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Abstract: In this paper, we investigate totally real submanifolds in a complex projective

space. By using moving-frame method and the DDVV inequality, we obtain two rigidity theorems

and an integral inequality, improve the related results.
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1 Introduction

Let CP n+p be a 2(n+p)-dimensional complex projective space endowed with the Fubini-
Study metric of constant holomorphic sectional curvature 4. Let Mn be an n-dimensional
submanifold in CP n+p. Mn is called totally real if each tangent space of Mn is mapped
into the normal space by the complex structure J of CP n+p. It plays an important role
in geometry of submanifolds to investigate rigidity of totally real submanifolds in complex
projective space. Totally real submanifolds in complex projective space were extensively
studied and many rigidity theorems were proved, see, for example [1–6], etc.

Recently, Cao [7] and Gu, Xu [8] proved the following rigidity theorems, respectively,
by using the DDVV inequality verified by Ge and Tang [9], Lu [10].

Theorem A (see [7]) Let Mn be an n-dimensional oriented closed minimal submanifold
in an n-dimensional simply connected and locally symmetric Riemannian manifold Nn+p.
Suppose the sectional curvature KN of N satisfies δ ≤ KN ≤ 1. If the sectional curvature
KM of Mn satisfies

KM ≥ 4
3n(p + 1)

(n− 1)
1
2 (p− 1)(p + 2)(1− δ) + (

p + 2
2(p + 1)

− δ

p + 1
)sgn(p− 1),

then either M is totally geodesic, or Nn+p = Sn+p and M is isometric to the standard
immersion of the product of two spheres or the Veronese surface in S4.
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Theorem B (see [8]) Let Mn be an n-dimensional oriented compact submanifold with
parallel mean curvature H 6= 0 in F n+p(c). If c + H2 > 0 and

KM ≥ sgn(p− 2)(p− 1)
2p

(c + H2),

then M is either a totally umbilical sphere Sn( 1√
c+H2 ) in F n+p(c), the standard immersion

of the product of two spheres or the Veronese surface in S4( 1√
c+H2 ).

In this paper, we study totally real submanifolds in CP n+p, obtain two rigidity theorems
and an integral inequality, by using moving-frame method and the DDVV inequality.

Theorem 1.1 Let Mn be an n(n ≥ 2)-dimensional compact totally real submanifolds
with parallel mean curvature vector ξ 6= 0 in CP n+p (p ≥ 1). If the sectional curvature RM

of Mn satisfies
RM ≥ n + 2p− 1

2(n + 2p)
(1 + H2),

then Mn is a totally umbilical sphere Sn( 1√
1+H2 ), where H is the mean curvature of Mn.

Theorem 1.2 Let Mn be an n(n ≥ 2)-dimensional complete totally real pseudo-
umbilical submanifold in CP n+p (p ≥ 1). If Jξ is normal to Mn, then either Mn is totally
umbilical or inf ρ ≤ n(1 + H2)(n − 5

3
), where ξ, ρ, H are the mean curvature vector, the

scalar curvature, the mean curvature of Mn.
Compared with the result in [5], we do not need the submanifolds to have parallel mean

curvature vector condition in Theorem 1.2.
Theorem 1.3 Let Mn be an n(n ≥ 2)-dimensional compact totally real pseudo-

umbilical submanifold in CP n+p (p > 0) .If Jξ is tangent to Mn , then
∫

Mn

[2(1 + 4H2)nS − 3S2 − 5n2H4 − 4n2H2 + 2nH2]dV ≤ 0,

where S, H are the length square of the second fundamental form, the mean curvature of
Mn.

2 Basic Formulas

Let Mn be an n(n ≥ 2)-dimensional totally real submanifold in CP n+p. Choose a local
field of orthonormal frames

e1, · · · , en, en+1, · · · , en+p, e1∗ = Je1, · · · , en∗ = Jen, e(n+1)∗ = Jen+1, · · · , e(n+p)∗ = Jen+p

in CP n+p, in such a way that, restricted to Mn, e1, · · · , en are tangent to Mn and

en+1, · · · , en+p, e1∗ , · · · , en∗ , e(n+1)∗ , · · · , e(n+p)∗

are normal to Mn. We shall make use of the following convention on the range of indices:

A,B, C, · · · = 1, · · · , n + p, 1∗, · · · , n + p∗;
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i, j, k, · · · = 1, · · · , n; α, β, γ, · · · = n + 1, · · · , n + p, 1∗, · · · , n + p∗.

Let ωA and ωA
B be the dual frame field and the connection 1-forms of CP n+p, respectively,

then the stucture equations of CP n+p are given by

dωA = −
∑

B

ωAB ∧ ωB, ωAB + ωBA = 0, (2.1)

dωAB = −
∑

C

ωAC ∧ ωCB +
1
2

∑
C,D

KABCDωC ∧ ωD, (2.2)

where

KABCD = δACδBD − δADδBC + JACJBD − JADJBC + 2JABJCD. (2.3)

Restricting these forms to Mn, we have

ωα = 0, ωαi =
∑

j

hα
ijωj , h =

∑
ijα

hα
ijωi ⊗ ωj ⊗ eα,

hi∗
jk = hj∗

ik = hk∗
ij , ξ =

1
n

∑
α

(
∑

i

hα
ii)eα, (2.4)

Rijkl = Kijkl +
∑

α

(hα
ikh

α
jl − hα

ilh
α
jk), (2.5)

hα
ijk − hα

ikj = −Kαijk, (2.6)

dωαβ = −
∑

γ

ωαγ ∧ ωγβ +
1
2

∑
kl

Rαβklωk ∧ ωl, (2.7)

Rαβkl = Kαβkl +
∑
m

(hα
kmhβ

ml − hα
lmhβ

km), (2.8)

where h, ξ, Rijkl, Rαβkl are the second fundamental form, the mean curvature vector,the
curvature tensor, the normal curvature tensor of Mn and hα

ijk is the covariant of hα
ij . We

define

S = |h|2,H = |ξ|,Hα = (hα
ij)n×n. (2.9)

The scalar curvature ρ of Mn is given by

ρ = n(n− 1) + n2H2 − S. (2.10)

Denoting the first and second covariant derivatives of hα
ij by hα

ijk and hα
ijkl, respectively, we

have

∑
k

hα
ijkωk = dhα

ij −
∑

k

hα
kjωki −

∑
k

hα
ikωkj −

∑
β

hβ
ijωβα,

∑
l

hα
ijklωl = dhα

ijk −
∑

l

hα
ljkωli −

∑
l

hα
ilkωlj −

∑
l

hα
ijlωlk +

∑
β

hβ
ijkωβα.
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Then the Laplacian of hα
ij is

4hα
ij =

∑
k

hα
ijkk =

∑
k

hα
kkij +

∑
km

(hα
kmRmijk + hα

miRmkjk)−
∑
βk

hβ
kiRαβjk. (2.11)

Lemma 2.1 (see [9,10]) Let B1, . . . , Bm be symmetric (n× n)-matrices, then
m∑

r,s=1

‖[Br, Bs]‖2 ≤ (
m∑

r=1

‖Br‖2)2,

where the equality holds if and only if under rotation all Br’s are zero except two matrices
which can be written as

B̃r = P




0 µ 0 · · · 0
µ 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




P t, B̃s = P




µ 0 0 · · · 0
0 −µ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




P t,

where P is an orthogonal (n× n)-matrix, [Br, Bs] = BrBs −BsBr is the commutator of the
matrices Br, Bs.

Lemma 2.2 (see [11]) Let A1, A2, · · · , Am (m ≥ 2) be symmetric (n × n)-matrices.
Then

−2
m∑

αβ=1

[tr(A2
αB2

β)− tr(AαAβ)2]−
m∑

αβ=1

[tr(AαAβ)]2 ≥ −3
2
(

m∑
α=1

tr(A2
α))2.

3 Proof of Main Theorems

Proof of Theorem 1.1 Mn is a submanifold with parallel mean curvature vector ξ.
Choose en+1 such that it is parallel to ξ, and

trHn+1 = nH, trHα = 0, α 6= n + 1. (3.1)

The mean curvature vector ξ is parallel, so we have

D⊥ξ = dHen+1 + HD⊥en+1 = dHen+1 + H
∑

β

ωn+1βeβ = 0. (3.2)

(3.2) and (2.7) imply

dωn+1β = −
∑

γ

ωn+1γ ∧ ωγβ +
1
2

∑
kl

Rn+1βklωk ∧ ωl =
1
2

∑
kl

Rn+1βklωk ∧ ωl = 0. (3.3)

From (3.3), we know Rn+1βkl = 0. Set SH = trH2
n+1, τ = S − trH2

n+1. From (2.11), noting
that Mn has parallel mean curvature vector and

∑
k

hα
kkij = 0, one gets

1
2

M SH =
∑
ijk

(hn+1
ijk )2 +

∑
ij

hn+1
ij M hn+1

ij

=
∑
ijk

(hn+1
ijk )2 +

∑
ijkm

hn+1
ij (hn+1

km Rmijk + hn+1
mi Rmkjk). (3.4)
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Denote RM (p, π) the sectional curvature of Mn for 2-plane π ⊂ TpM at point p ∈ Mn. Set
Rmin(p) = minπ⊂TpM RM (p, π). We choose the orthonormal fields {ei} such that hn+1

ij =
λiδij , hence, we get

∑
ijkm

hn+1
ij (hn+1

km Rmijk + hn+1
mi Rmkjk) =

1
2

∑
ij

(λi − λj)2Rijij ≥ 1
2

∑
ij

(λi − λj)2Rmin. (3.5)

It follows from (3.4) and (3.5) that

1
2

M SH ≥
∑
ijk

(hn+1
ijk )2 +

1
2

∑
ij

(λi − λj)2Rmin.

It follows from RM ≥ n+2p−1
2(n+2p)

(1 + H2) and lemma of Hopf that SH is a constant, and

1
2

∑
ij

(λi − λj)2Rmin = 0. (3.6)

(3.6) implies that λi = λj , ∀i, j and Mn is pseudo-umbilical. From (2.11), nothing that Mn

has parallel mean curvature vector and
∑
k

hα
kkij = 0, one gets

1
2

M τ =
∑

α6=n+1

∑
ijk

(hα
ijk)

2 +
∑

α6=n+1

∑
ijkm

hα
ij(h

α
kmRmijk + hα

miRmkjk)

−
∑

α6=n+1

∑
βijk

hα
ijh

β
kiRαβjk. (3.7)

By using (2.3), (2.5), (3.1) and the fact that Mn is pseudo-umbilical, we can get

∑
α6=n+1

∑
ijkm

hα
ij(h

α
kmRmijk + hα

miRmkjk)

= n(1 + H2)τ +
∑

αβ 6=n+1

[tr(HαHβ)2 − tr(H2
αH2

β)]−
∑

αβ 6=n+1

[tr(HαHβ)]2. (3.8)

Combining (2.3), (2.8) and (3.1), we obtain

∑
α6=n+1

∑
βijk

hα
ijh

β
kiRαβjk = −

∑
i

trH2
i∗ −

∑
αβ 6=n+1

[tr(HαHβ)2 − tr(H2
αH2

β)]. (3.9)

Substituting (3.8) and (3.9) into (3.7), for any real number a, we have

1
2

M τ =
∑

α6=n+1

∑
ijk

(hα
ijk)

2 +
∑

i

trH2
i∗ − an(1 + H2)τ

+(1 + a)
∑

α6=n+1

∑
ijkm

hα
ij(h

α
kmRmijk + hα

miRmkjk) + a
∑

αβ 6=n+1

[tr(HαHβ)]2

+(1− a)
∑

αβ 6=n+1

[tr(HαHβ)2 − tr(H2
αH2

β)]. (3.10)
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For fixed α, we choose the orthonormal frame field {ei} such that hα
ij = λα

i δij . From (3.1),
we get

∑
ijkm

hα
ij(h

α
kmRmijk + hα

miRmkjk) =
1
2

∑
ij

(λα
i − λα

j )2Rijij ≥ 1
2

∑
ij

(λα
i − λα

j )2Rmin

= ntrH2
αRmin. (3.11)

(3.11) implies
∑

α6=n+1

∑
ijkm

hα
ij(h

α
kmRmijk + hα

miRmkjk) ≥ nτRmin. (3.12)

By a direct computation and the DDVV inequality, we obtain

∑
αβ 6=n+1

[tr(H2
αH2

β)− tr(HαHβ)2] =
1
2

∑
αβ 6=n+1

tr(HαHβ −HβHα)2

≤ 1
2
(

∑
α6=n+1

trH2
α)2 =

1
2
τ2. (3.13)

We also have
∑

αβ 6=n+1

[tr(HαHβ)]2 ≥ 1
n + 2p− 1

τ2. (3.14)

Taking a = n+2p−1
n+2p+1

in (3.10), it follows from (3.12), (3.13) and (3.14) that

1
2

M τ ≥ [−n + 2p− 1
n + 2p + 1

(1 + H2) +
2n + 4p

n + 2p + 1
Rmin]nτ. (3.15)

Hence, if RM ≥ n+2p−1
2(n+2p)

(1 + H2), then 1
2

M τ ≥ 0. Thus, by a well-known lemma of Hopf, we
have 1

2
M τ = 0, consequently we have either

(i) τ = 0, or (ii) RM = n+2p−1
2(n+2p)

(1 + H2).
(i) If τ = 0, then Mn is totally umbilical. From (2.3) and (2.5), we obtain

Rijij = 1 + H2,

therefore, Mn is a totally umbilical sphere Sn( 1√
1+H2 ).

(ii) If RM = n+2p−1
2n+4p

(1 + H2), then inequality signs in (3.12), (3.13), (3.14) and (3.15)
become equalities. Now, we will prove that case (ii) can not occur. The equality of (3.13)
implies that either all Hα’s are zero or two of the Hα’s are nonzero (α 6= n + 1). When
inequality signs in (3.14) and (3.15) become equality, respectively, we get that

trH2
α = trH2

β (α, β 6= n + 1),

and
∑
i

trH2
i∗ = 0. Hence, we have that all Hα’s are zero (α 6= n + 1). Thus, Mn is totally

umbilical, Rijij = 1 + H2. This leads to a contradiction.
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Proof of Theorem 1.2 Jξ is normal to Mn. Without loss of generality, we can choose
en+1 such that it is parallel to ξ, and

trHn+1 = nH, trHα = 0, α 6= n + 1. (3.16)

From (2.11), we have

1
2

M S =
∑
αijk

(hα
ijk)

2 +
∑
αijk

hα
ijh

α
kkij

+
∑

αijkm

hα
ij(h

α
kmRmijk + hα

miRmkjk)−
∑

αβijk

hα
ijh

β
kiRαβjk. (3.17)

Combining (2.3), (2.5), (2.8), (3.16) and the fact that Mn is pseudo-umbilical, we can get
∑

αijkm

hα
ij(h

α
kmRmijk + hα

miRmkjk)

= n(1 + H2)S − n2H2 +
∑
αβ

[tr(HαHβ)2 − tr(H2
αH2

β)]−
∑
αβ

[tr(HαHβ)]2, (3.18)

∑
αβijk

hα
ijh

β
kiRαβjk = −

∑
i

trH2
i∗ −

∑
αβ

[tr(HαHβ)2 − tr(H2
αH2

β)]. (3.19)

Using (3.16) and pseudo-umbilical condition hn+1
ij = Hδij , we have

∑
αijk

hα
ijh

α
kkij = nH4H, (3.20)

∑
αijk

(hα
ijk)

2 ≥
∑
ik

(hn+1
iik )2 = n

∑
i

(∇iH)2, (3.21)

1
2
4H2 = H4H +

∑
i

(∇iH)2. (3.22)

By Lemma 2.2 and pseudo-umbilical condition hn+1
ij = Hδij , we have

2
∑
αβ

[tr(HαHβ)2 − tr(H2
αH2

β)]−
∑
αβ

[tr(HαHβ)]2

= 2
∑

αβ 6=n+1

[tr(HαHβ)2 − tr(H2
αH2

β)]−
∑

αβ 6=n+1

[tr(HαHβ)]2 − (trH2
n+1)

2

≥ −3
2
τ2 − n2H4 = −3

2
(S − nH2)2 − n2H4. (3.23)

Substituting (3.18)–(3.23) into (3.17), we have

1
2

M S ≥ 1
2
n4H2 + n(1 + H2)S − 3

2
(S − nH2)2 − n2H4 − n2H2

=
1
2
n4H2 + (S − nH2)[n(1 + H2)− 3

2
(S − nH2)]

=
1
2
n4H2 + τ [n(1 + H2)− 3

2
τ ]. (3.24)
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By the same argument as in [5], we conclude that either Mn is totally umbilical or

infρ ≤ n(1 + H2)(n− 5
3
).

Proof of Theorem 1.3 Jξ is tangent to Mn. Without loss of generality, we can choose
e1∗ such that it is parallel to ξ, and trH1∗ = nH, trHα = 0, α 6= 1∗. This, together with (2.3)
and (2.8), implies

∑
αβijk

hα
ijh

β
kiRαβjk = n2H2 −

∑
i

trH2
i∗ −

∑
αβ

[tr(HαHβ)2 − tr(H2
αH2

β)]

≤ n2H2 − trH2
1∗ −

∑
αβ

[tr(HαHβ)2 − tr(H2
αH2

β)]

= n2H2 − nH2 −
∑
αβ

[tr(HαHβ)2 − tr(H2
αH2

β)]. (3.25)

By the same argument as in Theorem 1.2, we conclude that

1
2

M S ≥ 1
2
n4H2 + n(1 + H2)S − 3

2
(S − nH2)2 − n2H4 − 2n2H2 + nH2.

As this and Mn is compact, we obtain
∫

Mn

[2(1 + 4H2)nS − 3S2 − 5n2H4 − 4n2H2 + 2nH2]dV ≤ 0.
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复射影空间中全实子流形的刚性
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(2.安徽师范大学数学与计算机科学学院,安徽芜湖 241000)

摘要: 本文研究了复射影空间中的全实子流形. 通过使用活动标架的方法和DDVV不等式, 得到了两

个刚性定理和一个积分不等式, 改进了相关的结果.
关键词: 复射影空间; 伪脐子流形; 截面曲率
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