Vol. 36 (2016) No. 2

COMPLEMENTS OF DISTANCE-REGULAR GRAPHS

ZHANG Xi-en, JIANG Wei

数 学 杂 志

J. of Math. (PRC)

(School of Mathematics and Information Science, Langfang Teachers University, Langfang 065000, China)

Abstract: In this paper, we study the complement of Γ which is a distance-regular graph with diameter $d(\Gamma) \geq 2$. By using intersection numbers of Γ , we show that the complement of Γ is strongly regular or generalized strongly regular as d = 2 or $d \geq 3$, respectively. We get the complements of Grassmann graph, dual polar graph and Hamming graph in [2], which are the generalized strongly regular.

Keywords: distance-regular graph; complement; strongly regular graph; generalized strongly regular graph

 2010 MR Subject Classification:
 05E30

 Document code:
 A
 Article ID:
 0255-7797(2016)02-0234-05

1 Introduction

Let $\Gamma = (X, R)$ denote a finite undirected graph without loops or multiple edges, with vertex set X and edge set R. Assume that Γ is a connected regular graph. For vertices u and v in X, let $\partial_{\Gamma}(u, v)$ denote the distance between u and v. The maximum value of the distance function in Γ is called the diameter of Γ , denoted by $d(\Gamma)$. For all $u \in X$ and for all integers $i \ (0 \le i \le d)$, set

$$\Gamma_i(u) := \{ v \mid v \in X, \partial_{\Gamma}(u, v) = i \}, \ \Gamma_1(u) := \Gamma(u),$$

 Γ is said to be distance-regular whenever for all integers $h, i, j \ (0 \le h, i, j \le d(\Gamma))$ and for all $u, v \in X$ with $\partial_{\Gamma}(u, v) = h$, the number

$$p_{ij}^h := |\Gamma_i(u) \cap \Gamma_j(v)| \tag{1.1}$$

is independent of u, v. The constants p_{ij}^h are known as the intersection numbers of Γ . For convenience, set

$$c_{i} := p_{i-1,1}^{i} \ (1 \le i \le d(\Gamma)), \ a_{i} := p_{i1}^{i} \ (0 \le i \le d(\Gamma)),$$

$$b_{i} := p_{i+1,1}^{i} \ (0 \le i \le d(\Gamma) - 1), \ k_{i} := p_{ii}^{0} \ (0 \le i \le d(\Gamma)),$$

* Received date: 2014-05-05 Accepted date: 2015-10-24 Foundation item: Supported by the Foundation of Langfang Teachers' College (LSLQ201504).

Biography: Zhang Xien(1965–), male, born at Huaxian, Henan, associate professor, major in combinatorial mathematics.

and put $c_0 := 0, b_d := 0, k := k_1$. Note that $c_1 = 1, a_0 = 0$, and

$$k_j = \sum_{i=0}^{d(\Gamma)} p_{ij}^h = \sum_{i=0}^{d(\Gamma)} p_{ji}^h, \quad |X| = 1 + k_1 + \dots + k_{d(\Gamma)}.$$
 (1.2)

The reader is referred to [1–3] for general theory of distance-regular graphs.

The complement \overline{G} of a graph G has the same vertex set as G, where vertices x and y are adjacent in \overline{G} if and only if they are not adjacent in G.

A simple graph G is called generalized strongly regular with parameters (v, λ, a, b, c) if it consists of v vertices such that for any $x, y \in G$,

$$|G(x) \cap G(y)| = \begin{cases} \lambda, & \text{if } x = y, \\ a \text{ or } b, & \text{if } x, y \text{ are adjacent}, \\ c, & \text{otherwise}, \end{cases}$$

where a, b are integers such that $b \leq a$. In particular, if a = b, then G is called strongly regular with parameters (v, k, a, c). Clearly, strongly regular graphs are generalized strongly regular graphs.

Let $\Gamma = (X, R)$ be the distance-regular graph and $\overline{\Gamma}$ be the complement of Γ . In this paper, we obtain the following result.

Theorem 1.1 Let $\Gamma = (X, R)$ be the distance-regular graph with diameter $d(\Gamma) \ge 2$ and intersection numbers

$$p_{jt}^h \ (0 \le h, j, t \le d(\Gamma)).$$

Then the following hold.

(i) If $d(\Gamma) \geq 3$, then $\overline{\Gamma}$ is a generalized strongly regular graph with parameters

$$(|X|, |X| - k - 1, |X| - 2k + c_2 - 2, |X| - 2k - 2, |X| - 2k + a_1),$$

where k, c_2 and a_1 are parameters of Γ .

(ii) If $d(\Gamma) = 2$, then $\overline{\Gamma}$ is a strongly regular graph with parameters

$$(|X|, |X| - k - 1, |X| - 2k + c_2 - 2, |X| - 2k + a_1).$$

Moreover, $\overline{\Gamma}$ is connected if and only if $|X| - 2k + a_1 > 0$.

Proof For any $x, y \in X$ with $\partial_{\Gamma}(x, y) = l$, where $1 \leq l \leq d(\Gamma)$. By (1.1) and (1.2), the number of vertices $z \in X$ satisfying both $\partial_{\overline{\Gamma}}(x, z) = 1$ and $\partial_{\overline{\Gamma}}(y, z) = 1$ is

$$\begin{split} \sum_{2 \le j \le d(\Gamma)} \sum_{2 \le t \le d(\Gamma)} p_{j\,t}^l &= \sum_{2 \le j \le d(\Gamma)} (k_j - p_{j\,1}^l - p_{j\,0}^l) \\ &= \sum_{2 \le j \le d(\Gamma)} k_j - \sum_{2 \le j \le d(\Gamma)} p_{j\,1}^l - \sum_{2 \le j \le d(\Gamma)} p_{j\,0}^l \\ &= (|X| - k - 1) - (k - p_{1\,1}^l - p_{0\,1}^l) - (1 - p_{1\,0}^l - p_{0\,0}^l) \\ &= |X| - 2k + p_{1\,1}^l + 2p_{0\,1}^l - 2 \\ &= \begin{cases} |X| - 2k + a_1, & \text{if } l = 1, \\ |X| - 2k + p_{1\,1}^l - 2, & \text{if } l \ne 1. \end{cases} \end{split}$$

(i) Suppose that x and y are two distinct vertices of $\overline{\Gamma}$. If $\partial_{\overline{\Gamma}}(x, y) = 1$, then there exists some $l \in \{2, \dots, d(\Gamma)\}$ such that $\partial_{\Gamma}(x, y) = l$, which implies that the number of vertices $z \in X$ satisfying both $\partial_{\overline{\Gamma}}(x, z) = 1$ and $\partial_{\overline{\Gamma}}(y, z) = 1$ is

$$|X| - 2k + c_2 - 2$$

or

$$|X| - 2k - 2$$

according to l = 2 or $l \neq 2$, respectively. If $\partial_{\bar{\Gamma}}(x, y) \neq 1$, then $\partial_{\Gamma}(x, y) = 1$, which implies that the number of vertices $z \in X$ satisfying both $\partial_{\bar{\Gamma}}(x, z) = 1$ and $\partial_{\bar{\Gamma}}(y, z) = 1$ is $|X| - 2k + a_1$. Therefore, the desired result follows.

(ii) Similar to the proof of (i), we have $\overline{\Gamma}$ is a strongly regular graph with parameters

$$(|X|, |X| - k - 1, |X| - 2k + c_2 - 2, |X| - 2k + a_1).$$

Suppose that $\overline{\Gamma}$ is not connected and let Z be a component of $\overline{\Gamma}$. Then a vertex in Z has no common neighbours with a vertex not in Z, and so

$$|X| - 2k + a_1 = 0.$$

If $|X| - 2k + a_1 = 0$, then any two neighbours of a vertex $x \in \overline{\Gamma}$ must be adjacent, and so the component containing x must be a complete graph, and hence $\overline{\Gamma}$ is a disjoint union of complete graphs.

2 Examples

Let \mathbb{F}_q be a finite field with q elements, where q is a prime power. Let \mathbb{F}_q^n be the ndimensional vector space over the finite field \mathbb{F}_q . Let $1 \leq m \leq n-1$. The Grassmann graph $\Gamma(m, q, n)$ is the graph the vertices of which are the m-dimensional subspaces of \mathbb{F}_q^n , where two vertices are adjacent if and only if they meet in a subspace of dimension m-1. It can shown (see [2, Theorem 9.3.3]) that $\Gamma(m, q, n)$ is a distance-regular graph of diameter $\min\{m, n-m\}$.

Example 2.1 For $2 \le m \le n-2$, let $\overline{\Gamma}(m,q,n)$ be the complement of $\Gamma(m,q,n)$ and

$$\beta = \begin{bmatrix} n \\ m \end{bmatrix}_q, \ \alpha = 2q \begin{bmatrix} n-m \\ 1 \end{bmatrix}_q \begin{bmatrix} m \\ 1 \end{bmatrix}_q, \ \gamma = \frac{q^m + q^{n-m} - 2q}{q-1}.$$

Then the following hold.

(i) If min $\{m, n - m\} > 2$, then $\overline{\Gamma}(m, q, n)$ is a generalized strongly regular graph with parameters

$$(\beta, \beta - \alpha - 1, \beta - 2\alpha + (q+1)^2 - 2, \beta - 2\alpha - 2, \beta - 2\alpha + \gamma).$$

(ii) If min{m, n-m} = 2, then $\overline{\Gamma}(m, q, n)$ is a strongly regular graph with parameters

$$(\beta, \beta - \alpha - 1, \beta - 2\alpha + (q+1)^2 - 2, \beta - 2\alpha + \gamma).$$

Let q, r be prime powers. Let V be one of the following spaces equipped with a specified form:

- $[C_d(q)] = \mathbb{F}_q^{2d}$ with a nondegenerate symplectic form;
- $[B_d(q)] = \mathbb{F}_q^{2d+1}$ with a nondegenerate quadratic form;
- $[D_d(q)] = \mathbb{F}_q^{2d}$ with a nondegenerate quadratic form of Witt index d;
- [²D_{d+1}(q)] = F_q^{2d+2} with a nondegenerate quadratic form of Witt index d;
 [²A_{2d}(r)] = F_q^{2d+1} with a nondegenerate Hermitean form q = r²;
- $[{}^{2}A_{2d-1}(r)] = \mathbb{F}_{q}^{2d}$ with a nondegenerate Hermitean form $q = r^{2}$.

A subspace of V is called isotropic whenever the form vanishes completely on this subspace. Maximal isotropic subspaces have dimension d. The dual polar graph Γ (on V) has as vertices the maximal isotropic subspaces; two points P, Q are adjacent if and only if $\dim(P \cap Q) = d - 1$. It can shown (see [2, Theorem 9.4.3]) that Γ is a distance-regular graph of diameter d.

Example 2.2 Let $2 \le d$, and let e be 1, 1, 0, 2, 3/2, 1/2 in the respective cases

 $[C_d(q)], [B_d(q)], [D_d(q)], [^2D_{d+1}(q)], [^2A_{2d}(r)], [^2A_{2d-1}(r)].$

Let $\overline{\Gamma}$ be the complement of Γ and

$$\beta = \prod_{i=0}^{d-1} (q^{d+e-i-1}+1), \ \alpha = q^e \frac{q^d-1}{q-1}, \ \gamma = q^e - 1.$$

Then the following hold.

(i) If d > 2, then $\overline{\Gamma}$ is a generalized strongly regular graph with parameters

$$(\beta, \beta - \alpha - 1, \beta - 2\alpha + q - 1, \beta - 2\alpha - 2, \beta - 2\alpha + \gamma).$$

(ii) If d = 2, then $\overline{\Gamma}$ is a strongly regular graph with parameters

$$(\beta, \beta - \alpha - 1, \beta - 2\alpha + q - 1, \beta - 2\alpha + \gamma).$$

Let Y be a finite set of cardinality $q \ge 2$. The Hamming graph H(d,q) with diameter d has vertex set $Y^d = \bigotimes_{i=1}^d Y$, the cartesian product of d copies of Y; two points of H(d,q)are adjacent whenever they differ in precisely one coordinate. It can show (see [2, Theorem 9.2.1) that H(d,q) is a distance-regular graph of diameter d.

Example 2.3 Let $2 \leq d$ and $\overline{H}(d,q)$ be the complement of H(d,q). Then the following hold.

(i) If d > 2, then $\overline{H}(d,q)$ is a generalized strongly regular graph with parameters

$$(q^{d}, q^{d} - d(q-1) - 1, q^{d} - 2d(q-1), q^{d} - 2d(q-1) - 2, q^{d} - 2d(q-1) + q - 2).$$

(ii) If d = 2, then $\overline{H}(d, q)$ is a strongly regular graph with parameters

$$(q^{d}, q^{d} - d(q-1) - 1, q^{d} - 2d(q-1) - 2, q^{d} - 2d(q-1) + q - 2).$$

References

- Bannai E, Ito E. Algebraic Combinatorics I, Association schemes[M]. Menlo Park, CA: The Benjamings/Cummings Publishing Company, Inc., 1984.
- [2] Brouwer A E, Cohen A M, Neumaier A. Distance-regular graphs[M]. Berlin, Heidelberg: Springer Verlag, 1989.
- [3] Li W, Xing H, Meng H. On total signed vertex domination number in graphs[J]. J. Math., 2013, 33(3): 531–534.

距离正则图的推广

张西恩,姜伟

(廊坊师范学院数学与信息科学学院,河北廊坊 065000)

摘要: 本文研究了直径为 $d(\Gamma) \ge 2$ 的距离正则图 Γ 的补图.利用 Γ 的交叉数分别证明了当d = 2时, Γ 的补图式强正则; 当 $d \ge 3$ 时, Γ 的补图是广义强正则.将文献[2]中的距离正则图Grassmann图、对偶极 图、Hamming图推广到它们的补图,从而得到广义强正则图.

关键词: 距离正则图;推广;强正则图;广义强正则图 MR(2010)主题分类号: 05E30 中图分类号: 0157.5