南新乡 453007)

摘要: 本文研究了一类有限混合Laplace分布回归模型的局部极大似然估计问题. 利用核回归方法和

最大化局部加权似然函数的EM算法, 获得了参数函数的局部极大似然估计量, 并讨论了它们的渐近偏差, 渐

近方差和渐近正态性. 推广了有限混合回归模型下局部非参数估计的结果.
关键词: 有限混合模型; Laplace分布; EM算法; 局部极大似然估计; 核回归
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