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Abstract: In this paper, we consider the smash product algebras over Hopf algebroids. By

integral theory for Hopf algebroids, we obtain a Maschke-type theorem for smash products and
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1 Introduction

Hopf algebroids, as a generalization of Hopf algebras to non-commutative base algebras,
were introduced by Böhm in [3] (see also her joint work with Szlachányi in [4]) and studied
further by Böhm in [5]. A Hopf algebroid consists of introducing two compatible bialgebroid
structures, called left and right bialgebroids (see [2, 6]), on a given algebra, which are related
with the antipode. More precisely, the best known examples of Hopf algebroids are Hopf
algebras and weak Hopf algebras (see [7]), and some examples with commutative underlying
algebra structure can be found in [8]. A survey of Hopf algebroids and their applications
can be found in [9, 10]. As the study of Hopf algebroids has a quite short past, there are
many aspects of Hopf algebras that have not yet been investigated how to extend to Hopf
algebroids.

As we know, integrals in Hopf algebras are an essential tool in studying Hopf alge-
bras and their action on algebras. Making use of integral theory, Cohen and Fishman
presented a Maschke-type theorem and constructed a Morita context connecting A#H and
AH : [AH , AH AA#H , A#HAAH , A#H] (see [1]). For further research and some applications,
we refer to [11–15].
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The purpose of the present paper is to investigate the above results in the case of Hopf
algebroids.

This paper is organized as follows. In Section 1, we recall basic definitions and give
a summary of the fundamental properties concerning Hopf algebroids. In Section 2, using
integral theory for Hopf algebroids (see [5]), we mainly investigate a Maschke-type theorem
for A#H over Hopf algebroids, which generalizes the corresponding result given by Cohen
and Fishman in [1]. As an application, we obtain the Maschke-type theorem for comodule
algebras over Hopf algebroids, which extends the corresponding result given by Nǎstǎsescu
et al. in [25]. In Section 3, we mainly claim that A#H and AHL the invariant subalgebra of
HL on A are connected via a Morita context over Hopf algebroids, using A as the connecting
module.

In what follows, we recall some concepts and results used in this paper.
Throughout the paper, we always work over a commutative ring k and follow [16, 17]

for terminologies on algebras, coalgebras, rings and corings. By an algebra R we mean an
associative unital k-algebra. We denote by RM,MR and RMR the categories of left, right
and bimodules for R, respectively.

For an algebra R over k, an R-ring is a triple (A,µ, η). Here A is an R-bimodule,
µ : A⊗R A → A and η : R → A are R-bimodule maps, satisfying the associativity and unit
conditions

µ(µ⊗R id) = µ(id⊗R µ), µ(η ⊗R id) = id = µ(id⊗R η).

An R-ring A is equivalent to a k-algebra A and a k-algebra map η : R → A (see [18]).
For an algebra R over k, an R-coring introduced in [19] is a triple (C, ∆, ε). Here C

is an R-bimodule, ∆ : C → C ⊗R C and ε : C → R are R-bimodule maps, satisfying the
coassociativity and counit conditions

(∆⊗R id)∆ = (id⊗R ∆)∆, (ε⊗R id)∆ = id = (id⊗R ε)∆.

A left module for an R-ring (A,µ, η) is a pair (M, ϕ), where M is a left R-module and
ϕ : A⊗R M → M is a morphism in RM, such that

ϕ(µ⊗R id) = ϕ(id⊗R ϕ), ϕ(η ⊗R id) = id.

For an R-ring A, a left A-module morphism f : M → N is a left R-module map
f : M → N , satisfying fϕM = ϕN (id ⊗R f). The category of left A-modules is denoted by

AM. The category MA of right A-modules is defined symmetrically (see [8]).
Note that a k-module M is a (left or right) module of an R-ring (A,µ, η) if and only

if it is a (left or right) module of the corresponding k-algebra A. Furthermore, a k-module
map f : M → N is a morphism of (left or right) modules of an R-ring (A,µ, η) if and only
if it is a morphism of (left or right) modules of the corresponding k-algebra A (see [8]).

Definition 1.1 [2] A left bialgebroidHL = (H, L, sL, tL,∆L, εL) consists of two algebras
H and L over k, which are called the total and base algebras, respectively. H is an L⊗k Lop-
ring via the algebra homomorphisms sL : L → H and tL : Lop → H, called the source
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and target maps, respectively (this means that the ranges of sL and tL are commuting
subalgebras in H). In terms of sL and tL, we equip H with an L-L-bimodule structure as

l · h · l′ = sL(l)tL(l′)h, l, l′ ∈ L, h ∈ H. (1.1)

The triple (H, ∆L, εL) is an L-coring. Introducing Sweedler’s convention ∆L(h) = Σh(1) ⊗L

h(2) for h ∈ H, the axioms

Σh(1)tL(l)⊗L h(2) = Σh(1) ⊗L h(2)sL(l), (1.2)

∆L(1H) = 1H ⊗L 1H , (1.3)

∆L(hg) = ∆L(h)∆L(g), (1.4)

εL(1H) = 1L, (1.5)

εL(hsLεL(g)) = εL(hg) = εL(htLεL(g)) (1.6)

are required for any l ∈ L, h, g ∈ H.
Symmetrically, a right bialgebroid HR = (H, R, sR, tR,∆R, εR) consists of two algebras

H and R over commutative ring k, which are called the total and base algebras, respectively.
H is an R ⊗k Rop-ring via the algebra homomorphisms sR : R → H and tR : Rop → H,
called the source and target maps, respectively (this means that the ranges of sR and tR are
commuting subalgebras in H). In terms of sR and tR, we equip H with an R-R-bimodule
structure as

r · h · r′ = hsR(r′)tR(r), r, r′ ∈ R, h ∈ H. (1.7)

The triple (H, ∆R, εR) is an R-coring. Introducing Sweedler’s convention ∆R(h) = Σh(1)⊗R

h(2) for h ∈ H, the axioms

ΣsR(r)h(1) ⊗R h(2) = Σh(1) ⊗R tR(r)h(2), (1.8)

∆R(1H) = 1H ⊗R 1H , (1.9)

∆R(hg) = ∆R(h)∆R(g), (1.10)

εR(1H) = 1R, (1.11)

εR(sRεR(h)g) = εR(hg) = εR(tRεR(h)g) (1.12)

are required for any r ∈ R, h, g ∈ H.
Definition 1.2 [5] A Hopf algebroid H = (HL,HR, S) consists of a left bialgebroid

HL = (H, L, sL, tL,∆L, εL), a right bialgebroid HR = (H, R, sR, tR,∆R, εR) on the same
total algebra H, and a k-module map S : H → H, called the antipode, such that the
following axioms hold:

sLεLtR = tR, tLεLsR = sR, sRεRtL = tL, tRεRsL = sL, (1.13)

(∆L ⊗R id)∆R = (id⊗L ∆R)∆L, (∆R ⊗L id)∆L = (id⊗R ∆L)∆R, (1.14)

S(tL(l)htR(r)) = sR(r)S(h)sL(l), (1.15)

ΣS(h(1))h(2) = sRεR(h), Σh(1)S(h(2)) = sLεL(h), (1.16)
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for any l ∈ L, r ∈ R, h ∈ H.
By [20], (1.13) implies that ∆L is R-R-bilinear and ∆R is L-L-bilinear, that is

∆L(htR(r)) = Σh(1)tR(r)⊗L h(2), ∆L(hsR(r)) = Σh(1) ⊗L h(2)sR(r), (1.17)

∆R(sL(l)h) = ΣsL(l)h(1) ⊗R h(2), ∆R(tL(l)h) = Σh(1) ⊗R tL(l)h(2) (1.18)

for any l ∈ L, r ∈ R, h ∈ H.
Similarly to the case of Hopf algebras, by [5], the antipode S of a Hopf algebroid H is

an anti-algebra map on the total algebra H. That is, for any h, g ∈ H,

S(1H) = 1H , S(hg) = S(g)S(h). (1.19)

Moreover, the antipode S is an anti-coring map HL → HR and HR → HL. That is, for
any h, g ∈ H,

εRS = εRsLεL, ΣS(h)(1) ⊗R S(h)(2) = ΣS(h(2))⊗R S(h(1)), (1.20)

εLS = εLsRεR, ΣS(h)(1) ⊗L S(h)(2) = ΣS(h(2))⊗L S(h(1)). (1.21)

Let H = (HL,HR, S) be a Hopf algebroid with bijective antipode S. By [4, 8], S−1 is
also both an anti-algebra map on the total algebra H and an anti-coring map HL → HR

and HR → HL. Moreover, the following identities hold.
For any h ∈ H,

ΣS−1(h(2))h(1) = tRεR(h), Σh(2)S−1(h(1)) = tLεL(h). (1.22)

tR = S−1sR, tLεLtR = S−1tR, tL = S−1sL, tRεRtL = S−1tL. (1.23)

εLtRεR = εLS−1, εRtLεL = εRS−1. (1.24)

Definition 1.3 [21] Let HL = (H, L, sL, tL,∆L, εL) be a left bialgebroid. A left module
of HL means a left module of the L⊗k Lop-ring (H, µ, η).

By [21, 22], a left HL-module morphism means a morphism of left modules of the
L⊗k Lop-ring (H, µ, η). The left HL-module category HL

M has objects the left HL-modules
and arrows the left HL-module maps. The category MHR

of right HR-modules is defined
symmetrically.

Note that, for a left bialgebroid HL = (H, L, sL, tL,∆L, εL), H is an L⊗k Lop-ring with
unit sL ⊗k tL : L ⊗k Lop → H. This endows HL

M with an additional piece of structure,
that is, a forgetful functor F : HL

M→ L⊗kLopM ∼= LML: a left HL-module M carries an
underlying L-L-bimodule structure by l ·m · l′ = sL(l)tL(l′) ·m for any l, l′ ∈ L,m ∈ M .

For a Hopf algebroid H = (HL,HR, S), a left H-module is just a left HL-module and a
right H-module is just a right HR-module.

Definition 1.4 [2] Let HL = (H, L, sL, tL,∆L, εL) be a left bialgebroid. A is called a
left HL-module algebra if A is a left H-module as well as an L-ring, where A is viewed as
an L-L-bimodule via

l · a · l′ = (l · 1H · l′) . a = sL(l)tL(l′) . a, (1.26)
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such that

h . (ab) = Σ(h(1) . a)(h(2) . b), (1.27)

h . 1A = sLεL(h) . 1A ≡ tLεL(h) . 1A. (1.28)

Note that the unit of L-ring A is the map ηA : L → A, l 7→ l · 1A ≡ 1A · l.
Definition 1.5 [2] Let HL = (H, L, sL, tL,∆L, εL) be a left bialgebroid and A a left

HL-module algebra. The smash product algebra A#H is defined as the k-module A ⊗L H

with product
(a#h)(b#g) = Σa(h(1) . b)#h(2)g, (1.29)

here A is a right L-module via

a · l = tL(l) . a = a(sL(l) . 1A), (1.30)

and H is a left L-module as in (1.1).

2 A Maschke-Type Theorem for Smash Products

In this section, we assume that H = (HL,HR, S) is a Hopf algebroid and A is a left
HL-module algebra via the action “.”. We mainly present a Maschke-type theorem for
smash products over Hopf algebroids.

Recall that the left (or right) integrals in a Hopf algebroid H = (HL,HR, S) are the left
(or right) integrals in HL (or HR), that is, the elements of

L(H) = {x ∈ H|hx = sLεL(h)x, h ∈ H},
(R(H) = {y ∈ H|yh = ysRεR(h), h ∈ H}).

By [5], a left integral x ∈ L(H) is normalized if εL(x) = 1L, and, similarly, a right integral
y ∈ R(H) is normalized if εR(y) = 1R. And we have S(L(H)) ⊆ R(H), S(R(H)) ⊆ L(H).

Lemma 2.1 [5] Let H = (HL,HR, S) be a Hopf algebroid. The following properties of
an element y ∈ H are also equivalent.

(1) y ∈ R(H).
(2) Σy(1) ⊗L y(2)S(h) = Σy(1)h⊗L y(2) for any h ∈ H.
(3) ΣS(y(1))⊗L y(2)h = ΣhS(y(1))⊗L y(2) for any h ∈ H.

Lemma 2.2 [5] Let H = (HL,HR, S) be a Hopf algebroid. The following assertions are
equivalent.

(1) The L-ring (H, sL) underlying HL is left semisimple.
(2) The R-ring (H, sR) underlying HR is right semisimple.
(3) There exists a normalized left integral in HL.
(4) There exists a normalized right integral in HR.
Lemma 2.3 [23] Let H = (HL,HR, S) be a Hopf algebroid. For any a, b ∈ A, h, g ∈ H,

we have
(1) (1A#h)(1A#g) = 1A#hg;
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(2) (1A#h)(a#1H) = Σh(1) . a#h(2);
(3) (a#1H)(1A#h) = a#h;
(4) (a#1H)(b#1H) = ab#1H .
Proposition 2.4 Let H = (HL,HR, S) be a Hopf algebroid. Assume that the L-ring

(H, sL) underlying HL is left semisimple. Consider V as a left A#H-module and W as
an A#H-submodule of V . If W is an A-direct summand of V , then W is an A#H-direct
summand of V .

Proof Suppose that λ : V → W is a left A-module projection, and e is a normalized
right integral in HR. Define a map

λ̃ : V → W, v 7→ Σ(1A#S(e(1))) · λ((1A#e(2)) · v).

By Theorem 3.7 in [23], we know that Σ(1A#S(e(1)))⊗A (1A#e(2)) is a separable idempotent
of A#H. Hence it is easy to show that λ̃ is both left A#H-linear and a projection.

The proof is completed.
By the above conclusions, we obtain the Maschke-type theorem for smash products over

Hopf algebroids.
Theorem 2.5 Let H = (HL,HR, S) be a Hopf algebroid. Assume that the L-ring

(H, sL) underlying HL is left semisimple.
(1) Let V be an A#H-module. If V is completely reducible as an A-module, then V is

completely reducible as an A#H-module.
(2) If the L-ring (A, ηA) is semisimple Artinian, then the L-ring (A#H, 1A#sL) is also

semisimple Artinian.
Proof (1) is immediate from Proposition 2.4.
(2) follows from (1), using the fact that a ring is semisimple if and only if every module

is completely reducible.
Remark (1) Let H = (HL,HR, S) be a Hopf algebroid and U = sL(L)sR(R). Then,

by (1.13), (1.15) and (1.18), we can deduce that UL = (U,L, sL, tL,∆L, εL) has a structure
of a left bialgebroid, UR = (U,R, sR, tR,∆R, εR) has a structure of a right bialgebroid and
U = (UL,UR, S) has a structure of a Hopf algebroid, that is, U is a sub-Hopf algebroid of H.
And it is obvious that sL(L) is a left UL-module algebra via the action u·sL(l) = sLεL(usL(l)).
Assume that the L-ring (U, sL) underlying UL is left semisimple. Hence, by Theorem 2.5,
L-ring (sL(L)#U, 1H#sL) is also semisimple. And for any sL(L)#U -module V , if V is
completely reducible as a sL(L)-module, then V is completely reducible as a sL(L)#U -
module.

(2) Let (H, ∆, ε, S) be a weak Hopf algebra with bijective antipode S (see [7]). Define
the maps uL,uR : H −→ H by the formulas

uL(h) = ε(11h)12;uR(h) = 11ε(h12),

where ∆(1H) = 11 ⊗ 12. Denote by HL the image uL(H) and HR the image uR(H) (see
[7]). By [8], we know that HL = (H, HL, id, S−1|HL , pL ◦ ∆,uL) has a structure of a left
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bialgebroid, HR = (H, HR, id, S−1|HR , pR ◦∆,uR) has a structure of a right bialgebroid and
H = (HL,HR, S) has a structure of a Hopf algebroid, where pL and pR are the canonical
projections pL : H ⊗k H → H ⊗HL H and pR : H ⊗k H → H ⊗HR H, respectively.

Let A be a left H-module algebra, then it is easy to show that A is also a left HL-module
algebra with an HL-HL-bimodule structure x ·h · x′ = S−1(x′)xh for any h ∈ H, x, x′ ∈ HL.
Assume that H is semisimple, then it is obvious that HL-ring (H, id) is also semisimple
underlying HL. Therefore, by Theorem 2.5, we obtain the Maschke-type theorem for smash
products over weak Hopf algebras, which was given by Zhang in [13].

(a) Let V be an A#H-module. If V is completely reducible as an A-module, then V is
completely reducible as an A#H-module.

(b) If A is semisimple Artinian, then A#H is also semisimple Artinian.
(3) Let H = (HL,HR, S) be a Hopf algebroid, B a right H-comodule algebra with

HR-coinvariant subalgebra BcoHR = {b ∈ B|ρR(b) = b ⊗R 1} (see [20]). Assume that the
L-ring (H, sL) underlying HL is left semisimple and there exists a right H-comodule algebra
map φ : H → B. By Lemma 3.1 in [24], we know that BcoHR is a left HL-module algebra
via h · b = h(1)bφ(S(h(2))) for any b ∈ BcoHR . By Theorem 3.3 in [24], BcoHR#H ∼= B as
right H-comodule algebras, hence, according to Theorem 2.5, we obtain the Maschke-type
theorem for comodule algebras over Hopf algebroids, which generalizes the corresponding
result given by Nǎstǎsescu et al. in [25].

(a) For a B-module V , if V is completely reducible as a BcoHR-module, then V is
completely reducible as a B-module.

(b) If BcoHR is semisimple Artinian, then B is also semisimple Artinian.

3 A Morita Context Connecting A#H and AHL

In this section, we assume that H = (HL,HR, S) is a Hopf algebroid, A is a left HL-
module algebra, and

AHL = {a ∈ A|h . a = sLεL(h) . a, h ∈ H}
= {a ∈ A|h . a = tLεL(h) . a, h ∈ H}, (3.1)

the invariant subalgebra of HL on A (see [2]). Compared with the corresponding result
in [23], we mainly construct a Morita context connecting A#H and AHL under a different
condition.

By [2], we know that for any a ∈ A, b ∈ AHL , h ∈ H,

h . (ab) = (h . a)b, h . (ba) = b(h . a). (3.2)

Lemma 3.1 Let H = (HL,HR, S) be a Hopf algebroid with bijective antipode S. Then
A is a left and right A#H-module via

(a#h) ⇀ b = a(h . b), b ↼ (a#h) = S−1(h) . (ba) (3.3)

for any a#h ∈ A#H, b ∈ A.
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Proof By (2.4) in [23], A is a left A#H-module via “⇀”. In what follows, we check
that A is a right A#H-module via the action “↼”.

For any a, b ∈ A, l ∈ L, h ∈ H,

b ↼ (a#l · h) = S−1(sL(l)h) . (ba) = S−1(h)tL(l) . (ba)
= S−1(h) . (b(tL(l) . a)) = S−1(h) . (b(a · l))
= b ↼ (a · l#h),

where the second equality follows by (1.23) and the fact that S−1 is an anti-algebra map
on the total algebra H, and the third one by (1.27) and the fact that ∆L is right L-linear.
Hence the action “↼” is well defined.

We now compute for any a#h, b#g ∈ A#H, c ∈ A,

c ↼ [(a#h)(b#g)] = Σc ↼ (a(h(1) . b)#h(2)g) = ΣS−1(h(2)g) . [ca(h(1) . b)]
= ΣS−1(g)S−1(h(2)) . [ca(h(1) . b)]
= ΣS−1(g) . (S−1(h(2))(1) . (ca))(S−1(h(2))(2)h(1) . b)

= ΣS−1(g) . (S−1(h(2)
(2)) . (ca))(S−1(h(2)

(1))h(1) . b)
(1.14)
= ΣS−1(g) . (S−1(h(2)) . (ca))(S−1(h(1)

(2))h(1)
(1) . b)

(1.22)
= ΣS−1(g) . (S−1(h(2)) . (ca))(tRεR(h(1)) . b)

= ΣS−1(g) . (1(1)S
−1(h(2)) . (ca))(1(2)tRεR(h(1)) . b)

(1.13)
= ΣS−1(g) . (1(1)S

−1(h(2)) . (ca))(1(2)sLεLtRεR(h(1)) . b)
(1.2)
= ΣS−1(g) . (1(1)tLεLtRεR(h(1))S−1(h(2)) . (ca))(1(2) . b)

= ΣS−1(g) . [(S−1(h(2)tRεR(h(1))) . (ca))b]
= S−1(g) . [(S−1(h) . (ca))b] = (c ↼ (a#h)) ↼ (b#g),

where the fifth equality follows by the fact that S−1 is an anti-coring map, and the tenth
one by (1.23) and the fact that S−1 is an anti-algebra map on the total algebra H. Hence
A is a right A#H-module.

The proof is completed.
Remark The action“⇀”determines a right AHL-module map

π : A#H → EndAHL (A), π(a#h)(b) = (a#h) ⇀ b,

where A is a right AHL-module via its multiplication. Moreover π is an algebra map.
If the antipode S is bijective, then the action“↼”determines a left AHL-module map

π′ : A#H → AHL End(A), π′(a#h)(b) = b ↼ (a#h).

Further π′ is an anti-algebra map.
Corollary 3.2 Let H = (HL,HR, S) be a Hopf algebroid. Consider A as a left and

right A#H-module as in (3.3). Then
(1) AHL ∼= A#HEnd(A)op as algebras.
(2) If the antipode S is bijective, then AHL ∼= EndA#H(A) as algebras.
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Proof (2) Let fa : A → A denote left multiplication by a, that is, fa(a′) = aa′ for any
a, a′ ∈ A. Define a map

φ : AHL → EndA#H(A), b 7→ fb.

φ is well-defined, since for any b ∈ AHL , a ∈ A, c#h ∈ A#H,

fb(a ↼ (c#h)) = b(S−1(h) . (ac))
(3.2)
= S−1(h) . (bac)

= (ba) ↼ (c#h) = fb(a) ↼ (c#h),

that is, fb is right A#H-linear.
It is obvious that φ is an algebra map, and is also injective. In what follows, we check

that φ is surjective.
Choose β ∈ EndA#H(A). For any a ∈ A, β(a) = β(1A ↼ (a#1H)) = β(1A)a, so

β = fβ(1A). Moreover, β(1A) ∈ AHL , since for any h ∈ H,

h . β(1A) = β(1A) ↼ (1A#S(h)) = β(1A ↼ (1A#S(h)))
= β(h . 1A) = β(tLεL(h) . 1A) = β(1A ↼ (1A#sLεL(h)))
= β(1A) ↼ (1A#sLεL(h)) = tLεL(h) . β(1A),

where the fifth and seventh equalities follow by (1.23) and (3.3). Hence φ is surjective.
Similarly, we can check that (1) holds.
The proof is completed.
Since AHL is a subalgebra of A, A is a left and right AHL-module via its multiplication.

We may consider the bimodules: AHL AA#H and A#HAAHL where A is a left and right
A#H-module via (3.3).

This is true since for any b ∈ AHL , a, c ∈ A, h ∈ H,

(b · a) ↼ (c#h) = (ba) ↼ (c#h) = S−1(h) . (bac)
(3.2)
= b(S−1(h) . (ac)) = b · (a ↼ (c#h)).

In a similar way, we can prove that (c#h) ⇀ (a · b) = ((c#h) ⇀ a) · b.
Let H = (HL,HR, S) be a Hopf algebroid with bijective antipode S, and x a nonzero

left integral in HL. Define two maps

[, ] : A⊗AHL A → A#H, a⊗AHL b 7→ (a#x)(b#1H),
(, ) : A⊗A#H A → AHL , a⊗A#H b 7→ x . (ab).

We now obtain the main result of this section, which generalizes corresponding result given
by Cohen and Fishman in [1].

Theorem 3.3 Let H = (HL,HR, S) be a Hopf algebroid with bijective antipode S,
and x an S-fixed left integral in HL, i.e. S(x) = x. Then [AHL , AHL AA#H , A#HAAHL , A#H]
forms a Morita context.

Proof To satisfy the conditions for a Morita context given in [26], we must check that
[, ] is an A#H-bimodule map which is middle AHL-linear, and that (, ) is an AHL-bimodule
map which is middle A#H-linear, and that the “associativity” is satisfied.
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(1) [, ] is an A#H-bimodule map which is middle AHL-linear.
[, ] is a left A#H-module map, since for any a, b ∈ A, c#h ∈ A#H,

(c#h)[a, b] = (c#h)(a#x)(b#1H) = Σ(c(h(1) . a)#h(2)x)(b#1H)
= Σ(c(h(1) . a)#sLεL(h(2))x)(b#1H)
= Σ(c(h(1) . a)#εL(h(2)) · x)(b#1H)
= Σ(c(h(1) . a)(sLεL(h(2)) . 1A)#x)(b#1H)
= Σ(c(h(1) . a)(h(2) . 1A)#x)(b#1H)
= (c(h . a)#x)(b#1H) = (c(h . a)#x)(b#1H)
= ((c#h) ⇀ a#x)(b#1H) = [(c#h) ⇀ a, b].

And it is a right A#H-module map, because

[a, b](c#h) = (a#x)(b#1H)(c#h) = (a#S(x))(bc#h)
= a(S(x)(1) . (bc))#S(x)(2)h
= a(S(x)(1)S−1(h) . (bc))#S(x)(2)
= (a#S(x))(S−1(h) . (bc)#1H)
= (a#x)(S−1(h) . (bc)#1H)
= [a, S−1(h) . (bc)] = [a, b ↼ (c#h)],

where the second and the sixth equalities follow by the fact that x is an S-fixed left integral,
and the fourth one by S(L(H)) ⊆ R(H) and Lemma 2.1.

Obviously, [, ] is middle AHL-linear in the light of the fact that for any a ∈ AHL , h ∈ H,

(1A#h)(a#1H) = Σh(1) . a#h(2)
(3.1)
= ΣtLεL(h(1)) . a#h(2)

= Σa · εL(h(1))#h(2) = Σa#εL(h(1)) · h(2)

= a#h = (a#1H)(1A#h).

(2) (, ) is an AHL-bimodule map which is middle A#H-linear.
By (3.1), it is easy to prove that (, ) is an AHL-bimodule map. We check that (, ) is

middle A#H-linear. For any a, b ∈ A, c#h ∈ A#H,

(a ↼ (c#h), b) = (S−1(h) . (ac), b) = x . ((S−1(h) . (ac))b)
= S(x) . ((S−1(h) . (ac))b)
= Σ(S(x)(1)S−1(h) . (ac))(S(x)(2) . b)
= Σ(S(x)(1) . (ac))(S(x)(2)h . b)
= S(x) . (ac(h . b)) = x . (ac(h . b))
= (a, (c#h) ⇀ b).

(3) The“associativity”holds: for any a, b, c ∈ A, (a, b)c = a ↼ [b, c] and [a, b] ⇀ c =
a(b, c). By (2.4) and (3.2), it is straightforward.

The proof is completed.
Remark (1) According to remark in Section 2 and Theorem 3.3, we can obtain the

Morita context over weak Hopf algebras, which was given by Zhang in [13].
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(2) Let H = (HL,HR, S) be a Hopf algebroid with bijective antipode S, and let x be
an S-fixed and normalized left integral in HL. Assume that L-ring (A#H, 1A#sL) is simple.
It is obvious that [A,A] is an idea of A#H, hence [A,A] = A#H, that is, [, ] is surjective.
And (, ) is also surjective since x is normalized. Hence A#H is Morita equivalent to AHL .

(3) Let H = (HL,HR, S) be a Hopf algebroid with bijective antipode S, and let x be an
S-fixed and normalized left integral in HL. Assume that A is semisimple Artinian, which is
left (or right) A#H-faithful. By Theorem 2.5, we know that A#H is semisimple Artinian,
and it is not difficult to show that [A,A] is an essential ideal of A, since A is left (or right)
A#H-faithful. However, semisimple Artinian rings have no nontrivial essential ideals, so, [, ]
is surjective. Since (, ) is also surjective, A#H is Morita equivalent to AHL .
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Hopf代数胚上的Smash积的Maschke型定理和Morita关系

王 勇

(南京晓庄学院数学与信息技术学院, 江苏南京 211171)

摘要: 本文研究了Hopf代数胚上的Smash积代数. 利用Hopf代数胚的积分理论, 获得了Hopf代数胚上

的Smash的Maschke型定理并构造了一个Morita关系, 推广了Cohen和Fishman在文献[1]中的相应结果. 作

为应用, 获得了Hopf代数胚上的余模代数的Maschke型定理.
关键词: Hopf代数胚; Smash积; Maschke型定理; Morita关系
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