COMPLEMENTS OF DISTANCE－REGULAR GRAPHS

ZHANG Xi－en，JIANG Wei
（School of Mathematics and Information Science，Langfang Teachers University，Langfang 065000，China）

Abstract

In this paper，we study the complement of Γ which is a distance－regular graph with diameter $d(\Gamma) \geq 2$ ．By using intersection numbers of Γ ，we show that the complement of Γ is strongly regular or generalized strongly regular as $d=2$ or $d \geq 3$ ，respectively．We get the complements of Grassmann graph，dual polar graph and Hamming graph in［2］，which are the generalized strongly regular．

Keywords：distance－regular graph；complement；strongly regular graph；generalized strongly regular graph

2010 MR Subject Classification：05E30
Document code：A Article ID：0255－7797（2016）02－0234－05

1 Introduction

Let $\Gamma=(X, R)$ denote a finite undirected graph without loops or multiple edges，with vertex set X and edge set R ．Assume that Γ is a connected regular graph．For vertices u and v in X ，let $\partial_{\Gamma}(u, v)$ denote the distance between u and v ．The maximum value of the distance function in Γ is called the diameter of Γ ，denoted by $d(\Gamma)$ ．For all $u \in X$ and for all integers $i(0 \leq i \leq d)$ ，set

$$
\Gamma_{i}(u):=\left\{v \mid v \in X, \partial_{\Gamma}(u, v)=i\right\}, \Gamma_{1}(u):=\Gamma(u)
$$

Γ is said to be distance－regular whenever for all integers $h, i, j(0 \leq h, i, j \leq d(\Gamma))$ and for all $u, v \in X$ with $\partial_{\Gamma}(u, v)=h$ ，the number

$$
\begin{equation*}
p_{i j}^{h}:=\left|\Gamma_{i}(u) \cap \Gamma_{j}(v)\right| \tag{1.1}
\end{equation*}
$$

is independent of u, v ．The constants $p_{i j}^{h}$ are known as the intersection numbers of Γ ．For convenience，set

$$
\begin{aligned}
& c_{i}:=p_{i-1,1}^{i}(1 \leq i \leq d(\Gamma)), \quad a_{i}:=p_{i 1}^{i}(0 \leq i \leq d(\Gamma)) \\
& b_{i}:=p_{i+1,1}^{i}(0 \leq i \leq d(\Gamma)-1), \quad k_{i}:=p_{i i}^{0}(0 \leq i \leq d(\Gamma))
\end{aligned}
$$

[^0]and put $c_{0}:=0, b_{d}:=0, k:=k_{1}$. Note that $c_{1}=1, a_{0}=0$, and
\[

$$
\begin{equation*}
k_{j}=\sum_{i=0}^{d(\Gamma)} p_{i j}^{h}=\sum_{i=0}^{d(\Gamma)} p_{j i}^{h}, \quad|X|=1+k_{1}+\cdots+k_{d(\Gamma)} \tag{1.2}
\end{equation*}
$$

\]

The reader is referred to $[1-3]$ for general theory of distance-regular graphs.
The complement \bar{G} of a graph G has the same vertex set as G, where vertices x and y are adjacent in \bar{G} if and only if they are not adjacent in G.

A simple graph G is called generalized strongly regular with parameters (v, λ, a, b, c) if it consists of v vertices such that for any $x, y \in G$,

$$
|G(x) \cap G(y)|= \begin{cases}\lambda, & \text { if } x=y \\ a \text { or } b, & \text { if } x, y \text { are adjacent } \\ c, & \text { otherwise }\end{cases}
$$

where a, b are integers such that $b \leq a$. In particular, if $a=b$, then G is called strongly regular with parameters (v, k, a, c). Clearly, strongly regular graphs are generalized strongly regular graphs.

Let $\Gamma=(X, R)$ be the distance-regular graph and $\bar{\Gamma}$ be the complement of Γ. In this paper, we obtain the following result.

Theorem 1.1 Let $\Gamma=(X, R)$ be the distance-regular graph with diameter $d(\Gamma) \geq 2$ and intersection numbers

$$
p_{j t}^{h}(0 \leq h, j, t \leq d(\Gamma))
$$

Then the following hold.
(i) If $d(\Gamma) \geq 3$, then $\bar{\Gamma}$ is a generalized strongly regular graph with parameters

$$
\left(|X|,|X|-k-1,|X|-2 k+c_{2}-2,|X|-2 k-2,|X|-2 k+a_{1}\right)
$$

where k, c_{2} and a_{1} are parameters of Γ.
(ii) If $d(\Gamma)=2$, then $\bar{\Gamma}$ is a strongly regular graph with parameters

$$
\left(|X|,|X|-k-1,|X|-2 k+c_{2}-2,|X|-2 k+a_{1}\right)
$$

Moreover, $\bar{\Gamma}$ is connected if and only if $|X|-2 k+a_{1}>0$.
Proof For any $x, y \in X$ with $\partial_{\Gamma}(x, y)=l$, where $1 \leq l \leq d(\Gamma)$. By (1.1) and (1.2), the number of vertices $z \in X$ satisfying both $\partial_{\bar{\Gamma}}(x, z)=1$ and $\partial_{\bar{\Gamma}}(y, z)=1$ is

$$
\begin{aligned}
& \sum_{2 \leq j \leq d(\Gamma)} \sum_{2 \leq t \leq d(\Gamma)} p_{j t}^{l}=\sum_{2 \leq j \leq d(\Gamma)}\left(k_{j}-p_{j 1}^{l}-p_{j 0}^{l}\right) \\
& =\sum_{2 \leq j \leq d(\Gamma)} k_{j}-\sum_{2 \leq j \leq d(\Gamma)} p_{j 1}^{l}-\sum_{2 \leq j \leq d(\Gamma)} p_{j 0}^{l} \\
& =(|X|-k-1)-\left(k-p_{11}^{l}-p_{01}^{l}\right)-\left(1-p_{10}^{l}-p_{00}^{l}\right) \\
& =|X|-2 k+p_{11}^{l}+2 p_{01}^{l}-2 \\
& = \begin{cases}|X|-2 k+a_{1}, & \text { if } l=1, \\
|X|-2 k+p_{11}^{l}-2, & \text { if } l \neq 1 .\end{cases}
\end{aligned}
$$

(i) Suppose that x and y are two distinct vertices of $\bar{\Gamma}$. If $\partial_{\bar{\Gamma}}(x, y)=1$, then there exists some $l \in\{2, \cdots, d(\Gamma)\}$ such that $\partial_{\Gamma}(x, y)=l$, which implies that the number of vertices $z \in X$ satisfying both $\partial_{\bar{\Gamma}}(x, z)=1$ and $\partial_{\bar{\Gamma}}(y, z)=1$ is

$$
|X|-2 k+c_{2}-2
$$

or

$$
|X|-2 k-2
$$

according to $l=2$ or $l \neq 2$, respectively. If $\partial_{\bar{\Gamma}}(x, y) \neq 1$, then $\partial_{\Gamma}(x, y)=1$, which implies that the number of vertices $z \in X$ satisfying both $\partial_{\bar{\Gamma}}(x, z)=1$ and $\partial_{\bar{\Gamma}}(y, z)=1$ is $|X|-2 k+a_{1}$. Therefore, the desired result follows.
(ii) Similar to the proof of (i), we have $\bar{\Gamma}$ is a strongly regular graph with parameters

$$
\left(|X|,|X|-k-1,|X|-2 k+c_{2}-2,|X|-2 k+a_{1}\right)
$$

Suppose that $\bar{\Gamma}$ is not connected and let Z be a component of $\bar{\Gamma}$. Then a vertex in Z has no common neighbours with a vertex not in Z, and so

$$
|X|-2 k+a_{1}=0
$$

If $|X|-2 k+a_{1}=0$, then any two neighbours of a vertex $x \in \bar{\Gamma}$ must be adjacent, and so the component containing x must be a complete graph, and hence $\bar{\Gamma}$ is a disjoint union of complete graphs.

2 Examples

Let \mathbb{F}_{q} be a finite field with q elements, where q is a prime power. Let \mathbb{F}_{q}^{n} be the n dimensional vector space over the finite field \mathbb{F}_{q}. Let $1 \leq m \leq n-1$. The Grassmann graph $\Gamma(m, q, n)$ is the graph the vertices of which are the m-dimensional subspaces of \mathbb{F}_{q}^{n}, where two vertices are adjacent if and only if they meet in a subspace of dimension $m-1$. It can shown (see [2, Theorem 9.3.3]) that $\Gamma(m, q, n)$ is a distance-regular graph of diameter $\min \{m, n-m\}$.

Example 2.1 For $2 \leq m \leq n-2$, let $\bar{\Gamma}(m, q, n)$ be the complement of $\Gamma(m, q, n)$ and

$$
\beta=\left[\begin{array}{c}
n \\
m
\end{array}\right]_{q}, \alpha=2 q\left[\begin{array}{c}
n-m \\
1
\end{array}\right]_{q}\left[\begin{array}{c}
m \\
1
\end{array}\right]_{q}, \gamma=\frac{q^{m}+q^{n-m}-2 q}{q-1}
$$

Then the following hold.
(i) If $\min \{m, n-m\}>2$, then $\bar{\Gamma}(m, q, n)$ is a generalized strongly regular graph with parameters

$$
\left(\beta, \beta-\alpha-1, \beta-2 \alpha+(q+1)^{2}-2, \beta-2 \alpha-2, \beta-2 \alpha+\gamma\right)
$$

(ii) If $\min \{m, n-m\}=2$, then $\bar{\Gamma}(m, q, n)$ is a strongly regular graph with parameters

$$
\left(\beta, \beta-\alpha-1, \beta-2 \alpha+(q+1)^{2}-2, \beta-2 \alpha+\gamma\right)
$$

Let q, r be prime powers. Let V be one of the following spaces equipped with a specified form:

- $\left[C_{d}(q)\right]=\mathbb{F}_{q}^{2 d}$ with a nondegenerate symplectic form;
- $\left[B_{d}(q)\right]=\mathbb{F}_{q}^{2 d+1}$ with a nondegenerate quadratic form;
- $\left[D_{d}(q)\right]=\mathbb{F}_{q}^{2 d}$ with a nondegenerate quadratic form of Witt index d;
- $\left[{ }^{2} D_{d+1}(q)\right]=\mathbb{F}_{q}^{2 d+2}$ with a nondegenerate quadratic form of Witt index d;
- $\left[{ }^{2} A_{2 d}(r)\right]=\mathbb{F}_{q}^{2 d+1}$ with a nondegenerate Hermitean form $q=r^{2}$;
- $\left[{ }^{2} A_{2 d-1}(r)\right]=\mathbb{F}_{q}^{2 d}$ with a nondegenerate Hermitean form $q=r^{2}$.

A subspace of V is called isotropic whenever the form vanishes completely on this subspace. Maximal isotropic subspaces have dimension d. The dual polar graph Γ (on V) has as vertices the maximal isotropic subspaces; two points P, Q are adjacent if and only if $\operatorname{dim}(P \cap Q)=d-1$. It can shown (see [2, Theorem 9.4.3]) that Γ is a distance-regular graph of diameter d.

Example 2.2 Let $2 \leq d$, and let e be $1,1,0,2,3 / 2,1 / 2$ in the respective cases

$$
\left[C_{d}(q)\right], \quad\left[B_{d}(q)\right], \quad\left[D_{d}(q)\right], \quad\left[{ }^{2} D_{d+1}(q)\right], \quad\left[{ }^{2} A_{2 d}(r)\right], \quad\left[{ }^{2} A_{2 d-1}(r)\right]
$$

Let $\bar{\Gamma}$ be the complement of Γ and

$$
\beta=\prod_{i=0}^{d-1}\left(q^{d+e-i-1}+1\right), \alpha=q^{e} \frac{q^{d}-1}{q-1}, \gamma=q^{e}-1
$$

Then the following hold.
(i) If $d>2$, then $\bar{\Gamma}$ is a generalized strongly regular graph with parameters

$$
(\beta, \beta-\alpha-1, \beta-2 \alpha+q-1, \beta-2 \alpha-2, \beta-2 \alpha+\gamma)
$$

(ii) If $d=2$, then $\bar{\Gamma}$ is a strongly regular graph with parameters

$$
(\beta, \beta-\alpha-1, \beta-2 \alpha+q-1, \beta-2 \alpha+\gamma)
$$

Let Y be a finite set of cardinality $q \geq 2$. The Hamming graph $H(d, q)$ with diameter d has vertex set $Y^{d}=\bigotimes_{i=1}^{d} Y$, the cartesian product of d copies of Y; two points of $H(d, q)$ are adjacent whenever they differ in precisely one coordinate. It can show (see [2, Theorem 9.2.1]) that $H(d, q)$ is a distance-regular graph of diameter d.

Example 2.3 Let $2 \leq d$ and $\bar{H}(d, q)$ be the complement of $H(d, q)$. Then the following hold.
(i) If $d>2$, then $\bar{H}(d, q)$ is a generalized strongly regular graph with parameters

$$
\left(q^{d}, q^{d}-d(q-1)-1, q^{d}-2 d(q-1), q^{d}-2 d(q-1)-2, q^{d}-2 d(q-1)+q-2\right) .
$$

(ii) If $d=2$, then $\bar{H}(d, q)$ is a strongly regular graph with parameters

$$
\left(q^{d}, q^{d}-d(q-1)-1, q^{d}-2 d(q-1)-2, q^{d}-2 d(q-1)+q-2\right)
$$

References

［1］Bannai E，Ito E．Algebraic Combinatorics I，Association schemes［M］．Menlo Park，CA：The Ben－ jamings／Cummings Publishing Company，Inc．， 1984.
［2］Brouwer A E，Cohen A M，Neumaier A．Distance－regular graphs［M］．Berlin，Heidelberg：Springer Verlag， 1989.
［3］Li W，Xing H，Meng H．On total signed vertex domination number in graphs［J］．J．Math．，2013， 33（3）：531－534．

距离正则图的推广

张西恩，姜 伟
（廊坊师范学院数学与信息科学学院，河北 廊坊 065000）
摘要：本文研究了直径为 $d(\Gamma) \geq 2$ 的距离正则图 Γ 的补图．利用 Γ 的交叉数分别证明了当 $d=2$ 时， Γ 的补图式强正则；当 $d \geq 3$ 时，Γ 的补图是广义强正则．将文献［2］中的距离正则图Grassmann图，对偶极图，Hamming图推广到它们的补图，从而得到广义强正则图。

关键词：距离正则图；推广；强正则图；广义强正则图
$\mathrm{MR}(2010)$ 主题分类号：05E30 中图分类号：O157．5

[^0]: ＊Received date：2014－05－05 Accepted date：2015－10－24
 Foundation item：Supported by the Foundation of Langfang Teachers＇College（LSLQ201504）．
 Biography：Zhang Xien（1965－），male，born at Huaxian，Henan，associate professor，major in combinatorial mathematics．

