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Abstract: We consider the problem of the invariant Einstein metrics on the full flag manifolds
M = SO(8)/T with twelve isotropy summands. With the help of the computer we obtain there
are one hundred and sixty invariant Einstein metrics (up to a scale) on the full flag manifold of
SO(8)/T, of which one is Kéhler Einstein metric (up to isometry) and four are non-Kéahler Einstein
metrics (up to isometry). We promote the original methods which are applied to the full flag
manifolds with not more than six isotropy summands.
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1 Introduction

An important class of homogeneous manifolds are the orbits of the adjoint action of
a semisimple compact Lie Group, called generalized flag manifolds. Such manifolds can be
described by a quotient M = G/C(T), where C(T) is the centralizer of a torus T of the Lie
group G. If C(T) =T then M = G/T is called full flag manifold.

Non-Kéahler Einstein metrics on full flag manifolds corresponding to classical Lie group
were studied by several authors [1-4]. But when the isotropy representation of the full flag
manifolds increases, it is very difficult to find all the non-Kéhler Einstein metrics (up to
isometry). It is well known that there are only some results for the G-invariant Einstein
metrics on the full flag manifold with no more than six isotropy summands. In this paper we
study the classification problem of homogeneous Einstein metrics on the full flag manifold
SO(8)/T. 1It is the first known example for the full flag manifold of a classical Lie group

with twelve isotropy summands which admits four non-Kéahler Einstein metrics.
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This paper is organized as follows: In Section 2 we recall the Lie theoretic description
of a generalized flag manifold G/K of a compact and connected semisimple Lie group G. In
Section 3 we consider the classical full flag manifold SO(8)/T and isometric problem, then

we prove SO(8)/T admits five (up to isometry) SO(8)-invariant Einstein metrics.

2 Generalized Flag Manifold

Let G be a compact connected simple Lie group and g be the corresponding Lie algebra.
We denote by g© the complexification of g and Ad : G — Aut(g) be the adjoint representation
of G. Let G/K be generalized flag manifold and ¢ be the Lie algebra of K. We denote by
o = eK the origin of the flag manifold (the identity coset of G/K). Since the Lie group
G is simple and compact, the Cartan-Killing form < -,- > is non-degenerated and negative
definite. Thus Q(-,-) = — < -,- > is an inner product. Let m = £+ be the orthogonal
complement of & with respect to (). Then the decomposition g = m & £ is reductive, that is,
Ad(K)m C m and the tangent space at the origin T,(G/K) is identified with m.

We denote by j : K — Aut(m) the isotropy representation of K on m. For a generalized
flag manifold it is well known that the isotropy representation is completely reducible, that
is,

m=m; D Dm,, (1)
where each m; is an irreducible inequivalent component of the isotropy representation.

Let T be a maximal torus of GG, and n be the Lie algebra of 7. The complexification
n® is a Cartan subalgebra of ¢*. Let R be a root system of (¢%,1*) and consider the root
space decomposition

g =n"e) 4, (2)
a€R
where g€ denote the complex 1-dimensional root space.

Let R™ be a choice of positive roots and II be corresponding set of simple roots. We fix

once and for all a Weyl basis of g© which amounts to take E,, € ¢S such that Q(E,, E_,) =

—~1, and [E,,E_,] = —H,, where H, € n° is determined by the equation Q(H,H,) =
a(H), for all H € n®. The vectors E, satisfy the relation [E,, Es] = N, 3FEq.s with
Naﬂ S R,N_a7_[3 = —WNgp and Naﬁ =0if o+ ﬂ g R.

Let A, =F,— FE_, and B, =+v—1(E, + E_,). The vectors
Au,Bo,V—1Hs, (a€R" and g€ ll) (3)

form a basis of g (compact real form of the Lie algebra g©).
For a € RT, let
my = SpCm]R{Aa, Ba} (4)
be the real root space.
We have the following decomposition

g=no Zma' (5)

aeRt
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The next lemma gives us information about the Lie algebra structure of g.

Lemma 2.1 The Lie bracket between the elements of (3) of g are given by

[V _1HomAﬁ] = ﬁ(Ha)Bﬁa [AaaAB] = Na,ﬁAaJrﬁ + N*a,BAOt*Bv
[V _1H047B/3] = _/B(Ha)Aﬁ'? [BonBﬂ] = - a,BAoz-‘r,ﬁ‘ - N(x,—ﬁAa—ﬁ7 (6>
[Aa, Ba] =2v—1H,, [Aa, Bﬁ] = Na)ﬁBaJrﬁ + Na’,ﬂBa,Q.

Since n® is also a Cartan subalgebra of £€© (complexification of the Lie algebra of K), let R
be the root system for (£, %) and let Ry; = R\ Ri. In a similar way, let R} be a choice of
positive roots and ITx the corresponding set of simple roots for ¢ and define Ry, = R\ Rx
and II); = IT \ IIx be the set of positive and simple complementary roots.

For convenience, we fix a system of simple roots IT = {av, -+, &y @1, -+, P } of R, so that
g = {1, -, ¢} is a basis of the root system R and I, = II\IIx = {ay, -, a, }(r+k =1).
We consider the decomposition R = Rg U Ry, and we define the set

t=3)Nin={X €n:¢(X)=0,forall p € Rg}, (7)

where 7 is the real ad-diagonal subalgebra n = 7° N i€, 3 presents the center of £€©. Consider
the linear restriction map & : n* — t* defined by k(a) = a |, and set Ry = k(R) = k(Rum)-
Note that k(Rx) = 0 and £(0) = 0. The elements of R, are called t-roots. A t-root is called
simple if it is not a sum of two positive t-root.

Proposition 2.2 (see [5, Proposition 4.1]) There is one-to-one correspondence between
t-roots and complex irreducible ad(t®)-submodules m¢ of m®. This correspondence is given
by

Ri3¢ome= Y  CE,.
a€R k() =€

Thus m® = >~ m¢. Moreover, these submodules are inequivalent as ad(t*)-modules.
EER

Since the complex conjugation 7 : ¢ — ¢%, X +iY — X —iY (X,Y € g) of ¢* with
respect to the compact real form g interchanges the root spaces, i.e. 7(E,) = E_, and
7(E_,) = E,, a decomposition of the real ad(¢)-module m = (m®)” into real irreducible

ad(€)-submodule is given by

m= Y (medmg), (®)

EERT=r(RT)

where n” denotes the set of fixed points of the complex conjugation 7 in a vector subspace
n C ¢©. If, for simplicity, we set R = {&;, -+, £, }, then according to (8) each real irreducible
ad(€)-submodules m; = (mg, @ m_g,)” (1 < i < s) corresponding to the positive t -roots &;,
is given by

m; = RA, + RB,, (9)

where o« € RT.
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Proposition 2.3 (see [6]) Let Iy, =TT\ g = {ay, - ,a,}. Then the set {&; = a; |«
a; € T} is a t-base of t*.

The space of G-invariant Riemannian metric g = — < -,- > on M is given by

{IlQ(,) ‘m1 4 Q(,)

m.: @1 >0, ze > 0} (10)

Then the Ricci tensor Ricy of G/K, as a G-invariant symmetric covariant 2-tensor on

G/K, is identified with an Ad(K)-invariant symmetric bilinear form on m is given by

Ricg = 71$1<Q(-, )) |m1 +oot 78$8<Q('7 )) mg (11>
here v, - ,7s are the components of the Ricci tensor on each m;.
Proposition 2.4 (see [7]) Let g = — < -,- > be a G-invariant metric given by (10),

and J be a G-invariant complex structure induced by an invariant ordering R;,. Then, g
is a Kéahler metric with respect to the complex structure .J, if and only if the positive real
numbers ¢ satisfy xeyc = z¢ + x¢ for any £,(, €+ ¢ € R = k(R};). Equivalently, g is
Kihler, if and only if x4 5 = 24 + 25, where o, 8, + 8 € R}, are such that x(a) = £ and
K(B) = ¢

Let{e,} be a orthogonal basis with respect to Q(:,-) adapted to the decomposition of
m: e, € m; and eg € m; with ¢ < j then a < 3. Following [8] we set A) ; := Q([ea, 5], €,),
thus [eq, eslm = > A, e, Consider

Ci‘cj = Z(AZ,5>2) (12)
where the sum is taken over all indices «, 3,y with e, € m;,eg € m;,e, € my, and 7,5,k €
1, s}

Definition 2.5 A symmetric t-triple in t* is a triple Q = (&;,&;, &) of t-roots &;,&;, &k €
R¢ such that & + & + & = 0.

Lemma 2.6 (see [9]) Let (&,&;,&:) be symmetric t-triples. Then there exist roots
a, 8,7 € Ry with k(o) =&, k(B) = &, k(y) = &, such that a+ 5+~ =0.

Lemma 2.7 (see [7, Corollary 1.9]) Let G/K be a generalized flag manifold of a compact
simple Lie group GG and R be the associated t-root system. Assume that m =m;®---Bm, is
a Q(-, -)-orthogonal decomposition of m into pairwise inequivalent irreducible Ad(¢)-module,
and let &;,&;, &, € R be the t-root associated to the components m;, m; and my, respectively,
then, cfj # 0, if and only if (&;,&;,&k) is a symmetric t-triples, i.e. & +&; + &, = 0.

3 Invariant Einstein Metrics on SO(8)/T

Let M = G/T be a full flag manifold and m = m; @& --- ® m, be Q(,-)-orthogonal

decomposition of m. Then the set

Ay E.—E_, Be
G et nTV TR

is a Q(-,-)-orthogonal basis of m;.

Eo+E_,
Rt

{Xo = a€ R k(a)=¢& € R} (13)
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Theorem 3.1 (see [10]) For a full flag manifold G/T" the non-zero structure constants

k . .
c;; is given by

ij = (AZZf)Q = 2N§,57 (14)
where a, € RT with k(a) = &, k(0) = &, k(a + B) = &.
Lemma 3.2 (see [11]) Let M = G/K be a reductive homogeneous space of a compact

semisimple Lie group G and let m = m; @ - -- @& m, be a decomposition of m into mutually

inequivalent irreducible Ad(K)-submodules. Then the components 71, ---,vs of the Ricci
tensor of a G-invariant metric (10) on M are given by
1 1 Tk g 1 T
= 4 k A (k=1,---,5). 15
Yk ka + 4dk ; 2515 CZ_] Qdk ; LT ki ( ) 78) ( )

Next we talk about the isometric problem about a flag manifold, in general, this is not
a trivial problem.

Let G/K be a generalized flag manifold with isotropy decomposition (1), and d =

S
> d; = dim M. For any G-invariant Einstein metrics g = (x4, -+, x5) on M, we determine a
i=1

scale invariant given by Hy = V4 S,, where S is the scalar curvature of g, and V = V,/Vp

is the quotient of the volumes Vz = [] 2% of the given metric g, and Vp the volume of the

=1
normal metric induced by the negative of the Killing form of G. We normalize Vg = 1,
1
so Hy = V4'Sy. The scalar curvature Sy of a G-invariant metric g on M is given by the

following well-known formula [8]:

S

s
Se=d =531 o (16)
i=1 i=1 1<i,j,k<s
where the components 7; of the Ricc tensor are given by (15). The scalar curvature is a
homogeneous polynomial of degree -1 on the variables x;(i = 1, - -, s). The volume Vj is a
monomial of degree d, so Hy = Vg% Sy is a homogeneous polynomial of degree 0. Therefore,
Hj is invariant under a common scaling of the variables z;.

If two metrics are isometric then they have the same scale invariant, so if the scale
invariant Hy and H are different, then the metrics g and g cant not be isometric. However,
if Hy = Hy we can not immediately conclude if the metrics g and g are isometric or not.
For such a case we have to look at the group of automorphisms of G and check if there is
an automorphism which permutes the isotopy summands and takes one metric to another.
This usually arises for the Kahler-Einstein metrics.

Now we consider the full flag manifold of SO(8)/T with the painted Dynkin graph

Qs
@

1 Qo Qy.

Here Iy = {aq, o, a3, 4} , let &g = k(aq), as = k(as), s = k(ag) and @y = k(ay), we

have R = k(R};) = {au, g, 3, A4, a1 + Ag, Gy + &g, Qg + Ay, Oy + A + A3, A + O + Ay, g +
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Az + Ay, G + Qg + Gz + Ay, &g + 202 + @3 + Ay }, thus we conclude that isotropy representation
m=m OMmPOmzEmy Oms O mg S my; O mg © mg O myp D my; O myo.
By Lemma 2.7 we obtain that the non-zero structure constants are

5 8 9 6 7 8 10 9 10 11
C1,2,C1,6:C1,75 Cl 10702 35 Co, 4702 11703 55 C3, 7703 9704 51C4,65C4,8) 05 109 06 97678

Lemma 3.3 The non-zero structure constants of generalized flag manifold SO(8)/T
are given by C?,Z = 6= C?,? = C%,lm = 03,3 = 05,4 = 05,211 = Cg,s = 0513?7 = Cé,lg = 02,5 = 0411?6 =
Cis = Cio = Coo = C1's = 5

Proof From the theorem of Lie algebra we can get N2 ; = @(a,a), (o, B) =
— %P (a, ), where p,q are the largest nonnegative integers such that 8 + ka € R with
—p<k<q

By Lemma 3.1 we can calculate the non-zero structure constants of M as follows:

5 2 8 2 9 2
Ci,2 = 2Na1,a2 = (0517051)7 Ci,6 = 2Na1,a2+a3 = (061,061)7 C1,7 = 2Na1,a2+a4 = (a17a1)7

11 2 6 2 7 2
C1,10 = 2Na1,a2+o¢3+a4 = (a17a1)7 C2 3 = 2Na2 az — (0127012), C2q4 = 2No¢2,o¢4 = (0127012)7

12 2 _ _ 10 _ 2 _

C211 = 2Na2,a1+a2+a3+a4 - (a2aa2)a - 2N0¢3,a1+a2 - (063,063), C37 = 2Na3,a2+a4 - (a37a3)7
11 9 10 2

C3,9 = 2Na3 ajtagtay — (a3: a3)7 C45 = 2Na470¢1+a2 = (a47 Oz4), Ca6 = 2N0¢4,a2+0¢3 = (a47 CM4),

12 2
= 2Na47a1+a2+a3 = (Oz4,0{4), 5,10 = 2Nay tag,antastas = (a17a1)7

2 12 2
06 9 = 2Ny tag,a1+astas = (a2, az), €78 = 2Naytay,01+astaz = (a2, a2).

As (a1, a1) = (g, 02) = (a3, a3) = (a4, 04) = £ we obtain that ¢}, = cfg = 1§ = §3 =

9 10 10 _ 1

Ch7 = Cjy = C35 = Cig = €13 = C37 = §-
Lemma 3.4 The components ~;(i = 1,---,12) of Ricci tensor associated to the SO(8)-

invariant Riemmanian metric g are the following:

( 2 2 2 2 2 2 2 2 2 2
= L o Zi—%7 % o —wg—ag I Sl Ak T17T10"%
1 2:131 24:1?1{132{135 24111618 24:61:67:69 242?12?10111 ’
P22 2 22 _ P22
Yo = 1 + o Sl + @5 —ai—ag + —ai—af + T2 7%11—T12
2 2x2 24xix0Ts 24I2w3w5 24w2ac4w7 24xox11T12 7
2 2 2 2.2 2 .2 2
3 = 1 + Ty Lo~ %g ai—z?—al, + a3 —af—a} 4 T T
3 23 24x5r326 24x3r7210 24r3mra:8 24x3zox11
2 2 2 2 2 2 2 2 2
V4= 1 + Ty~ T~ T7 + La—T5— %9 + zi—zg—afy Ta—Tg— Ty
4 2£D4 24ZE2£E4£D7 249:4(115(129 24I4I6I10 249349389311 ?
2 2 2 2_ .2 2 2 2 2 2_ .2 2
Y5 = 1 + Ts—Ty— %y + T5—T3—Tg + T5—Ty—Tg Ts—Z10=T12
5 2x5 24x1x2T5 24x3xr5T8 24x4x5T9 24x5x10T12 7
2 2 2 2 2 2 2 2 2 2 2 2
Y6 = 1 4 TeT Ty 4 LTy 3 4 T TaTig Tg—Tog—To
6 21}6 24{1}11}61’8 24I2$3$6 24:64:662610 24%(3%9%12 ?
2 2 2 2 2 2 2 2 2 2 2
v = 1 + o S ) + L7~ Top— Ty + L7 T3 %10 + L7 —Tg— Ty
7 2w7 24$1$7wg 24112114117 24w3w7w10 24137:138:1712 ?
2 2 2 2 .2 2 22 2 .2 2
g = 1 + Tg— T "% | Tg— T3~ T + Tg—Ty =T, Tg =Ty T3
8 2xg 24x 1628 24x3r5T8 24x4c8711 24x7x8x12
2 2 2 2 2 2 2 2 2 2 2 2
Yo = 1 + Lo —%y —T7 + Lo~ T3~ Tyy L9 —Teg— T2 Tog—Ty—Ts5
9 2:129 24:131:137:1}9 241331?91?11 24:6&%9:1}12 241?42?519 ?
2 22 2 2.2 2 22 2 2_ .2
Yo = 1 + L107%1 =%y L0723 %7 Z10=%4—%g Z107%57 %19
10 2x10 24x1210%11 24‘L3‘L7‘L10 24.L4.’L’6.’L'10 24x5x10%12
2 2 2 2 2 2
Y1 = 1 + T11—%1~ %10 a3, —wy—ai, + TR Tt T11—%y—Tg
11 2111 2411110£E11 24%2%11112 241331}91311 242}41‘81‘11 ’
2 22
Y12 = 1 + L127Ta 7T, + z3,—as—zly + a3, —ag—a} + 23, —z7—a}
\ 2:1212 2412w11m12 24I5I10(1212 24£E6£E9£E12 242}7(12811212 :

From (10) and (11) we get that a G-invariant Riemmanian metric g on M = SO(8)/T

is Einstein, if and only if, there is a positive constant e such that v =y =73 =71 =75 =
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Yo =V7 =8 = Yo = Y10 = Y11 = Y12 = €, Or equivalently,

NM=712=072=-13=0,7%-71%=07%-7%=0,7%—-7%=0,%—77=0,7%7 -7 =0,
Y8 =Y = 0,7 — 710 = 0,710 =711 = 0,711 — 712 = 0.
(17)
By Lemma 3.4 and system (17) we obtain the following polynomial system (we apply the
normalization z; = 1).

1222T526TT7LYT10T11T3L4T12 + 2T6XIL7TT9L10T11L3T4TLI2 — 2$6$8$7$9w10$11$3$4$12$§ + X2T5T7T9L10T11T3T4L12
*$2x5$7$9w10$11$3$4$12$§ - $2$5$7$9$10$11$3$4$12$§ + Z2T5TeT8T10T11XT3L4T12 — $2$5$6$8$10$11$3$4$12$$
—$2$5$6$8$10$11$3$4$12$§ + T2T5TT8TTTOT3T4T12 — $2$5$6$8w7$9$3$4$12$f0 - $2$5$6$8$7$9$3$4$12$f1
+m5m618z7mgzwmgm4mf2 + x5m618m7mgzlomgz4mfl — m515m817z9m10m3m4z§ — 122526287 T9T10L11X3T4X12
—I518I7I9$10111I4I12I§ + m518-'E7509I10fﬂ11-’/U4$12-’E§ + 1518m7$9$101113§4112$§ - m5161381%3110111z?,ihzmg
+x5m5:cgm9:vlom11:cgm12xi + z5z5x8r9110m1113m1213 = 0;

LELYL7TT9T10L11L3T4T12 + -’E6$8Z7$9I10111$314Z121§ - 16181719I10111$3$4112I§ - 1516I85E719$10I3$4I?2
—151627850719110%35041?1 + 15$5$8$719110I314I§ - 1215$6I81911114$12I§ + 1215m6$8I9$11I4$12I§
+$21’5$6E81911114112$§0 — z21516ﬂcsﬂﬂﬂlorzﬂﬂlzrg + z2ﬂUE,TGﬂcsmﬂﬂwﬂxfﬂlzrg + Izmsrﬁfﬂsmﬂﬂwmzﬂlzﬁ?l
+1225T6T8T7T9T10T11T3T4T12 + 2ilcsfsfﬂ7fE9i510111f194112f19§ - 2Z5185E7191101115E41125E§ + I5$61819110111I3$12$§
—I5$6I8$9110111I31121’i - xsi‘ﬁmsrgiﬂlol’uﬂﬁai‘lzx? — 1225X5T6T8T7T9T10T11T4T12 — 121617195E101115E4112I§
+$2$617I9110111$4$12$§ + $2I6$7Z9$10I11$41‘12x§ = 0;

1222262721005 T8 ToT11 T4 — 1203L2TeL7T10T5T8ToL11 + $7110$518$91115E41’§ - 5E711015185E91115E4I§
—E7$10I5$szgx11Z4x§ + m2z6x5azgmgxnx4x§ — $2I615$81‘9ZE11£E4$$ — IQ$615ZE8I9$11I4ZE?0

+$2IG$7110$9I11$4I§ - €E2I6$7I10$9I11$4I§ - €E2E6$7I10$9111€704I§ + 1‘2€E6I7$10I5$SI4$§

—E2$6I7$10I59085E413 - 9329069671?10905189041?%1 - 9339069010905908199011963 + 3039369010935908309:311553

+€703I69010935908I99011I3 - 210393290695796103589011%21 + r327029363079510908951190§ + €E3I2$6I7w1ozsw11zg

—Z3x2I7I5ZE8I‘QJE11Ii + 13£E2I7£E5I8£E91‘11£EZ + ZE3I2£E7I5:E8I9:E11I§0 — £E3I‘2CE61‘72E10I5£E91‘2

+T3T2TTTT10T5ToTy + T3T2TT7T10T5ToTs, = 05

TeLITLTL9T10L11T3LaT12 + 136€E8137€E9I10€7011133904I1290§ - I6$8I7€E9I10€E111‘3€E41‘12€E§ + 5E2I5€E81379091311€7031?1227CZ
—I2m5ft6$7$9$10$31?12$f1 - €E2175968I7139€E119035E1296§ - 17290596890751791?11:173131233?0 + 1?2£E51?690796990101396121?i
—Z2905$69075E91‘10I31‘12w§ — m2x6m8w7mgz11m3w4x§ + m2w6m8x7r9m111‘3x41’f0 + m2w6x8x7r9m111‘3m4zf2
—Zsﬂﬁawsﬂﬁgwloﬂﬁuwswuzg + 1:5m6z8a:9w10m111:3m121:i - :1751?69681?9901013119031312:763 + £E2136$717996101?11$41?12£E§
—T2TET7TT10T11T4T12T5 + T2TTrToT10T11T4T12T5 + 120 T5T6T8T7ToT10T11T3T12 — 122 T T8 TrToT10T11T3T4T12
+2T2Te T T7T10T11 T3 T12T] — 2ToTeTT7T10T11T3T1205 = 05

—ZT3T8L4T9T10L12T6 + I3$8Z4909$109012I696§ - $3$8I4$9$10$12I6$§ + T5X2T3T4T9T10T12 — 1?59629039043899610%296(2;
+T5T2T3T4TIT10T12T5 + 12T2T3T8T4ToT10T12T6 — 12T5T2T3T8T4ToT10T 12 + T2aT4ToT10T12T6Ts — T2T4ToT10T12T6TS
—I2904I91‘10I12966I§ + I2$3I8$10I12$6$§ - $2I3$8Z1093121’6$421 - 1‘21731’893101’121761’3 + 1‘2$31‘8$4I9$6$§
—I2903$81?4I91‘6$?0 - 902$31?8I4139$61’§2 - I51?8I41‘9$101‘12I§ + wsﬂﬁswﬂfgwml‘mwg + $5938$4909I109612Z§
—T5T2T3TT9T12Tg + T5T2T3TToT12T + T5T2T3TToT12T5) — T5T2T3TsTAT10T g + T5sT2T3TsTAT 10T,
+$5$2$3I8$4$10$$2 =0

—T2T3T4L10T9L12T7 + $2$3I4$10$9$12$7I2 - $2$3$4$10$9$12$7$§ + TeTRT2L3L4T10L12 — 1’61’8$2$3$4$10$129§$
+T6TST2T3T4T10T 12Ty — 12T2T3TT4ToT10T12T6 + 12T T2T3T4T10ToT12T7 + TT4T10ToT12T7Ty — TeT4T10T9T12T7T g
*$8$4$10$9I12$7I§ + $8I2$3$9I12$7$§ - $8$2$3I9$12I7$i - $8$2I3$9$12$7$30 + $8$2$3$4I10$7$§
7w8w2w3$4w10$7w§ - $8I2$3$4$10$7$32 - $6$8w3$10$9$12$$ + $6I8$3$10$9$12$§ + $6938$39310$99312$i

2 2 2 2 2
—XLTL2L4T9T12T; + LETT2T4T9T12T3 + TeXT2T4T9T12T ]y — TeXL2XL3T4T10L9T; + TL2L3T4T10T9 Ty

2
+XeT2X3T4T10T0TT, = O

(18)
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T2X5T7T9T10T11T3T4T12 + 132175137939Z109011133$4$12$§ - 1?2$5137$9$10$11133$41312$§ — L2T5T6L8L10L11X3T4T12
+932I5906$81‘10I11963I43012I§ - $2$5906I83010I11$35E49612I3 - $2$5$6$8$9I119€4I129€§ + $2$5$6I8$9I119€4$129€$
—1‘2I5I61’8I91‘11I4l‘12$f0 + I2$5$6$7I9$10I3$12I§1 + 1’21751’6937$9$10$3$12$i - $2I5$6$7$9110$3112$§
—$5I6I8$9110$11$3$12$§ - $5$6$8$9$10$11$3z12$i + $5I6$8$9$10$11$31’12$§ + 12136177139931013113741312%%
+XoTeTrT9T10T11TAT12T2 — T2TeTTTIT10T11TaT 1285 + 12T2T5T6T8T9T10T11T3TaT12 — 12T2T5T6T7ToT10T11 T3 TAT 12
+222T5T6ToT10T11T3T4T2 — 2T2T5TeToT10T11T3T4T = 0;

$6934$11937$12939$§ - 156$49311$79312I993§ - I6$4$11$7l’12$91’§ + 122623T5T4211T7T12T9 + $8I6$5$41’71‘12$§
*$8$6$5$4$71’12I§ - $6I3$5$41’11I9$32 - $6$3$5$4I11$9I$ + $6$3I5$4$11$9$§ - $6I3$5$7$12$9$31
*$6$3$5$7$12I9$i + $6$3w5$7$12$9$§ + $8$6$3$11$7$12w§ — 122826X3T5T4T11T7T12 + x8$6933$11I7$12$421
*$8$6$3$11$7I12$§ + $8$6$5$4$7$12$§1 — T3T5T4T11T7T12T9 + $8$3$5$4$11‘T7$?2 + $8$3$5$4$11$7$2
*$8$3$5$4$11$7$g + $3$5$4$11I7$12$9$§ - $3$55€4$11$7$12$9$Z + TgTeT3T5T4T11T12 + $8$6$3$5$4$11$12$§
—TYTET3T5T4T11T12T4 = 05

—1226T3T5T4T11T7T12T9 + 1227T3T11T4T5T6T12T10 + $3$11$4$5$5$12$10$g — T3T11T4X5L6L12T10
+XT9X7XTIT4T5TeT12 — 333111334153762512%10333 + 3?75543353361123510333 - 55737355113745553310510?2 - 3773533711%4375@1037623
+x7x3x11x4x5x10x§ - 55733335113363512331035? - 37755333111553312251037421 - 339357253374255336551237?0 + 357%33511336291233105552;
*x7x43352553312$10$%1 - $7£U43351?637125U1037§ - $9337£U33711£U53712£U§0 + 1935113343552553312%3 + 3393511334335%5351233%
*359%1135415186%122??0 + 559377553%4955%533121?1 + 33955737355113755512332 + 339557333,%11335%12332 - 2593?71533311%433655%0
+TTTTITI11T4T6T 10 + ToT7T3T11 TaT6T2 = 0;

*$5$5$8$7$9$10$3$4$?1 — 1222256 T8L7TTOL10L3T4T12 + 12T2T5LeTRL7ToL11XL3T4L12 + $5$6$8$7$9$10$3w4$f2
+$5-’E618$719m1013$4m§ + 2$2$55E6$85E7I9I314$121f0 - m215m817m9111m3112m2 - szﬂsiﬂsmﬂ%EuIsIlin
+$2mslsm719m1113$12$?0 - 2I215$61817$9I35E4I12$f1 + 12m5161817110$41121§ - m215527655817-%1()14%121?1
+$2I515$81711014I12Ig - Z25135I8iﬂ7$9111E?,iﬂwg + m21518}1719-%1113%@?0 - 12$618$7m9$11m314-’ﬂ?2
—I215I6$8z9111E4112$§ - 12I515$819$1114$1213 + Izmsfﬂazsmgftumzﬂtlziﬂfo - z2fﬂsms5137279110I35012I?1
+$21515$71911013112$i + 12I515$71911013112$§ =0;

2$5$6181719I10$3$41?1 - 121516"%131011113141?2 + 122225 T T8L7T9T10T3T4L12 — 12X2T5T6TT7T9T10T11 T34
—21516538137%9110%%%11?2 - 125E5I6$8I7$91’3$4Z12$?0 — T2T5TETL7L9LIT4T12 + 12$5I618Z71913I4$12m31
—1’2$5Z6$85E71105E41125E§ + 1’2$5E6185E71105E4112131 - $2I5$GI81711014112$§ + $2I6$SI719111$35E4I§
+I2Z6181719x111314m§0 - I2161817191111314x?2 - I2I5$SI7I105E11135E4I§2 + $2I5$SI7110Z1113I4$§

2 2 2 2
FL2T5L8L7T10XL11X3T4Ty + T2X5T6L7LYT10T3T12L]] — L2L5LeL7L9L10L3L12T, — T2L5LeXL7T9T10L3T12T g

2 2
+T2T5TET9T10T11T3T4T; + T2T5T6T9T10T11T3T4Tg = 0.
(19)

Any positive real solution
zo > 0,23 > 0,24 > 0,25 > 0,26 > 0,27 > 0,28 > 0,29 > 0,219 > 0,217 > 0,212 >0
of the system above determines a SO(8)-invariant Einstein metric
(1,22, 3, T4, Ts, Te, T7, Tg, Tg, T10, T11, T12) € R

on M = G/T. With the help of computer we obtain that there are one hundred and sixty
invariant Einstein metrics on SO(8)/T, of which one hundred and twelve are Kéhler Einstein
metrics (up to a scale).

Theorem 3.5 The full flag manifold M = SO(8)/T admits five (up to isometry)
SO(8)-invariant Einstein metrics. There is a unique Kéhler Einstein metric (up to a scale)
given by

g=(1,1,1,1,2,2,2,3,3,3,4,5)
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and the other four are non-Kéhler (up to a scale) approximately given by as follows:
(a) (1,1,1,1,1,1,1,1,1,1, 1, 1),
(b) 1,0.5,1,1,1,1,1, 0.5, 0.5, 0.5, 1, 1),
(¢) (1,1.4,1,1.96,1.4,1.4,1.4,1.4,1.4,1.4,1.4,1),
(d) (1, 1.5230, 1, 1.9907, 1.5230, 1.5230, 1.2011, 1.5230, 1.2011, 1.2011, 1.2011, 0.8669).
Proof We compute Hy of all the one hundred and sixty positive (real) solutions by

formula (16) and obtain five non equal values, the five values are
8.0356, 7.9370, 8.0000, 7.9975, 7.9959.

Thus there are at least five non-isometry Einstein metrics. When Hy = Hy it is easy to
check that there is an element of Weyl group of G which permutes the isotopy summands
and takes one metric to another. Thus there are five SO(8)- invariant non-isometric Einstein
metrics.
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