ON RELATIVE MCCOY PROPERTIES WITH A RING ENDOMORPHISM

ZHAO Liang，GU Qin－qin
（School of Mathematics \＆Physics，Anhui University of Technology，Maanshan 243032，China）

Abstract

In this paper，we introduce the notions of an α－McCoy ring and weak α－McCoy rings to study McCoy properties and weak McCoy properties relative to an endomorphism α of a ring R ．By using various ring extensions，we prove that a ring R is a right α－McCoy ring if and only if $R[x]$ is a right α－McCoy ring，and the direct limit of a direct system of right weak α－McCoy rings is investigated in the last section．It is shown that if R is a right weak α－McCoy ring．Some well－known results on McCoy rings are generalized．

Keywords：McCoy rings；α－McCoy rings；weak α－McCoy rings
2010 MR Subject Classification：16N40；16S50
Document code：A Article ID：0255－7797（2015）06－1287－10

1 Introduction

Throughout this note，R denotes an associative ring with identity and α denotes a nonzero endomorphism，unless specified otherwise．For a ring R ，we denote by $\operatorname{nil}(R)$ the set of all nilpotent elements of R and $T_{n}(R)$ the n－by－n upper triangular matrix ring over R ．In［8］，Nielsen introduced the notion of a McCoy ring．A ring R is said to be right McCoy（resp．，left McCoy）if for each pair of nonzero polynomials $f(x), g(x) \in R[x]$ with $f(x) g(x)=0$ ，there exists a nonzero element $r \in R$ with $f(x) r=0$（resp．，$r g(x)=0$ ）．A ring R is McCoy if it is both left and right McCoy．The name of the ring was given due to N．H．McCoy who proved in［7］that commutative rings always satisfy this condition．A ring R is called weak McCoy if for each pair of nonzero polynomials $f(x)=\sum_{i=0}^{m} a_{i} x^{i}$ and $g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$ with $f(x) g(x)=0$ ，there exists a nonzero element $r \in R$ such that $a_{i} r \in \operatorname{nil}(R)$（resp．，$r b_{j} \in \operatorname{nil}(R)$ ）．A ring R is called weak McCoy if it is both right and left weak McCoy．Due to Rege and Chhawchharia［9］，a ring R is called Armendariz if for given $f(x)=\sum_{i=0}^{m} a_{i} x^{i}$ and $g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x], f(x) g(x)=0$ implies that $a_{i} b_{j}=0$ for

[^0]each i, j (the converse is obviously true). It is well-known that every reduced ring (i.e., rings without nonzero nilpotent elements in R) is an Armendariz ring and every Armendariz ring is McCoy. Recall that if α is an endomorphism of a ring R, then the map $R[x] \rightarrow R[x]$ defined by $\sum_{i=0}^{m} a_{i} x^{i} \rightarrow \sum_{i=0}^{m} \alpha\left(a_{i}\right) x^{i}$ is an endomorphism of the polynomial ring $R[x]$ and clearly this map extends α. We shall also denote the extended map $R[x] \rightarrow R[x]$ by α and the image of $f(x) \in R[x]$ by $\alpha(f(x))$. For basic and other results on McCoy rings, see, e.g., [3, 8, 10, 11].

We consider the McCoy properties related to an endomorphism α of a ring R and call them α-McCoy rings. It is clear that every McCoy ring is an α-McCoy ring, but we shall give an example to show that there exists an α-McCoy ring which is not McCoy. A number of properties of this version are established. It is proved that a ring R is a right α-McCoy ring if and only if $R[x]$ is right α-McCoy. Moreover, we show that a ring R is right α-McCoy if and only if $R[x] /\left(x^{n}\right)$ is right α-McCoy. For a right Ore ring R, if α is an endomorphism of R with $Q(R)$ the classical right quotient ring of R. It is proved that R is right α-McCoy if and only if $Q(R)$ is right α-McCoy. Moreover, a weak form of α-McCoy rings is investigated in the last section. We show that in general weak α-McCoy rings need not be α-McCoy. It is proved that if R is a right weak α-McCoy ring, then the n-by- n upper triangular matrix ring $T_{n}(R)$ is a right weak α-McCoy ring. And hence some results on McCoy rings are generalized.

2α-McCoy Rings and Examples

In this section, we relate the problem on the various McCoy properties of a ring R to an endomorphism α of R. We begin with the following definition.

Definition 2.1 An endomorphism α of a ring R is called right (resp., left) McCoy, if for each pair of nonzero polynomials $f(x)=\sum_{i=0}^{m} a_{i} x^{i}$ and $g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$ with $\alpha(f(x)) g(x)=0$ (resp., $f(x) \alpha(g(x))=0$), there exists a nonzero element $r \in R$ such that $\alpha(f(x)) r=0$ (resp., $r \alpha(g(x))=0$). A ring R is called right (resp., left) α-McCoy if there exists a right (resp., left) McCoy endomorphism α of $R . R$ is an α-McCoy ring if it is both right and left α-McCoy.

It is clear that every right McCoy ring is right α-McCoy. However, we can give the following example to show that there exists a McCoy endomorphism α of a ring S such that S is not a McCoy ring.

Example 2.2 Let \mathbb{Z} be the ring of integers. Consider the ring

$$
S=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}\right\} .
$$

Let $\alpha: S \rightarrow S$ be an endomorphism defined by $\alpha\left(\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right)\right)=\left(\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right)$. If $f(x)=$ $\sum_{i=0}^{n}\left(\begin{array}{cc}a_{i} & b_{i} \\ 0 & c_{i}\end{array}\right) x^{i}$ and $g(x)=\sum_{j=0}^{m}\left(\begin{array}{cc}d_{j} & e_{j} \\ 0 & f_{j}\end{array}\right) x^{j}$ are nonzero polynomials in $S[x]$ such that
$\alpha(f(x)) g(x)=0$. Then we have

$$
\begin{aligned}
\alpha(f(x)) g(x) & =\sum_{k=0}^{m+n}\left(\sum_{i+j=k}\left(\begin{array}{cc}
a_{i} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
d_{j} & e_{j} \\
0 & f_{j}
\end{array}\right)\right) x^{k} \\
& =\sum_{k=0}^{m+n}\left(\sum_{i+j=k}\left(\begin{array}{cc}
a_{i} d_{j} & a_{i} e_{j} \\
0 & 0
\end{array}\right)\right) x^{k}=0 .
\end{aligned}
$$

This implies that

$$
\sum_{k=0}^{n+m}\left(\sum_{i+j=k} a_{i} d_{j}\right) x^{k}=0, \sum_{k=0}^{n+m}\left(\sum_{i+j=k} a_{i} e_{j}\right) x^{k}=0
$$

Let $f_{1}(x)=\sum_{i=0}^{n} a_{i} x^{i}, g_{1}(x)=\sum_{j=0}^{m} d_{j} x^{j}$ and $g_{2}(x)=\sum_{j=0}^{m} e_{j} x^{j}$. Then we have $f_{1}(x) g_{1}(x)=$ $f_{1}(x) g_{2}(x)=0$. Since every reduced ring is an Armendariz ring, it follows that $a_{i} d_{j}=$ $a_{i} e_{j}=0$ for each i, j. If $a_{i}=0$, then we are done. If $a_{i} \neq 0$, then we have $d_{j}=e_{j}=0$. Now if we let

$$
r=\left(\begin{array}{cc}
0 & 0 \\
0 & f_{j}
\end{array}\right)
$$

for some $f_{j} \neq 0$, then $r \neq 0$ and $\alpha(f(x)) r=0$. This shows that the endomorphism α of S is right McCoy. Similarly, we can prove that the endomorphism α of S is left McCoy. But S is neither left nor right McCoy by [10, Theorem 2.1].

According to [1], an endomorphism α of a ring R is called right (resp., left) reversible if whenever $a b=0$ for $a, b \in R, b \alpha(a)=0$ (resp., $\alpha(b) a=0$). A ring R is called right (resp., left) α-reversible if there exists a right (resp., left) reversible endomorphism α of R. R is α-reversible if it is both left and right α-reversible.

Note 2.3 It is well-known that every reversible ring is a McCoy ring. Based on this fact, one may suspect that every left (resp., right) α-reversible ring is McCoy. But this is not true by Example 2.2 and [1, Example 2.2]. In general, we do not know if every α-reversible ring is α-McCoy. In fact, Example 2.2 shows that a right α-reversible ring can be α-McCoy.

The next proposition gives more examples of right α-McCoy rings.
Proposition 2.4 Let R be a ring and α an endomorphism of R. Then R is a right $\alpha-\mathrm{McCoy}$ ring if and only if $R[x]$ is a right $\alpha-\mathrm{McCoy}$ ring.

Proof Assume that R is a right α-McCoy ring. Let $p(y)=f_{0}+f_{1} y+\cdots+f_{m} y^{m}$, $q(y)=g_{0}+g_{1} y+\cdots+g_{n} y^{n}$ be in $R[x][y]$ with $\alpha(p(y)) q(y)=0$. We also let

$$
f_{i}=a_{i_{0}}+a_{i_{1}} x+\cdots+a_{w_{i}} x^{w_{i}}, g_{j}=b_{j_{0}}+b_{j_{1}} x+\cdots+b_{v_{j}} x^{v_{j}}
$$

for each $0 \leq i \leq m$ and $0 \leq j \leq n$, where $a_{i_{0}}, a_{i_{1}}, \cdots, a_{w_{i}}, b_{j_{0}}, b_{j_{1}}, \cdots, b_{v_{j}} \in R$. We claim that $R[x]$ is right α-McCoy. Take a positive integer k such that $k>\max \left\{\operatorname{deg}\left(f_{i}\right), \operatorname{deg}\left(g_{j}\right)\right\}$ for any $0 \leq i \leq m$ and $0 \leq j \leq n$, where the degree is as polynomials in $R[x]$ and the degree of zero polynomial is take to be zero. Then

$$
p\left(x^{k}\right)=f_{0}+f_{1} x^{k}+\cdots+f_{m} x^{m k}, q\left(x^{k}\right)=g_{0}+g_{1} x^{k}+\cdots+g_{n} x^{n k} \in R[x]
$$

and hence the set of coefficients of the f_{i}^{\prime} (resp., g_{j}^{\prime} s) equals the set of coefficients of $p\left(x^{k}\right)$ (resp., $q\left(x^{k}\right)$). Since $\alpha(p(y)) q(y)=0$, we have $\alpha\left(p\left(x^{k}\right)\right) q\left(x^{k}\right)=0$. It follows that there exists $0 \neq r \in R \subseteq R[x]$ such that $\alpha\left(p\left(x^{k}\right)\right) r=0$. This implies that $\alpha(p(y)) r=0$, and so $R[x]$ is right α-McCoy. Conversely, suppose that $f(y)=\sum_{i=0}^{m} a_{i} y^{i}, g(y)=\sum_{j=0}^{n} b_{j} y^{j} \in R[y] \backslash\{0\}$ such that $\alpha(f(y)) g(y)=0$. Since $R[x]$ is right α-McCoy, there exists $0 \neq r(x) \in R[x]$ such that $\alpha(f(y)) r(x)=0$. This shows that $\alpha\left(a_{i}\right) r(x)=0$ for each i. It follows from $0 \neq r(x)$ that there exists $0 \neq r_{j} \in R$ such that $\alpha\left(a_{i}\right) r_{j}=0$ for each i. Therefore, $\alpha(f(y)) r_{j}=0$ and so R is right α-McCoy.

Corollary 2.5 A ring R is a right McCoy ring if and only if $R[x]$ is right McCoy.
Let R be a ring and \triangle a multiplicative monoid in R consisting of central regular elements, and let $\triangle^{-1} R=\left\{u^{-1} a \mid u \in \triangle, a \in R\right\}$, then $\triangle^{-1} R$ is a ring. For an endomorphism α of R with $\alpha(\Delta) \subseteq \Delta$, the induced map $\bar{\alpha}: \Delta^{-1} R \rightarrow \Delta^{-1} R$ defined by $\bar{\alpha}\left(u^{-1} a\right)=\alpha(u)^{-1} \alpha(a)$ is also an endomorphism. We have the following result for the right α-McCoy property.

Proposition 2.6 Let R be a ring with an endomorphism α. If R is right α-McCoy, then $\triangle^{-1} R$ is right α-McCoy.

Proof Assume that R is right $\alpha-$ McCoy and let

$$
f(x)=\sum_{i=0}^{m} u_{i}^{-1} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} v_{j}^{-1} b_{j} x^{j} \in \Delta^{-1} R[x]
$$

with $\alpha(f(x)) g(x)=0$. Then we have

$$
F(x)=\left(u_{m} u_{m-1} \cdots u_{0}\right) f(x), G(x)=\left(v_{n} v_{n-1} \cdots v_{0}\right) g(x) \in R[x] .
$$

Since R is right α-McCoy and $\alpha(F(x)) G(x)=0$, this implies that there exists a nonzero $r \in R$ such that $\alpha\left(u_{m} u_{m-1} \cdots u_{0} u_{i}^{-1} a_{i}\right) r=0$ for all i, j, and so $\alpha\left(a_{i}\right) r=0$ since \triangle is a multiplicative monoid in R consisting of central regular elements and $u_{i}, v_{j} \in \triangle$ for all i, j. It follows that $\alpha\left(u_{i}^{-1} a_{i}\right) r=\alpha\left(u_{i}\right)^{-1} \alpha\left(a_{i}\right) r=0$ for all i, j. This shows that $\triangle^{-1} R$ is right α-McCoy.

The ring of Laurent polynomials in x, with coefficients in a ring R, consists of all formal $\operatorname{sum} \sum_{i=k}^{n} m_{i} x^{i}$ with obvious addition and multiplication, where $m_{i} \in R$ and k, n are (possibly negative) integers. We denote this ring by $R\left[x ; x^{-1}\right]$. For an endomorphism α of a ring R, the map $\bar{\alpha}: R\left[x ; x^{-1}\right] \rightarrow R\left[x ; x^{-1}\right]$ defined by $\bar{\alpha}\left(\sum_{i=k}^{n} a_{i} x^{i}\right)=\sum_{i=k}^{n} \alpha\left(a_{i}\right) x^{i}$ extends α and is also an endomorphism of $R\left[x ; x^{-1}\right]$.

Corollary 2.7 Let R be a ring. If R is a right α-McCoy ring, then $R\left[x ; x^{-1}\right]$ is right α-McCoy.

Proof Let $\triangle=\left\{1, x, x^{2}, \cdots\right\}$, then clearly \triangle is a multipicatively closed subset of $R[x]$. Since $R\left[x ; x^{-1}\right] \cong \triangle^{-1} R[x]$, it follows directly from Proposition 2.6 that $R\left[x ; x^{-1}\right]$ is right α-McCoy.

According to [2], an endomorphism α of a ring R is called semicommutative if $a b=0$ implies that $a R \alpha(b)=0$ for all $a, b \in R$. A ring R is called α-semicommutative if there exists
a semicommutative endomorphism α of R. Recall from [3] that a ring R is said to be right linearly McCoy if given nonzero linear polynomials $f(x), g(x) \in R[x]$ with $f(x) g(x)=0$, there exists a nonzero element $r \in R$ with $f(x) r=0$. We can define linearly α-McCoy rings similarly. It was proved in [3, Proposition 5.3] that every semicommutative ring is right linearly McCoy. The next example gives an example of right linearly α-McCoy rings which is not α-semicommutative.

Example 2.8 Let $R=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$, where \mathbb{Z}_{2} is the ring of integers modulo 2. Then R is a right linearly α-McCoy ring since R is a commutative reduced ring. Let $\alpha: R \rightarrow R$ be an endomorphism defined by $\alpha((a, b))=(b, a)$. For $(1,0),(0,1) \in R$, we have $(1,0)(0,1)=0$ but $(1,0)(1,1) \alpha(0,1) \neq 0$. It follows that R is not α-semicommutative.

Let $A(R, \alpha)$ be the subset $\left\{x^{-i} r x^{i} \mid r \in R, i \geq 0\right\}$ of the skew Laurent polynomial ring $R\left[x, x^{-1} ; \alpha\right]$, where $\alpha: R \rightarrow R$ is an injective ring endomorphism of a ring R (see [5] for more details). Elements of $R\left[x, x^{-1} ; \alpha\right]$ are finite sums of elements of the form $x^{-i} r x^{i}$ where $r \in R$ and i is a non-negative integer. Multiplication is subject to $x r=\alpha(r) x$ and $r x^{-1}=x^{-1} \alpha(r)$ for all $r \in R$. Note that for each $j \geq 0, x^{-i} r x^{i}=x^{-(i+j)} \alpha^{j}(r) x^{(i+j)}$. It follows that the set $A(R, \alpha)$ of all such elements forms a subring of $R\left[x, x^{-1} ; \alpha\right]$ with

$$
\begin{aligned}
& x^{-i} r x^{i}+x^{-j} s x^{j}=x^{-(i+j)}\left(\alpha^{j}(r)+\alpha^{i}(s)\right) x^{(i+j)}, \\
& \left(x^{-i} r x^{i}\right)\left(x^{-j} s x^{j}\right)=x^{-(i+j)}\left(\alpha^{j}(r) \alpha^{i}(s)\right) x^{(i+j)}
\end{aligned}
$$

for $r, s \in R$ and $i, j \geq 0$. Note that α is actually an automorphism of $A(R, \alpha)$.
Proposition 2.9 If R is an α-rigid ring, then $A(R, \alpha)$ is right α-McCoy.
Proof It follows directly from the fact that $A(R, \alpha)$ is an α-rigid ring by [4] and that every α-rigid ring is right α-McCoy.

Proposition 2.10 Let R be a ring and α an endomorphism of R. Then R is a right α-McCoy ring if and only if $R[x] /\left(x^{n}\right)$ is a right α-McCoy ring, where $\left(x^{n}\right)$ is the ideal generated by x^{n}.

Proof Assume that R is right α-McCoy and we denote the element \bar{x} in $R[x] /\left(x^{n}\right)$ by u. Then

$$
R[x] /\left(x^{n}\right)=R[u]=R+R u+\cdots+R u^{n-1},
$$

where u commutes with elements of R and $u^{n}=0$. Let $f(y)=\sum_{i=0}^{p} f_{i} y^{i}$ and $g(y)=\sum_{j=0}^{q} g_{j} y^{j}$ be nonzero polynomials in $R[u][y]$ with $\alpha(f(y)) g(y)=0$, where

$$
f_{i}=\sum_{s=0}^{n-1} a_{i s} u^{s}, g_{j}=\sum_{t=0}^{n-1} b_{j t} u^{t} .
$$

Moreover, if we let $k_{s}(y)=\sum_{i=0}^{p} a_{i s} y^{i}, h_{t}(y)=\sum_{j=0}^{q} b_{j t} y^{j}$. Then we have

$$
\begin{aligned}
0 & =\alpha(f(y)) g(y)=\left(\sum_{i=0}^{p} \alpha\left(f_{i}\right) y^{i}\right)\left(\sum_{j=0}^{q} g_{j} y^{j}\right) \\
& =\left(\sum_{i=0}^{p} \sum_{s=0}^{n-1} \alpha\left(a_{i s}\right) u^{s} y^{i}\right)\left(\sum_{j=0}^{q} \sum_{t=0}^{n-1} b_{j t} u^{t} y^{j}\right) \\
& =\sum_{s=0}^{n-1}\left(\sum_{i=0}^{p} \alpha\left(a_{i s}\right) y^{i}\right) \sum_{t=0}^{n-1}\left(\sum_{j=0}^{q} b_{j t} y^{j}\right) u^{s+t}=\left(\sum_{s=0}^{n-1} \alpha\left(k_{s}(y) \sum_{t=0}^{n-1} h_{t}(y)\right) u^{s+t} .\right.
\end{aligned}
$$

It follows that $\sum_{s+t=k} \alpha\left(k_{s}(y)\right) h_{t}(y)=0$, where $k=0,1, \cdots, n-1$. If $\alpha\left(k_{0}(y)\right)=0$, take $r=u^{n-1}$. Then we have $0 \neq r \in R[u]$, and so

$$
\alpha(f(y)) r=\left(\sum_{s=0}^{n-1}\left(\sum_{i=0}^{p} \alpha\left(a_{i s}\right) y^{i}\right) u^{s}\right) u^{n-1}=\left(\sum_{i=0}^{p} \alpha\left(a_{i 0}\right) y^{i}\right) u^{n-1}=\alpha\left(k_{0}(y)\right) u^{n-1}=0 .
$$

If $\alpha\left(k_{0}(y)\right) \neq 0$, it follows from $g(y) \neq 0$ that there is a minimal $k \in\{0,1, \cdots n-1\}$ such that $h_{k}(y) \neq 0$ and $\alpha\left(k_{0}(y)\right) h_{k}(y)=0$. Since R is right $\alpha-\mathrm{McCoy}$, there exists a nonzero element $c \in R$ such that $\alpha\left(k_{0}(y)\right) c=0$. Let $r^{\prime}=c u^{n-1}$. Then we have $0 \neq r^{\prime} \in R[u]$ and

$$
\alpha(f(y)) r^{\prime}=\left(\sum_{s=0}^{n-1}\left(\sum_{i=0}^{p} \alpha\left(a_{i s}\right) y^{i}\right) u^{s}\right) c u^{n-1}=\left(\sum_{i=0}^{p} \alpha\left(a_{i 0}\right) y^{i}\right) c u^{n-1}=0 .
$$

Conversely, suppose that

$$
f(y)=\sum_{i=0}^{p} a_{i} y^{i}, g(y)=\sum_{j=0}^{q} b_{j} y^{j} \in R[y] \backslash\{0\}
$$

such that $\alpha(f(y)) g(y)=0$. Since $f(y)$ and $g(y)$ are nonzero polynomials of $R[x] /\left(x^{n}\right)[y]$ and $R[x] /\left(x^{n}\right)$ is right α-McCoy, it follows that there exists $0 \neq r_{1}(x)=\sum_{k=0}^{n-1} c_{k} x^{k} \in R[x] /\left(x^{n}\right)$ such that $\alpha(f(y)) r_{1}(x)=0$. Let $c_{k_{0}} \neq 0$ with k_{0} minimal. Then we obtain $\alpha(f(y)) c_{k_{0}}=0$ and so R is right $\alpha-\mathrm{McCoy}$.

Corollary 2.11 Let R be a ring and n any positive integer. Then R is right McCoy if and only if $R[x] /\left(x^{n}\right)$ is right McCoy.

A ring R is called right Ore if given $a, b \in R$ with b regular, there exist $a_{1}, b_{1} \in R$ with b_{1} regular such that $a b_{1}=b a_{1}$. It is well-known that R is a right Ore ring if and only if the classical right quotient ring $Q(R)$ of R exists. Suppose that the classical right quotient ring $Q(R)$ of R exists. Then for an endomorphism α of R and any $a b^{-1} \in Q(R)$ where $a, b \in R$ with b regular, the induced map $\bar{\alpha}: Q(R) \rightarrow Q(R)$ defined by $\bar{\alpha}\left(a b^{-1}\right)=\alpha(a) \alpha(b)^{-1}$ is also an endomorphism.

Proposition 2.12 Let R be a right Ore ring with $Q(R)$ the classical right quotient ring of R. If α is an endomorphism of R, then R is right α-McCoy if and only if $Q(R)$ is right α-McCoy.

Proof Let $F(x)=\sum_{i=0}^{m} \delta_{i} x^{i}, G(x)=\sum_{j=0}^{n} \beta_{j} x^{j}$ be nonzero polynomials in $Q[x]$ with $\alpha(F(x)) G(x)=0$. By [6, Proposition 2.1.16], we may assume that $\delta_{i}=a_{i} u^{-1}$ and $\beta_{j}=b_{j} v^{-1}$ with $a_{i}, b_{j} \in R$ for each i, j and regular elements $u, v \in R$. Moreover, for each j, there exists $c_{j} \in R$ and a regular element $w \in R$ such that $\alpha(u)^{-1} b_{j}=c_{j} w^{-1}$ also by [6, Proposition 2.1.16]. Let $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} c_{j} x^{j}$. Then we have

$$
\begin{aligned}
0 & =\alpha(F(x)) G(x)=\left(\sum_{i=0}^{m} \alpha\left(\delta_{i}\right) x^{i}\right)\left(\sum_{j=0}^{n} \beta_{j} x^{j}\right) \\
& =\sum_{k=0}^{m+n}\left(\sum_{i+j=k} \alpha\left(a_{i}\right) c_{j}(v w)^{-1}\right) x^{k}=\alpha(f(x)) g(x)(v w)^{-1} .
\end{aligned}
$$

This implies that $\alpha(f(x)) g(x)=0$. Then there exists a nonzero $r \in R$ such that $\alpha(f(x)) r=0$ since R is a right α-McCoy ring. Then $\alpha\left(a_{i}\right) r=0$ for each i, and hence $\alpha\left(\delta_{i}\right)(\alpha(u) r)=0$. Now Q being right α-McCoy follows from the fact that $\alpha(F(x))(\alpha(u) r)=0$ since $\alpha(u) r$ is a nonzero element of Q. On the other hand, note that if

$$
m(x)=\sum_{i=0}^{m} a_{i} x^{i}, n(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x]
$$

such that $\alpha(m(x)) n(x)=0$. Then there exists a nonzero element γ in Q such that $\alpha(m(x)) \gamma=$ 0 since Q is right α-McCoy. We may assume $\gamma=d \kappa^{-1}$ with d a nonzero element in R and κ a regular element. So we obtain $\alpha(m(x)) d \kappa^{-1}=0$, and hence $\alpha(m(x)) d=0$. This implies that R is right α-McCoy. This completes the proof.

Corollary 2.13 Let R be a right Ore ring and $Q(R)$ be the classical right quotient ring of R. Then R is right McCoy if and only if $Q(R)$ is right McCoy.

3 Weak α-McCoy Rings and its Properties

Comparing with the definition of a weak McCoy ring, we give the following definition of weak α-McCoy rings accordingly.

Definition 3.1 An endomorphism α of a ring R is called right (resp., left) weak McCoy, if for each pair of nonzero polynomials $f(x)=\sum_{i=0}^{m} a_{i} x^{i}$ and $g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$ with $\alpha(f(x)) g(x)=0$ (resp., $f(x) \alpha(g(x))=0$), there exists a nonzero element $r \in R$ such that $\alpha\left(a_{i}\right) r \in \operatorname{nil}(R)$ (resp., $r \alpha\left(b_{j}\right) \in \operatorname{nil}(R)$). A ring R is called right (resp., left) weak α-McCoy if there exists a right (resp., left) weak McCoy endomorphism α of R. R is a weak $\alpha-\mathrm{McCoy}$ ring if it is both right and left $\alpha-\mathrm{McCoy}$.

It is clear that every right $\alpha-\mathrm{McCoy}$ ring is right weak α-McCoy. It was shown in [10, Theorem 2.1] that $T_{n}(R)$ is not McCoy for $n \geq 2$. The following example shows that there exists a weak α-McCoy endomorphism α of a ring S such that S is not an α-McCoy ring.

Example 3.2 Let R be a reduced ring. Consider the ring

$$
S=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in R\right\}
$$

Let $\alpha: S \rightarrow S$ be an endomorphism defined by

$$
\alpha\left(\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)\right)=\left(\begin{array}{cc}
a & -b \\
0 & c
\end{array}\right) .
$$

On the other hand, let

$$
f(x)=\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right) x, g(x)=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right) x
$$

be elements in $S[x]$. It is straightforward to check that $\alpha(f(x)) g(x)=0$, and we can not find a nonzero element $r \in S$ such that $\alpha(f(x) r=0$. This implies that S is not an α-McCoy ring. However, S is a right weak α - Mc Coy ring by the following Proposition 3.3.

Proposition 3.3 Let R be a right weak α-McCoy ring and α an endomorphism of R. Then $T_{n}(R)$ is a right weak α-McCoy ring.

Proof Let $f(x)=\sum_{i=0}^{m} A_{i} x^{i}, g(x)=\sum_{j=0}^{n} B_{j} x^{j}$ be nonzero polynomials in $T_{n}(R)[x]$ with $\alpha(f(x)) g(x)=0$, where $A_{i}, B_{j} \in T_{n}(R)$ for all i, j. If we denote by $E_{i j}$ the usual matrix unit with 1 in the (i, j)-coordinate and zero elsewhere, then for each $\alpha\left(A_{i}\right)$ there exists a nonzero element $C=r E_{1 n}$ such that $\alpha\left(A_{i}\right) C \in \operatorname{nil}\left(T_{n}(R)\right)$, where $0 \neq r \in R$.

Given a ring R and a bimodule ${ }_{R} M_{R}$, the trivial extension of R by M is the ring $T(R, M)=R \bigoplus M$ with the usual addition and the following multiplication

$$
\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}, r_{1} m_{2}+m_{1} r_{2}\right)
$$

This is isomorphic to the ring of all matrix $\left(\begin{array}{cc}r & m \\ 0 & r\end{array}\right)$, where $r \in R, m \in M$ and the usual matrix operations are used. For an endomorphism α of a ring R and the trivial extension $T(R, R)$ of $R, \bar{\alpha}: T(R, R) \rightarrow T(R, R)$ defined by

$$
\bar{\alpha}\left(\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right)\right)=\left(\begin{array}{cc}
\alpha(a) & \alpha(b) \\
0 & \alpha(a)
\end{array}\right)
$$

is an endomorphism of $T(R, R)$. Since $T(R, 0)$ is isomorphic to R, we can identify the restriction of $\bar{\alpha}$ by $T(R, 0)$ to α.

Corollary 3.4 If R is right weak α-McCoy, then the trivial extension $T(R, R)$ is a right weak α-McCoy ring.

Based on Proposition 3.3, one may suspect that if R is a weak α-McCoy ring, then the n-by- n full matrix ring $M_{n}(R)$ is weak α-McCoy with $n \geq 2$. But the following example erases the possibility.

Example 3.5 Let R be a reduced ring. Then R is a weak α-McCoy ring. Put $S=M_{n}(R)$ and let α be an endomorphism of S defined by

$$
\alpha\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\left(\begin{array}{cc}
a & -b \\
-c & d
\end{array}\right) .
$$

We also let

$$
f(x)=\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) x, g(x)=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
-1 & -1
\end{array}\right) x
$$

be polynomials in $S[x]$. Then we have $\alpha(f(x)) g(x)=0$, and it is easy to check that S is not a weak α-McCoy ring.

Now we consider the case of direct limits of direct systems of right weak α-McCoy rings.
Proposition 3.6 The direct limit of a direct system of right weak α-McCoy rings is also right weak $\alpha-\mathrm{McCoy}$.

Proof Let $D=\left\{R_{i}, \phi_{i j}\right\}$ be a direct system of right weak α-McCoy rings R_{i} for $i \in I$ and ring homomorphisms $\phi_{i j}: R_{i} \rightarrow R_{j}$ for each $i \leq j$ satisfying $\phi_{i j}(1)=1$, where I is a direct partially ordered set. Let $R=\underline{\lim } R_{i}$ be the direct limit of D with $\iota_{i}: R_{i} \rightarrow R$ and $\iota_{j} \phi_{i j}=\iota_{i}$. We shall prove that R is a right weak $\alpha-\mathrm{McCoy}$ ring. Let α be an endomorphism of R and take $x, y \in R$. It follows that $x=\iota_{i}\left(x_{i}\right), y=\iota_{j}\left(y_{j}\right)$ for some $i, j \in I$ and there is $k \in I$ such that $i \leq k, j \leq k$. Now define $x+y=\iota_{k}\left(\phi_{i k}\left(x_{i}\right)+\phi_{j k}\left(y_{j}\right)\right)$ and $x y=\iota_{k}\left(\phi_{i k}\left(x_{i}\right) \phi_{j k}\left(y_{j}\right)\right)$, where $\phi_{i k}\left(x_{i}\right)$ and $\phi_{j k}\left(y_{j}\right)$ are in R_{k}. It is easy to see that R forms a ring with $0=\iota_{i}(0)$ and $1=\iota_{i}(1)$. Let $\alpha(f(x)) g(x)=0$ with $f(x)=\sum_{s=0}^{m} a_{s} x^{s}$ and $g(x)=\sum_{t=0}^{n} b_{t} x^{t}$ in $R[x]$. Then there are $i_{s}, j_{t}, k \in I$ such that $\alpha\left(a_{s}\right)=\iota_{i_{s}}\left(a_{i_{s}}\right), b_{t}=\iota_{j_{t}}\left(b_{j_{t}}\right), i_{s} \leq k, j_{t} \leq k$. So we have

$$
\alpha\left(a_{s}\right) b_{t}=\iota_{k}\left(\phi_{i_{s} k}\left(a_{\left.i_{s}\right)} \phi_{j_{t} k}\left(b_{j_{t}}\right)\right),\right.
$$

and hence

$$
\begin{aligned}
\alpha(f(x)) g(x) & =\left(\sum_{s=0}^{m} \iota_{k}\left(\phi_{i_{s} k}\left(a_{i_{s}}\right)\right) x^{s}\right)\left(\sum_{t=0}^{n} \iota_{k}\left(\phi_{j_{t} k}\left(b_{j_{t}}\right)\right) x^{t}\right) \\
& =\sum_{d=0}^{m+n}\left(\sum_{s+t=d} \iota_{k}\left(\phi_{i_{s} k}\left(a_{i_{s}}\right) \phi_{j_{t} k}\left(b_{j_{t}}\right)\right)\right) x^{d}=0
\end{aligned}
$$

in $R_{k}[x]$ since $\alpha(f(x)) g(x)=0$. On the other hand, since R_{k} is right weak α-McCoy, there exists $s_{k} \in R_{k} \backslash\{0\}$ such that $\iota_{k}\left(\phi_{i_{s} k}\left(a_{i_{s}}\right)\right) s_{k} \in \operatorname{nil}\left(R_{k}\right)$ for all $0 \leq i \leq m$. Let $s=\iota_{k}\left(s_{k}\right)$. Then we have $\alpha\left(a_{s}\right) s \in \operatorname{nil}(R)$ and R is right weak α-McCoy.

Corollary 3.7 The direct limit of a direct system of right weak McCoy rings is right weak McCoy.

Proposition 3．8 Let R be a ring and I an ideal of R such that R / I is right weak α－McCoy．If $I \subseteq \operatorname{nil}(R)$ ，then R is a right weak α－McCoy ring．

Proof Let $f(x)=\sum_{i=0}^{m} a_{i} x^{i}$ and $g(x)=\sum_{j=0}^{n} b_{j} x^{j}$ be polynomials in $R[x]$ with $\alpha(f(x)) g(x)=$ 0．Then we have $\left.\sum_{i=0}^{m} \alpha\left(\bar{a}_{i}\right) x^{i}\right)\left(\sum_{j=0}^{n} \bar{b}_{j} x^{j}\right)=0$ in R / I ．Since R / I is right weak α－McCoy，there exists $n_{i} \in \mathbb{N}$ and $s \notin I$ such that $\left(\alpha\left(\bar{a}_{i}\right) \bar{s}\right)^{n_{i}}=0$ ．It follows that $\left(\alpha\left(a_{i}\right) s\right)^{n_{i}} \in \operatorname{nil}(R)$ since $I \subseteq \operatorname{nil}(R)$ ．This completes the proof．

References

［1］Baser M，Hong C Y，Kwak T K．On extended reversible rings［J］．Algebra Colloq，2009，16（1）：37－48．
［2］Baser M，Harmanci A，Kwak T K．Generalized semicommutative rings and their extensions［J］．Bull． Korean Math．Soc．，2008，45（2）：285－297．
［3］Camillo V，Nielsen P P．McCoy rings and zero－divisors［J］．J．Pure Appl．Algebra，2008，212：599－615．
［4］Hashemi E，Moussavi A．Polynomial extensions of quasi－Baer rings［J］，Act Math．Hungar，2005， 107（3）：207－224．
［5］Jordan D A．Bijective extension of injective ring endomorphism［J］．J．London Math．Soc．，1982， 35（2）：435－448．
［6］McConnell J C，Robson J C．Noncommutative Noetherian rings［M］．New York：Wiley， 1987.
［7］McCoy N H．Remarks on divisors of zero［J］．Amer．Math．Monthly，1942，49：286－295．
［8］Nielsen P P．Semi－commutativity and the McCoy condition［J］．J．Algebra，2006，298：134－141．
［9］Rege M B，Chhawchharia S．Armendariz rings［J］．Proc．Japan Acad．Ser．A Math．Sci．，1997，73： 14－17．
［10］Ying Z L，Chen J L，Lei Z．Extensions of McCoy Rings［J］．Northeast．Math．J．，2008，24（1）：85－94．
［11］Zhao L，Zhu X S，Gu Q Q．Nilpotent elements and McCoy rings［J］．Studia Sci．Math．Hungarica， 2012，49（3）：326－337．

关于环自同态的相对McCoy性质

赵 良，谷勤勤
（安徽工业大学数理学院，安徽 马鞍山 243032）

摘要：本文引入了 $\alpha-\mathrm{McCoy}$ 环和弱 $\alpha-\mathrm{McCoy}$ 环的概念分别研究了一个环 R 关于其自同态 α 的McCoy性质和弱 McCoy 性质。利用各种环扩张，证明了一个环 R 是 α－ McCoy 环当且仅当 $R[x]$ 是 $\alpha-$ McCoy 环，得到了正向系上弱 $\alpha-\mathrm{McCoy}$ 环的正向极限是弱 $\alpha-\mathrm{McCoy}$ 环，推广和改进了 McCoy 环在矩阵环和多项式上的相关结论．

关键词：McCoy 环；α－McCoy 环；弱 $\alpha-$ McCoy 环
MR（2010）主题分类号：16N40；16S50 中图分类号：O153．3

[^0]: ＊Received date：2013－04－15 Accepted date：2013－06－06
 Foundation item：Supported by the Provincial Natural Science Research Program of Higher Education Institution of Anhui Province of China（KJ2012Z028）；Partially Supported by the Foundation for Young Talents in College of Anhui Province of China（2012SQRL039）；the National Natural Science Foundation of China（11226056）．

 Biography：Zhao Liang（1978－），male，born at Zhangye，Gansu，lecturer，Ph．D．，major in ring theory and homological algebra．E－mail：lzhao78＠gmail．com．

