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Abstract: In this article, we study the problem on GMM estimators. By using the strong

limit condition, we obtain the result that the generalized method of moments obeys the law of

iterated logarithm.
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1 Introduction

Using estimating equations to estimate unknown parameters was widely studied both
in empirical applications and theoretical studies, see Hall [3] for reviews of this method. If
the number of estimating equations is identical to the number of unknown parameters (just-
identification), we can use usual moments method to estimate the unknown parameters
and further study its statistical asymptotic behavior. But in applications, especially in
econometrics time series datas and longitudinal datas analysis, it is often the case that the
number of estimating equations is larger than the number of unknown parameters (called
over-identification) and in this case the solution of moments estimating equations does not
exists in general. To deal with this problem, several estimation methods were proposed in
the literature, the most popular were the generalized method of moments (GMM) by Hansen
in [4] and generalized empirical likelihood (GEL) by Smith in [8]. This paper mainly focused
on the GMM estimators.

To fix the main idea of GMM, suppose we have observed a random sample (X1, · · · , Xn)
from some population X with unknown parameters θ ∈ Θ. The true value θ0 satisfies the
population moment conditions

E[g(X, θ0)] = 0, (1.1)

where Θ is a compact such set of Rp, p ∈ N+ and g is a Rq, q ∈ N+ valued measurable
function. In the over identified case, i.e., q > p, Hansen (see [4]) introduced the GMM
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estimator of θ0 as

θ̂1n = arg min
θ∈Θ

(
1
n

n∑
i=1

g(Xi, θ)

)′

Wn

(
1
n

n∑
i=1

g(Xi, θ)

)
, (1.2)

where ′ means transposition operation of matrix and Wn is a positive semi-definite weighting
matrix that converges in probability to a positive definite constants matrix W . If Wn ≡ I,
then the θ̂1n is the point of θ so that minimize the sample covariance matrix. It is known
that if the model is not misspecified and under some mild regularity conditions, Hansen (see
[4]) established the strong consistency and asymptotic normality of the GMM estimator.
Precisely, he proved

√
n(θ̂1n − θn) →d N(0, VW ), VW = (G′WG)−1G′WΣWG(G′WG)−1, (1.3)

where G = E(∇gθ(X, θ0)),Σ = E[g(X, θ0)g′(X, θ0)]. Observing that the asymptotic variance
VW depends on W . When constructing the confidence intervals of θ0, we hope VW as small
as possible (in the positive semi-definite sense). It is easy to find that VW is minimized at
VW = Σ−1. Since Σ is unknown, we can use θ̂1n as a preliminary estimator, and naturally
defined

Σ̂−1
n =

(
1
n

n∑
i=1

g(Xi, θ̂1n)g(Xi, θ̂1n)′
)−1

as a estimator of Σ−1. Then we drive a two-step GMM estimator:

θ̂2n = arg min
θ∈Θ

(
1
n

n∑
i=1

g(Xi, θ)

)′

Σ̂−1
n

(
1
n

n∑
i=1

g(Xi, θ)

)
, (1.4)

and for convenience we call θ̂1n as one-step GMM estimator.
The large sample behaviors of one-step and two-step has been studied extensively. Under

mild conditions, Σ̂−1
n converges weakly to Σ−1 and θ̂2n is consistent and asymptotic normality

(see [2]). Otsu studied the large deviation principle of the these estimators in [5] and the
moderate deviation principle was also obtained in [6]. This paper is devoted to study the
law of iterated logarithm for GMM estimators.

The paper is organized as follows: In Section 2, we state the basic assumptions and
main results of the paper, the proof of the main results are given in Section 3.

2 Main Results

We first give some notations. For any m × n matrix A = (aij)m×n, we write A′ as its
transposition, and define its norm as

‖A‖ =
√

tr(AA′) =

(
m∑

i=1

n∑
j=1

a2
ij

)1/2

.
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Denote

G(X, θ) = ∇gθ(X, θ), G = E (∇gθ(X, θ0)) ,

ĝn(θ) =
1
n

n∑
i=1

g(Xi, θ), Ĝn(θ) =
1
n

n∑
i=1

G(Xi, θ),

Q(θ0) = (qij(θ0))p×p = G′WG

and hi(θ0) = (hij(θ0))p×1 := G′Wg(Xi, θ0), in the following we assume W is positive definite
constants matrix, so Q(θ0) is positive, we can define A(θ0) = (aij(θ0))p×p = −Q(θ0)−1, which
is a negative definite matrix.

Following are the assumptions of the paper.
Assumption 2.1 (1) Θ is compact and θ0 ∈ int(Θ). There exists a measurable function

L : R → [0,∞) so that for a.e. x, ‖g(x, θ1) − g(x, θ2)‖ ≤ L(x)‖θ1 − θ2‖,∀ θ1, θ2 ∈ Θ. For
some δ1 > 0 and all θ ∈ Θ, E‖g(X, θ)‖2+δ1 < ∞ and EL(X) < ∞.

(2) There exists a measurable function H : R→ [0,∞) and δ2 > 0 such that ‖G(x, θ)−
G(x, θ0)‖ ≤ H(x)‖θ − θ0‖ holds for a.e. x and θ ∈ U(θ0, δ2) := {θ : ‖θ − θ0‖ < δ2}. Besides,
we assume EH(X) < ∞, EH(X)2 < ∞, E‖G(X, θ)‖ < ∞ and E‖G(X, θ)‖2 < ∞, for all
θ ∈ Θ. The (q × p)matrix G has the full column rank and Σ is positive definite.

For the weighting matrix Wn, we assume
Assumption 2.2 {Wn}n≥1 is a sequence of positive semi-definite matrices, and Wn

converges weakly to W in the sense of matrix norm, where W is a positive definite matrix
of constants. Besides, supn E‖Wn‖ < ∞.

Suppose that Assumptions 2.1, 2.2 hold, our main results are
Theorem 2.1 Let θ̂1n = (θ̂11, θ̂21, · · · , θ̂p1)′ and θ̂2n = (θ̂12, θ̂22, · · · , θ̂p2)′ be the one-step

and two-step GMM estimators, then for any θ0 = (θ10, θ20 · · · , θp0)′ ∈ Θ, we have

lim sup
n→∞

n√
2n log log n

|θ̂si − θs0| = ϕ(s), s = 1, 2, · · · , p, i = 1, 2, (2.1)

where

ϕ2(s) =
p∑

m=1

p∑
k=1

asm(θ0)ask(θ0)E (him(θ0)hik(θ0)) , s = 1, 2, · · · , p.

Remark 2.1 Hansen (see [4]) established the strong consistency of the GMM estimator.
Under Assumptions 2.1, 2.2 and classical strong law of large numbers we have

P

(
lim
δ→0

lim sup
n→∞

θ∈U(θ0,δ)

‖Ĝn(θ)− Ĝn(θ0)‖ = 0

)
= 1,

‖Ĝn(θ0)−G‖ → 0, Ĝn(θ̂1n)′Wĝn(θ0) → 0 a.s. n →∞.

Because the independence is necessary in proof of the next lemma and theorem,we first
suppose Wn = W . Then under the strong limit condition of Wn and W, we get the results
for Wn.
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3 Law of Iterated Logarithm

3.1 The Lemma and its Proof

Lemma 3.1 (see [7], Theorem 4, Chap. X) Let {Ui : i ≥ 1} be a sequence of indepen-

dent random variables with EUi = 0, i ≥ 1,EU2
i < ∞. Setting S2

n =
n∑

i=1

EU2
i , if {Ui, i ≥ 1}

satisfies the conditions

lim inf
n→∞

S2
n

n
> 0, (3.1)

and for some δ > 0,

lim sup
n→∞

1
n

n∑
k=1

E[U2
k | log |Uk||1+δ] < ∞. (3.2)

Then

lim sup
n→∞

|
n∑

i=1

Ui|
√

2S2
n log log S2

n

= 1 a.s.. (3.3)

Remark 3.1 The following easy verified condition is sufficient for (3.2),

lim sup
n→∞

1
n

n∑
k=1

E(|Uk|2+δ) < ∞.

Since for x large enough, we have elementary inequality (log x)1+δ < xδ for any δ > 0.
Lemma 3.2 We denote

ωi(s) =
p∑

m=1

asm(θ0)him(θ0)

and S2
n =

n∑
i=1

Eω2
i (s). Then

lim sup
n→∞

|
n∑

i=1

ωi(s)|
√

2S2
n log log S2

n

= 1 a.s.. (3.4)

Proof Observe that E(him(θ0)) = G′WE[g(Xi, θ0)] = 0 and {him, i ≥ 1} is a sequence
of independent random variables. Consequently,

Eωi(s) =
p∑

m=1

asm(θ0)E(him(θ0)) = 0.

By virtue of Assumptions 2.1, 2.2, we have

sup
i≥1

max
1≤m≤p

E‖him‖2+δ ≤ sup
i≥1

E‖GWg(Xi, θ0)‖2+δ < ∞.
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Therefore

sup
i≥1

E|ωi(s)|2+δ < ∞, lim sup
n→∞

1
n

n∑
i=1

E|ωi(s)|2+δ < ∞.

On the other hand, it is obviously that lim
n→∞

S2
n

n
= Eω2

1(s) > 0, consequently, it follows

from Lemma 3.1 that (3.4) holds.
Now it ready to give the proof of Theorem 2.1.

3.2 The Proof of Theorem 2.1

For the consistence between theorem and lemma, we set first

θn(t) = (1− t)θ0 + tθ̂1n, un(t) = Ĝn(θ̂1n)′Wĝn(θn(t)), 0 ≤ t ≤ 1. (3.5)

Hence θn(1) = θ̂1n, un(1) = Ĝn(θ̂1n)′Wĝn(θ̂1n) = 0. From (3.5), we have

un(0) = un(1)−
∫ 1

0

u′n(t)dt = −
∫ 1

0

Qn(θn(t))(θ̂1n − θ0)dt, (3.6)

where
Qn(θn(t)) = Ĝn(θ̂1n)′WĜn(θn(t)).

We denote

ϕ2(s) = lim
n→∞

S2
n

n
=

p∑
m=1

p∑
k=1

asm(θ0)ask(θ0)E (him(θ0)hik(θ0)) . (3.7)

It follows from Remark 2.1 and (3.5) that ‖θn(t)− θ0‖ → 0 a.s. for all t ∈ (0, 1). By Remark
2.1 and Assumptions 2.1, 2.2, we have

lim sup
n→∞

‖Ĝn(θ̂1n)′WĜn(θn(t))−G′WG‖

≤ lim sup
n→∞

{
‖(Ĝn(θ̂1n)− Ĝn(θ0))′WĜn(θn(t))‖+ ‖(Ĝn(θ0)−G)′WĜn(θn(t))‖

+ ‖(G′W (Ĝn(θn(t))− Ĝn(θ0))‖+ ‖G′W (Ĝn(θ0)−G)‖
}
→ 0,

almost surely. It follows immediately from above that

lim
n→∞

∫ 1

0

Qn(θn(t))dt =
∫ 1

0

lim
n→∞

Qn(θn(t))dt =
∫ 1

0

Q(θ0)dt = Q(θ0). (3.8)

Denote

∆n := Q−1(θ0)−
(∫ 1

0

Qn(θn(t))dt

)−1

. (3.9)

Since Q(θ0) is positive definite, thus ‖Q−1(θ0)‖ < ∞. And it follows from (3.8) that there
exists N > 0 so that

sup
n>N

∥∥∥∥∥
(∫ 1

0

Qn(θn(t))dt

)−1
∥∥∥∥∥ < ∞.
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Consequently,

‖∆n‖ ≤ ‖Q−1(θ0)‖‖Q(θ0)−
∫ 1

0

Qn(θn(t))dt‖‖(
∫ 1

0

Qn(θn(t))dt)−1‖.

When ‖θ̂1n − θ0‖ → 0, n →∞, we get ∆n → 0. From Remark 2.1 and Assumptions 2.1, 2.2,
it follows that

‖un(0)−G′Wĝn(θ0)‖ = ‖(Ĝn(θ̂1n)− Ĝn(θ0))′Wĝn(θ0) + (Ĝn(θ0)−G)′Wĝn(θ0)‖ → 0

almost surely. Next, from (3.6) and (3.9), we have

1√
2n log log n

(θ̂1n − θ0) =
1√

2n log log n

(
−

∫ 1

0

Qn(θn(t))dt

)−1

un(0)

=
1√

2n log log n
(∆n −Q−1(θ0))un(0)

= − 1 + o(1)√
2n log log n

Q−1(θ0)G′Wĝn(θ0).

Thus for any s = 1, · · · , p, by virtue of Lemma 3.2, we finally have

lim sup
n→∞

1√
2n log log n

n|θ̂s1 − θs0|

= lim sup
n→∞

1√
2n log log n

n

∣∣∣∣∣(as1(θ0), · · · , asp(θ0))

(
1
n

n∑
i=1

G′Wg(Xi, θ0)

)∣∣∣∣∣

= lim sup
n→∞

1√
2n log log n

∣∣∣∣∣
n∑

i=1

p∑
m=1

asm(θ0)him(θ0)

∣∣∣∣∣

= lim sup
n→∞

√
S2

n log log S2
n

n log log n

√
1

2S2
n log log S2

n

∣∣∣∣∣
n∑

i=1

ωi(s)

∣∣∣∣∣ = ϕ(s).

This complete the whole proof.
Now we consider the second step GMM estimator θ̂2n in (1.4). We suppose the new

assumption
Assumption 3.1 There exists δ3 > 0, such that E‖g(X, θ0)g(X, θ0)′‖2+δ3 < ∞, and

E‖L(X)2‖2+δ3 < ∞.
It follows from Assumption 3.1 and strong law of large numbers that

Σ̂n
a.s.−→ E(g(X, θ0)g(X, θ0)′).

So we have Wn = (Σ̂n)−1 a.s.−→ Σ−1 = W . We replace θ̂1n,W with θ̂2n,Wn. For θ̂2n =
(θ̂12, θ̂22, · · · , θ̂p2)′, (2.1) holds.
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广义矩估计的重对数律

杨艳秋

(武汉大学数学与统计学院,湖北武汉 430072)

摘要: 本文研究了广义矩估计的性质. 利用强相合性的条件, 得到了广义矩估计满足重对数律的结果.
关键词: 广义矩估计; 强相合性; 重对数律
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