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Abstract: In this article, we study the problem on GMM estimators. By using the strong
limit condition, we obtain the result that the generalized method of moments obeys the law of
iterated logarithm.
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1 Introduction

Using estimating equations to estimate unknown parameters was widely studied both
in empirical applications and theoretical studies, see Hall [3] for reviews of this method. If
the number of estimating equations is identical to the number of unknown parameters (just-
identification), we can use usual moments method to estimate the unknown parameters
and further study its statistical asymptotic behavior. But in applications, especially in
econometrics time series datas and longitudinal datas analysis, it is often the case that the
number of estimating equations is larger than the number of unknown parameters (called
over-identification) and in this case the solution of moments estimating equations does not
exists in general. To deal with this problem, several estimation methods were proposed in
the literature, the most popular were the generalized method of moments (GMM) by Hansen
in [4] and generalized empirical likelihood (GEL) by Smith in [8]. This paper mainly focused
on the GMM estimators.

To fix the main idea of GMM, suppose we have observed a random sample (X, -+, X,,)
from some population X with unknown parameters § € ©. The true value 0, satisfies the

population moment conditions
E[g(X,00)] =0, (1.1)

where © is a compact such set of RP,p € N, and g is a R? ¢ € N, valued measurable

function. In the over identified case, i.e., ¢ > p, Hansen (see [4]) introduced the GMM
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estimator of 0, as

A ' 1 n ! 1 n
Gln = arg ggg (TL Zlg(Xza 0)) Wn (TL Zlg(X'me)> ) (12)

where ' means transposition operation of matrix and W, is a positive semi-definite weighting
matrix that converges in probability to a positive definite constants matrix W. If W, = I,
then the ém is the point of 6 so that minimize the sample covariance matrix. It is known
that if the model is not misspecified and under some mild regularity conditions, Hansen (see
[4]) established the strong consistency and asymptotic normality of the GMM estimator.

Precisely, he proved

V(0 — 0,) —a N(O,Viy), Viv = (G'WG)\G'WEWG(G'WEG)™, (1.3)

where G = E(Vgy(X,0))), 2 = E[g(X,00)g' (X, 6y)]. Observing that the asymptotic variance
Vv depends on W. When constructing the confidence intervals of 6y, we hope Vi as small
as possible (in the positive semi-definite sense). It is easy to find that Vi is minimized at

Vi = X1, Since ¥ is unknown, we can use éln as a preliminary estimator, and naturally
defined

—1
. I 5 3
27:1 = <n E_l g(Xiaeln)g(Xﬁel")I)

as a estimator of ¥~!. Then we drive a two-step GMM estimator:

. . 1 n ! - 1 n
05, = arg min (n ;g(Xi, 9)) > (n Zlg(Xi, 9)) , (1.4)

and for convenience we call éln as one-step GMM estimator.

The large sample behaviors of one-step and two-step has been studied extensively. Under
mild conditions, EA];L ! converges weakly to ¥ ! and fs,, is consistent and asymptotic normality
(see [2]). Otsu studied the large deviation principle of the these estimators in [5] and the
moderate deviation principle was also obtained in [6]. This paper is devoted to study the
law of iterated logarithm for GMM estimators.

The paper is organized as follows: In Section 2, we state the basic assumptions and

main results of the paper, the proof of the main results are given in Section 3.

2 Main Results

We first give some notations. For any m x n matrix A = (a;j)mxn, we write A’ as its

transposition, and define its norm as

3

m 1/2
|A|| = /tr(AA") = <ZZ@2]> :



248 Journal of Mathematics Vol. 36

Denote
G(X.0)=Vau(X.0)  G=B(To(X.00),
AOEES SE NN HURES St )
Q)= o =GWG

and h;(0o) = (hij(00))px1 := G'Wg(X;,6p), in the following we assume W is positive definite
constants matrix, so Q(6y) is positive, we can define A(fy) = (ai;(00))pxp = —Q(0o) ', which
is a negative definite matrix.

Following are the assumptions of the paper.

Assumption 2.1 (1) © is compact and 0y € int(©). There exists a measurable function
L:R — [0,00) so that for a.e. z, ||g(z,01) — g(x,02)| < L(x)||61 — 02|,V 01,0, € ©. For
some §; > 0 and all § € O, E|[g(X,0)||>"* < co and EL(X) < cc.

(2) There exists a measurable function H : R — [0, 00) and §, > 0 such that |G(x,8) —
G(x,0p)|| < H(x)||@ — bp|| holds for a.e. x and 6 € U(y,d2) := {0 : |0 — bp|| < d2}. Besides,
we assume EH(X) < oo, EH(X)? < 00, E||G(X,0)|| < oo and E|G(X,0)||*> < oo, for all
6 € ©. The (¢ X p)matrix G has the full column rank and ¥ is positive definite.

For the weighting matrix W,,, we assume

Assumption 2.2 {W,},>; is a sequence of positive semi-definite matrices, and W,
converges weakly to W in the sense of matrix norm, where W is a positive definite matrix
of constants. Besides, sup,, E||W, || < oc.

Suppose that Assumptions 2.1, 2.2 hold, our main results are

Theorem 2.1 Let 6, = (éll, égl, i ,épl)’ and 0y, = (ém, égg, . ,épg)/ be the one-step
and two-step GMM estimators, then for any 6y = (019,020 - ,0,0)" € O, we have

n

li 7931‘_95 = ys=1,2--,pi=12 2.1
lyrznjol.}p \/2nloglogn| o = (s), s bt @1)
where
p P
P’() =Y Y aum(00)ask (00)E (him (00)hik(60)) 5 = 1,2, -+ ,p.
m=1 k=1

Remark 2.1 Hansen (see [4]) established the strong consistency of the GMM estimator.

Under Assumptions 2.1, 2.2 and classical strong law of large numbers we have

—0 n—oo
0cU(0g,6)

P (%im limsup |Gy (6) — G (8o)|| = o) =1,
1Ga(00) =Gl =0,  Gn(01,)Win(6y) — 0 as. n— oco.

Because the independence is necessary in proof of the next lemma and theorem,we first
suppose W,, = W. Then under the strong limit condition of W,, and W, we get the results
for W,,.
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3 Law of Iterated Logarithm
3.1 The Lemma and its Proof

Lemma 3.1 (see [7], Theorem 4, Chap. X) Let {U; : i > 1} be a sequence of indepen-
dent random variables with EU; = 0, i > 1, EU? < co. Setting S2 = " EUZ, if {U;,i > 1}
i=1

satisfies the conditions

82
liminf — > 0, (3.1)
n—oo n
and for some § > 0,
. IR
hir:sipn;E[U,fHogWMH‘s] < 0. (3.2)
Then
S
lim sup =l a.s (3.3)

=1
n—oo /252 loglog S2
Remark 3.1 The following easy verified condition is sufficient for (3.2),

. IEN
hmsupﬁ ZE(|U;€|2+5) < 00.

Since for z large enough, we have elementary inequality (logx)'*® < z° for any § > 0.
Lemma 3.2 We denote

P

wi(s) = Zasm(ao)him(%)

m=1

and S% = " Ew?(s). Then
i=1

7

| 22 wi(s)]
. i=1
lim sup =1
n—oo A/ 25% ].Og IOg S?L

Proof Observe that E(h;,(0)) = G'WE[g(X;,0y)] =0 and {h;,,,7 > 1} is a sequence

of independent random variables. Consequently,

a.s.. (3.4)

P

Ewi(s) = Y aun(00)E(hin(6s)) = 0.

m=1

By virtue of Assumptions 2.1, 2.2, we have

sup max E||him||2+5 < sup E||GWg(Xi,90)||2J”s < 0.
i>1 1<m<p i>1
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Therefore

sup E|w;(s) [>T < oo, lim sup — ZE|w (5)]*T < o0.

i>1 n— o0

On the other hand, it is obviously that lim % = Ewi(s) > 0, consequently, it follows
from Lemma 3.1 that (3.4) holds.
Now it ready to give the proof of Theorem 2.1.

3.2 The Proof of Theorem 2.1
For the consistence between theorem and lemma, we set first
0,(8) = (1 =)0+ t01n,  un(t) = Gn(O1n) Win(0,(t), 0<t<1.  (3.5)

Hence 0,,(1) = Oy, un(1) = Gn(01,,) Wi (61,) = 0. From (3.5), we have

U, (0) = up, (1) — /o u, (t)dt = —/O Qn(ﬁn(t))(éln — bp)dt, (3.6)
where
Qn(0n(t)) = G(01,) WG (0,(1)).
We denote
0% (s) = nh_‘ngog Z Zasm(ﬁo sk (00)E (him (00)hir(00)) - (3.7)
m=1 k=1

It follows from Remark 2.1 and (3.5) that ||0,,(t) —60o|| — 0 a.s. for all t € (0,1). By Remark
2.1 and Assumptions 2.1, 2.2, we have

limsup || G (01,) WG (0,(1)) = WG|

n—oo

<lim sup {II(@n(ém) = G(00) WE(0,(8)| + (Ca(B0) — GY WG (8 (1))

+ [(G'W(Gn(0a(t) = GrulB0))| + | G'W (G (60) — G)II} —0

almost surely. It follows immediately from above that

lim [ Qn(6.(t))dt = /O lim Q,(6,(1))dt = /O Q(6o)dt = Q(6). (3.8)

n—oo n—oo

Denote -1

A, = (/ Qn (0, (t dt) . (3.9)

Since Q(fy) is positive definite, thus [|Q~*(6p)|| < co. And it follows from (3.8) that there

exists N > 0 so that .
L _
([ @uonna)
0

sup < 00.

n>N
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Consequently,

1AL < 1@ (600)11Q(60) — / Qu(Bu (1))t / Qu(B.(1))dt) .

When ||é1n —0o]] — 0,n — o0, we get A, — 0. From Remark 2.1 and Assumptions 2.1, 2.2,
it follows that

[ (0) = G'W 3 (60) | = 1(Gn(61) = G (80))'W G (80) + (Gn(80) — G)'W g (6o)]| — 0

almost surely. Next, from (3.6) and (3.9), we have

-1

R 1 1
(01 — bo) = VanToglogn <—/0 ann(t))dt) u,(0)
1 -1
= m(An — Q" (60))un(0)
=G0 60)
~ V2nloglogn 0 Inib0J:

Thus for any s =1,--- ,p, by virtue of Lemma 3.2, we finally have

1
v2nloglogn

1 .
li - nlf,, — 6,
lglsogp 2nloglognn| ! ol
1 1 n
=1 - s1(00), -+, as,(0 - G'Wy(X;,0
imsup e (@1 (B0), - 0 0))<n; 9( >)|

1 O
=1l —— sm (00 ) P (0
17rlrl—>sol;1p 2nloglogn izzlmzzla‘ (60)2im (%)

. S2 log log 52 1
=limsu
n_mp nloglogn \ 252loglog S?

This complete the whole proof.

n

Zwi(s)

i=1

= p(s).

Now we consider the second step GMM estimator 0y, in (1.4). We suppose the new
assumption

Assumption 3.1 There exists §3 > 0, such that E|g(X,0y)g(X,6)[|**% < oo, and
E|L(X)?||**% < cc.

It follows from Assumption 3.1 and strong law of large numbers that

A

En o E(g(Xa 00)9(X7 00)/)

So we have W,, = (£,)"" 2% $-1 = W. We replace 0y, W with 6,,, W,. For 6, =
(612,03, - - - ,épg)', (2.1) holds.
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