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Abstract: In this paper, we study composition operators associated with F} space. By
the means of functional analysis, we study some necessary and sufficient conditions for composition
operators Cy, to be bounded and compact from F), (resp. Fj o) to B. In addition, we also characterize
the isometric composition operators from B to F}, for 1 < p < oo and show that no composition
operator on Fj o for 0 < p < oo is Fredholm, which extend some previous results.
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1 Introduction

Let D denote the unit disk in the complex plane, H(ID) the space of holomorphic func-
tions on D and T the boundary of the unit disk. For 0 < p < oo, f € H(D), we set, as

usual, }
My(r, f) = (;ﬁ / |f<re“>|f’dt>p

Moc<raf): sup |f(reit)|‘

0<t<2r

Let I}, denote the space of all functions f € H(D) satistying ||| f|[|% = [f(0)[? +[|f|[F, < oo,

where ||f||r, = sup (1 —r2)M,(r, ).
0<r<1
F, o is the little version of F),, which consists of all f € H(D) satisfying

and

)lir{lﬁ(l — )M, (r, f') = 0.

For 0 < p < o0 and 0 < ¢ < oo, we write B(p, q) for the space of those f € H(ID) such that

1 q
Ky, q(f) = </0 Mg(ﬁf’)(l—T)qldT> < oo, ifg< oo
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and

K, (f) = oiu1<)1(1 —r)M,(r, f') < o0, if ¢ = o0.

Refer to [6] for more details on B(p,q). Recall that a function f € H(D) belongs to the
classical Bloch space B if

[1f1l5 = sup (1 —[2*)|f'(2)] < oo,
zeD

and B is a Banach space equipped with the norm

£l = £O)] + sup (1= [2P2) /()]

Notice in [1] that Fi, coincides with the space B. We also know that M, (r, f) increases with
respect to p from [7]. Tt follows from the definitions above that for 0 < p < ¢ < o0,

B=F, CF,CF,=B(p,o).
Let ¢ : D — D be a holomorphic map, then the composition operator C,, is defined by
C,:f— foo. (1.1)

Composition operators were studied by numerous authors in many subspaces of H(D).
Among others, Madigan and Matheson characterized continuity and compactness of com-
position operators on the classical Bloch space B in [10]. Madigan [9] discussed the bound-
edness and w-compactness of composition operators on holomorphic Lipschitz spaces A,.
Xiao studied composition operators between Bloch-type spaces in [17] and Yang worked
about composition operators from F(p,q, s) spaces to the nth weighted-type spaces on the
unit disk in [18]. Good general references of composition operators on classical spaces of
holomorphic functions on the unit disk are [2, 14].

Motivated by these papers, here we study the boundedness and compactness of composi-
tion operators from F,, (resp. F, o) to B. As an appilcation, we characterize the boundedness
and compactness of composition operators on F,. In addition, we also describe the isometric
composition operators from B to F), for 1 < p < oo, and show that no composition operators
on F), is Fredholm for 0 < p < 0.

Throughout the paper we use the same letter C to denote various positive constants
which may change at each occurrence. Variables indicating the dependency of constants
C will be often specified in the parenthesis. We use the notation X <Y or Y > X for
nonnegative quantities X and Y to mean X < CY for some inessential constant C' > 0.
Similarly, we use the notation X =Y if both X <Y and Y < X hold.

2 Some Lemmas

The first lemma below is essential due to Hardy and Littlewood (refer to [3]).
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Lemma 2.1 For 0 < p < ¢ < oo, there exists a positive constant C), depending only
on p and ¢ such that for each f € H(D) and each r € (0,1),

-o\»-‘

_1
P

M, (r, f) < CpyM, <1;T f)(lr)

With this lemma, we get the following corollary.
Corollary 2.2 For 0 < p < 00, there exists a positive constant C' depending only on
p such that for any f € F,

NS g Il (2.1)

Proof If we replace f by f’ in Lemma 2.1 and let ¢ = oo, then for every f € F),, there
exists C' > 0 depending only on p such that

1f'(2)] < JSup |f'(|zle™)| = M (|21, f)

sc,,M< 'Z|,f>(1—|z|)
(1- (2 '>2>Mp<lz*zuff>
(1— (24=)2) (1 - )

C
< ﬁ”f”&v

(1= 1=I?)

combining with || f||r, < [||f|[|F,, which completes the proof.

=

:Cp

Corollary 2.3 Suppose that 0 < p < oo, then there is a positive constant C' satisfying
such that for any f € F, and z € D,

C
|f(Z)|<m|||f|HF (2.2)

Proof Suppose f € F,, we have
1
f(z) = f(0)+ z/ f(tz)dt. (2.3)
0
Then by Corollary 2.2 and |f(0)| < [||F|||r,, we can easily get
£ < C(1+p20)(1 = [2) 7 I fll]r,

which completes the proof.

Corollary 2.4 For any z € D, ‘ l‘im [19.] — 0 weak* in
z|—1—

= — 00. Moreover, 6672
».0 l18=11ry

Fyo when [z] — 17.
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Proof For each ¢ € T, we consider the function f;(z) = log(1 — (z) which belongs to
B. Recall that ||9.||s+ ~ log(ﬁ) and F; C B* for 0 < p < co. Thus for each 6. € F}, we
have

1
P <
FPN]_*|Z|2’

log ( ) S 1161

5= S |16:]

1— |22
the last inequality comes from Corollary 2.3. Then it is obvious that [|d,]
|z| — 17. We know from [5] that for little Bloch space By, ||d.|

Moreover, for any z € D,

Fr — 00 as

Bz — oo when |z| — 17.

16|

B < ||5Z||F* < ||5Z‘

p,0 —

F;“

Then ||0.]

Fr, — 00 when |z| — 17. For any holomorphic polynomial P, we have

. [6.(P)] .
lim ———— < lim
=1 |[0s]|Fe, T 12l=1- 10|

sup{|P(z)| : z € D} _o

*
Fp,0

Then the proof is complete due to every f € F,, can be approached by a sequence of
holomorphic polynomials,

By Corollary 2.4, we know that the closed unit disk B(F,) of F,, endowed with
the compact open topology co is relatively compact and the evaluation function at z € D,
0. : f — f(2) is a bounded linear functional on F,o. So F,, has a predual space X by
the Dixmier-Ng theorem in [13]. Moreover, it can be seen that the closed linear span of the
set {0. : z € D} in F}, coincides with this predual space X. Hence elements in X are also
continuous for the compact-open topology on bounded subset of F} o. Moreover, it is easy
to see that C7(0.) = dy(z) for z € D.

For our next lemma, we need more notation. Hy°(0 < p < 00) is defined in [5]:

Hy ={feHD):||f

g = supp(2)|f(2)] < oo},
zeD

where v,(z) = (1 — |2]?)P is the standard weight.

Lemma 2.5 For 0 < p < oo, the map ¢ : D — F};, defined by 4 : z — 4., is continuous
with respect to pseudo-hyperbolic distance metric.

Proof By Corollary 2.3, we obtain that (1—|z[2)7|f(2)] < I[If]||£,, then F}, C H3® and
[ flzee S MIfN|g, for all f € Fp,. Therefore, by Lemma 4 from [15], there exists a constant
C > 0 such that

=127 1 = Jw?

£(2) = F)| < Cllfllas: max{ plzw) plzw) }

for all f € H° and all z,w € D, where p(z,w) is the pseudo-hyperbolic distance metric

between z and w. Hence

Héz—5w|

Ry S Cmax{p(z’w) p(z,w) }

=271 = fwl?

for all z,w € D, which gives the continuity of .
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3 Boundedness and Compactness

In the section, we will characterize the boundedness and compactness of composition

operators U, from F), to B. For simplicity, in the sequel, we write

1— |42
— 1)

(1 =le(=)P?)”

F(p,p,z) =

and

Gp,p,2) = (1 - 2%

p 1 /2” | (Iele)
27 Jo 1= fe(l=le2["
Theorem 3.6 Let ¢ be a holomorphic self-map of D and 0 < p < oco. Then the
following statements are equivalent.
(i) sup F(p, ¢, 2) < oc.
z€D
(ii) Cy : F, — B is bounded.
(iii) C, : F, o — B is bounded.
Proof (i)=(ii) If sup,cp F(p, ¢, 2) < oo, then it follows from Corollary 2.2 that
1Ceflls = sup (1~ [2F)1£ ()¢’ (2)]
1—12[%) ¢ (2)]
SSup ( ) l+1||f||Fp
(1= [p(2)?)
5 SupF(pa 9072) ’ ||fHFpa
zeD

which implies that C, : F}, — B is bounded.
(ii)=(iii) This implication is clear.
(iii)=-(i) Assume that C, : Fj, o — B is bounded. We have known from [7] that for

0 <p< oo, folz) = . p)i € F,. Now fix zp € D such that w = ¢(z) # 0 and let
fu(z) = ﬁ — £ Then f}(2) = ﬁ, and f, € F, . Moreover,
w(l—wz)P 1—wz)P
1fully, = sup (1= [=2)" - 5 / el P
P 2€D 2'/T 0
1 [ 1
=sup (1—]z[3)" — - dt
z€D ( ) 27 Jo ‘1 - |w||z|el(‘9+t)‘p-'—1
» 1 0+27m 1
<sup (1 (ul))" - o [ at
e Y%y el (3.1)

(1-[2p)”- 2 / L
= sup (1—|z C— _—
2€|w|D 2 Jo 11— |zlett|ptt

(12" 1/% L
sup (1 — |z R [P e —
2D 27 J, ‘1 — |z]eit p+l1

= [ foll%,-

IN
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By the boundedness of C, and f,,(0) = 0, we have

|fuw(0(0)] + [[Co fulls S (I fullp,-

Then

oo > |l follr, = | fullr, Z [|Cefulls

V

=sup (1= |2") | f1(p(2))' ()| 2 | ¢ (20))|

= F(p7S07Z0)7

which deduces that

sup F(p,p,z) < oc. (3.2)
2€D\{zlp(2)=0}

Next we consider the situation zy € D such that ¢(z) = 0. Since f = z € F,, then
¢ = Cy,f € B. Therefor,

sup F(p,g,z) = sup (1-1[2*)]¢(2)]
{=lo(=)=0} {2lo(=)=0}

< lells < oo. (3.3)

Combining (3.2) with (3.3), we obtain (i), which completes the proof.
Theorem 3.7 Let ¢ be a holomorphic self-map of D and 0 < p < oo. Then the
following statements are equivalent:

(i) sup G(p, ¢, z) < oo.
z€D
(ii) Cy : F, — F, is bounded.
(ili) Cy : F, o — F), is bounded.
Proof The proof of the theorem is similar to that of Theorem 3.6. First, we prove
(i)=(ii) If sup G(p, p, z) < oo, then by Corollary 2.2, we have
zeD

1 2w ) ) ) .
€1, =sup (1= 22" 3= [ 17/ (o(ale) o' (Jle) e
z€eD ™ Jo

1 2 |@/(|Z|eit)|p
< 1—|z? p/ dt - || f|%
S o G ey M

=supG(p, ¢, 2) - | f|[,
z€D

which implies that C, : F}, — F}, is bounded.

(ii)=-(iii) This is obvoius.

(iii)=-(i) Assume that C, : F), o — F, is bounded. Fix z; € D such that w = ¢(2) # 0
and take the same test functions as that used in Theorem 3.1,

fwz:#l—g and foz:Ll.
% w(l —wz)r W B (1—-2)»
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By the boundedness of C, and f,,(0) = 0, we have

[fu(O)] +[|Cp fullr, S [ fullF,-

Then it follows from (3.1) that

00 > |[foll%, = I fullr, 2 1Csfullf,
1 (1-120)"
- % NE
o (1—]e(z0le®)])
= G(p790720)7 (34)

Pl “p/(|20|eit)|pdt

which implies that
sup G(p,p,z) < oc. (3.5)

2€D\{z]p(2)=0}
On the other hand, by taking he test function f = 2, the boundedness of C, : F}, o — F,
gives that ¢ = C, f € F,,. Then

1 [ .
sip Glppz)= sup  (1—|2P) - = / o (2le™) [t
{zl¢(2)=0} {Z\w(Z):O}( ) 21 Jo [#( )

< lell, < oo (3.6)

Combining (3.5) with (3.6) gives (i), which completes the proof.

Given two linear metric spaces X and Y, a linear operator T : X — Y is called to
be compact if T maps every bounded subset of X into a relatively compact subset of Y.
Equivalently, T" is compact if and only if for any bounded sequence { f,,} in X, there exists a

subsequence { f,,, } such that {T'f,,, } converges in Y. Since when sup |¢(2)| < 1, it is easy to
z€eD

see that C, is compact, so we always suppose sup |¢(z)| = 1 when studying the compactness
z€D
of C,,.
Theorem 3.8 Let 0 < p < oo and ¢ be a holomorphic self-map of DD such that
C, : F, — B is bounded. Then the following statements are equivalent.

(i) lim F(p,¢,z)=0.
le(z)|—1
(ii) Cy : F, — B is compact.

(ili) C, : F, o — B is compact.
Proof (i)=(ii) Since C, : F, — B is bounded, we have that sup F'(p,p,2) < oo
zeD
from Theorem 3.6. Let {f,,} be a bounded sequence in F,, converging to 0 uniformly on any

compact subset of ID. Then in order to show that C, : Fj, — B is compact, by Corollary 2.3
[16], it suffices to verify that

Jim [[Cofls = 0. (37)
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Set M = sup,, ||fnl|r, < 0o. By the assumption, we obtain that, for any ¢ > 0, there exists
a d € (0,1) such that whenever |p(z)| > d, we have F(p, ¢,2) < 55. Then

2 / / 1- |Z|2 /
(1= [z [ fale(2)¢'(2)| S ¢ ()|l fallr,
(1— o))"
< MF(p,p,z).
It follows that
(1= 12P)|£(0(2)¢' ()] < 5, i [o(2)] > 6. (38)

If ‘gp(z)} < 4, then

(1= 122 (0(2)) ¢ (2)| < llells|fn(e(2))],

which implies that (1 - |z|2) |f,’L (gp(z))gp’(z)‘ — 0 uniformly as n — oco. Then for n large

enough,
(1= 1) £ (e ¢ ()] < 5, i [o(2)] < 6. (3.9)

Hence, combining (3.8) and (3.9), we get ||C., f,||s < ¢ for sufficiently large n, i.e (3.7) holds.
(ii)=-(iii) The implication is clear.

(iii)=(i) Let C, : F, o — B be compact. If | m F(p,p,z) # 0, there would be a

li
e(z)|—1
positive constant £y and a sequence {z,} C D such that F'(p,p,2,) > €0 and |¢(z,)| >

1 —n~'. We may assume that w, = ¢(2,) tends to some point wy, € dD. Here we can

suppose that w, # 0. We put

on any compact subset of D . According to these constructions, we obtain
1Cotn = Cofolls = sup (1= |21*)[ (Cofa) () = (Cfo) (2)]
> (1= |=) | (£ (2zn)) = f3(0(z0))) @' (z)]
. ( 11:5;2:5 ) 141

__ — 141
1— <1 A wn)> ot

1-— @Own

Z F<p7 2 Zn)

2 €0

wy, (W — W, 17
250 n( 0 n) P '

1— |1+

1-— WolWn,
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Due to the compactness of C,, : F), o — B, we get ||Cy f, — C, fol|s — 0. Consequently,

lim ‘17 ’1+M’%+1}

— - 07
n— o0 1-— WoWnp,

which violates

lim |7wn<@07_ Un)
n—00 1-— WoWnp

— 1.

This contradiction completes the proof.

Similarly, we have the following characterization of compact composition operator C., :
F, — F,.

Theorem 3.9 Let 0 < p < oo and ¢ be a holomorphic self-map of D such that

C, : F, — F, is bounded. Then the following statements are equivalent:
(i) lim G(p,e,z)=0.
lp(2)[—1
(ii) Cy : F, — F}, is compact.
(iii) Cy, : Fp o — F, is compact.

Proof First we prove (iii)=-(i). Assume ‘ (hﬁl G(p,,z) # 0. Then there exists a
p(z)|—1

constant €9 > 0 and a sequence {z,} C D such that G(p, ¢, z,) > € and |p(z,)| > 1 —n"!
for all n. Again assume that w,, = ¢(z,) tends to some point wy € D. Here we can suppose
that w,, # 0. Because

’wn(wo—wn) o

1 — wow,,

then

wa(Wo — W)\ bo1| o

‘1—(1+

1 — wow,,

Passing to a subsequence if necessary we can assume that there exists another positive
number g such that

Wp(Wy — Wy, ) £
’1— \1+1(_3U0w) s g (3.10)
Define
p p
fn(’z> = R —
(1 =wyz)”  n
Then f,, € F,( and converges uniformly to
p p
fo(z) = [p—
’wio(]. _ %Z) P Wo
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on any compact subset of . Therefore, by (3.10),

||C¢>fn - C«pfOH%I,

p 1 o 1 it / it / ity |P
=sup (1—1=) %/O |1 ((l21e™)) = fo(e(l=le™) [P - ¢ (2le™)["dt
>(1lzn2)p'21w/o

1 1

P
- o' (|znle™ Pt
’1_|wn|2 ;-‘,—1 | ( )|

- 1
__is
‘l—wown”’

dt

.'1— \1+4w"(w70_w7)’%+1 ’

P 1 2m
>(1 — R

!/
>e0ed .

1 — wow,,

27 / it\ | P _ 2, p
:(1*|zn\2)p.i ‘tp(|zn|e.)}2 ,'1(1|w”|)p+1 it
21 Jo 1= [g(|zale’t) [*[r+? 1 —wow,
L[ Ty
=(1- n”~/ = (14 ") | dt
( |Z ‘ ) It 0 ‘1_ ‘gp(|zn\e“f) 2|p+1 ( 1_w0wn
(Iznle”)
(Iznle*)

Then C,, f,, does not converge to C,, fo in norm. Hence C, is not compact. This contradiction
completes the proof of (iii)=-(i).

(i)=(ii) and (ii)=-(iii) can be proved by the means used in Theorem 3.8 and we omit
the details here.

4 Isometry and Fredholmness

Many spaces of holomorphic functions in the unit disk D posses plenty of isometries
(see [4, 8, 11]). In this note, we describe isometric composition operators from B to F), for
1<p<oo.

Theorem 4.10 Let ¢ be a holomorphic self-map of the disk and 1 < p < oo, then the
composition operator C,, : B — F}, is an isometry if and only if ¢ is a rotation.

Proof The sufficiency is obvious. We only need to prove the necessity. To this end,
suppose C,, is an isometry from B to F), 1 < p < oo. We first claim that ¢(0) = 0. Indeed,
by the Schwarz-Pick lemma, for every f € B,

1

L / 17 (o121 (121 e

_ 2\P
1Cof1[f, = sup (1=12")" oo

Csup e [ ety (1= e [ (1) e
E E A PR e
<|Ifll% (4.1)

Since C, is isometric, then |||C,(f)|||r, = |||f|||5, which implies that

[F (O + 11Co fllE, = (S O+ 1I£118)" = [FO)” +[I£1]5; (4.2)
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where the last inequality comes from 1 < p < oo. It follows that |f(©(0))| > |f(0)] for all
f € B. Write ¢(0) = a, and choose

f(2) = @a(2)

T 1-az

which interchanges the origin and the point a, 0 = |, (a)| = |pa(©(0))| > |©a(0)] = |al.
Hence ¢(0) = 0, which gives the claim. Thus, if C, is an isometry, then ||C, f||r, = ||f||5
for all f € B. Now choose f(z) = z, by the definition of F, and the Schwarz-Pick lemma,

we have
0 =z[|z — [ICp2]%,

27
1o (1= 1) o [ e
>1—sup L " (1- |g0(|z|e”)’2)pdt > 0.
- zeb 27 J N
Hence the inequality above actually is equality. So the equality in Schwarz-Pick lemma
holds. Therefore, ¢ must be a disk automorphism. Recall that ¢ fixes the origin, it follows
that ¢ is actually a rotation.

Finally, we consider the Fredholmness of composition operators on F, . For a linear
metric space X, recall that a bounded linear operator T' on X is said to be Fredholm if both
the dimension of its kernel and the codimension of its image are finite. This occurs if and
only if T' is invertible modulo the compact operators, that is, there is a bounded operator S
such that both T'S — I and ST — I are compact. We also notice that an operator is Fredholm
if and only if its dual is Fredholm (see for example [12]).

The following result first gives a necessary condition of the Fredholm composition op-
erators.

Theorem 4.11 Let ¢ be a holomorphic self map of . If C, is Fredholm on Fj, o, then
 is an automorphism.

Proof It is only needed to prove that ¢ is injective and onto. First, note that ¢ cannot
be a constant mapping. Otherwise ¢(z) = a, we have (z —a)" € ker C, and dim ker C, = oo,
which contradicts the Fredholmness of C,.

Assume ¢ is not one to one. So there exist 21,20 € D, 27 # 29 with p(21) = ¢(22).
Select the neighborhoods U, V' of 21, 2o respectively such that U NV = 0. o(U) N (V) is
a nonempty and open set due to ¢ is open by the Open Mapping Theorem, so there exist
infinite sequences {z}} C U, {22} C V such that ¢(z2}) = p(22) = w,, which are distinct.
Hence C;(SZ}I = (‘)}0(2%/) = 5@(?«%) = C:,(Szgl, namely, C;((Sz}l — 5ng> = 0, where 5Z : f — f(Z) is
the evaluation function, which is a bounded linear functional on F}, . Since F}, o contains all
polynomials, we have each evaluation function is not a linear combination of other evaluation
functions, so the sequence {0.1 — d.2} is linearly independent in the kernel of the adjoint
operator C7. It is worth pointing out that C7 is also Fredholm. It is a contradiction, so ¢

is injective.
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We now show that ¢ is onto. Assume that ¢ is not onto. Then we can find zo € DNIp(D)
and {z,} € D such that ¢(z,) — 2o as n — oo. Further, we get, by the Open Mapping
Theorem, that |z,| — 1 as n — oo. For arbitrary f € F), o,

Co0s, [ = 0oy f = fop(zn) = f(20) = 62 f,

we get () W 0z, and {Jy(z,,) } is uniformly bounded . Again, it is obvious that |[d,, || — oo

Spion C8n . .
as n — oo. Therefore, ||||“g< I)\ | = llf57ll = 0. On the other hand, since C is also

Fredholm, there are operators K and S on F}, with K compact and S bounded, such that
SC,=1+K. Thus den  Koen g, Because K is compact and { Oen } is bounded, there

anll 0 110zn]] [162n ||
San .
exists subsequence {||5 ‘} such that ||5 “ — h, 5= — —h, which means [|h]| =
an, an,
Moreover, Fj,( is the closure of all polynomlals with respect to the norm ||| - |||s, ,, which

zn

[[6=n, ]
onto. Thus i is a Mobius transformation, Wthh completes the proof.

5 n
gives ﬁ w* 0. This implies that w? —h = 0. This is a contradiction. So ¢ is

Remark By Theorem 3.7, we have

p+1

27 . 2\ P =
sup G(p, ¢a, 2) = sup (1 — |z|2)p.1/ (1= laP)"|1 ~alz
zeD 2eD 0

2m “1_a|z|eit|2_|a_|Z‘€it|2|

(1 | |2)p 1 /27r (1 — |a|2)p(1 + la?|2|? — 28‘%(62’))
:Sup — |z —
2eD 27 Jo |1+ |af?[z]2 — 2R(@2) — |af? - |2|2 + 2R(az)[""
1 /271' o 1 7
=sup 1+ |al?|z|* — 2R(az))dt
zen (1= [a?)(1 = 1[2?) Jq ( )
1+ [aP|2f?
=sup — 00,

zen (1= [a?)(1 = [2])

where ¢, = . Then the composition operator C,, : F}, o — F), is unbounded. Therefore,
if pisan automorphlsm7 then C, : F}, g — F,is unbounded. Thus C,, is never invertible and
Fredholm, which is different from many other classical function spaces, such as Hardy spaces,
where the Fredholmness and the invertibility of the composition operators are equivalent, at
the same time, they are equivalent to the induced symbol ¢ is an automorphism. Then we
end the paper by summarizing the following result.

Theorem 4.12 There is no Fredholm composition operator on Fj, .
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WE: AR TF, FHERNEEE TR R BHZ RSN INETR T F, (R, F,o)
7% (8] B|Bloch 7% 8] 1) & & 5T A FAEAVE VE IS TR 0 ML B AF. Ak, HMZIH 7241 < p < oo
MBlochZ*[A1 B F), 2= [A[5FFE & 65 7 IF HIERH 17240 < p < ool F 0 EHIEAEH T A HE A Fredholm .
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