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Abstract: In this paper, we focus on cyclic and constacyclic codes over the ring F3+vF3(v
2 =

1), which is not a finite chain ring. We study the relationship between cyclic codes over F3 + vF3

and ternary cyclic codes, and prove that cyclic codes over the ring are generated by a polynomial

over F3 + vF3. Then, using similar method, we obtain the generator polynomial of v-constacyclic

codes.
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1 Introduction

Codes over finite rings received much attention recently after it was proved that im-
portant families of binary non-linear codes are in fact images under a Gray map of lin-
ear codes over Z4, see [3], and the references cited there. In order to obtain a com-
plete understanding about binary codes which have certain structural properties, we need
to examine cyclic codes over large families of rings. Cyclic and constacyclic codes over
F2 + uF2(u2 = 0) were studied in [4–7]. The structure of cyclic codes over Z2 + uZ2(u2 = 0)
and Z2 + uZ2 + u2Z2(u3 = 0) were determined in [8]. Moreover, cyclic and constacyclic
codes over ring F2 + uF2 + vF2 + uvF2(u2 = v2 = 0, uv = vu) were described in [9, 10].
However, not much work was done on the structure of cyclic and constacyclic codes over
F3 + vF3(v2 = 1).

The purpose of this paper is to obtain structure theorems for cyclic, negacyclic, con-
stacyclic codes and their duals over R3 := F3 + vF3 , defined with v2 = 1. The ring R3

is a Semi-local ring like Z6, as noticed in [1] abstractly isomorphic to F3 × F3. The main
technical tool in that context is therefore the Chinese Remainder Theorem.

In Section 2, we recall some backgrounds and notation about this ring, and define a
Gray map ϕ from Rn

3 to F 2n
3 . In Section 3, by means of the decomposition of the linear
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codes H over R3, we obtain that ϕ(H) are the linear codes over F3. We tackle with the
issues of duality, Lee weight enumerators and MacWilliams identities for linear codes over
R3. In Section 4, the structure of cyclic codes and cyclic self-dual codes over R3 is described,
and the relationship between cyclic codes over R3 and ternary cyclic codes is studied. We
prove that every cyclic codes over R3 is principally generated and determine the generator
polynomials of cyclic codes over the ring. In Section 5, a v-contacyclic code over R3 are
defined. We discuss the generator element of a v-contacyclic code over R3. Some examples
are given in Section 6 to illustrate the discussed results.

2 Notations and Definitions

Let R3 denote the commutative ring with 9 elements F3 + vF3 = {0, 1, 2, v, 1 + v, 2 +
v, 2v, 1 + 2v, 2 + 2v}, where v2 = 1. It is easy to verify that R is a semi-local ring with two
maximal ideals given by 〈v−1〉 and 〈v+1〉. Observe that both of R3/〈v − 1〉 and R3/〈v + 1〉
are F3. The CRT tells us that

R3 = 〈v − 1〉 ⊕ 〈v + 1〉.

More concretely, linear algebra over F3 shows that

a + vb = (a− b)(v − 1)− (a + b)(v + 1)

for all a, b ∈ F n
3 .

A linear code H over R3 of length n is an R3-submodule of Rn
3 . Let x = (x1, · · · , xn)

and y = (y1, · · · , yn) be two elements of Rn, the Euclidean inner product of x and y in Rn
3

is defined by

x · y =
n∑

i=1

xiyi,

where the operation is performed in R3. The dual code of H is defined as H⊥ = {x ∈
Rn

3 |x · y = 0,∀y ∈ H}. By the results in [12], we obtain that a linear codes H satisfies
|H| · |H⊥| = |R3|n. We say that a code is self-orthogonal if C ⊂ C⊥ and self-dual if C = C⊥.

Let H be a linear code over R3 of length n and P (H) be its polynomial representation,
i.e.,

P (H) = {
n−1∑
i=0

hix
i|(h0, h1, · · · , hn−1) ∈ H}.

Let σ and γ be maps from Rn
3 to Rn

3 given by

σ(h0, h1, · · · , hn−1) = (hn−1, h0, h1, · · · , hn−2)

and
γ(h0, h1, · · · , hn−1) = (−hn−1, h0, h1, · · · , hn−2),

respectively. Then H is said to be cyclic if σ(H) = H, and negacyclic of γ(H) = H. A
linear code H over R3 of length n is cyclic if and only if P (H) is an ideal of R3[x]/〈xn − 1〉,
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and a linear code H over R3 of length n is negacyclic if and only if P (H) is an ideal of
R3[x]/〈xn + 1〉.

The Gray map ϕ from Rn
3 to F 2n

3 is defined as ϕ(x + vy) = (−(x + y), y − x) for all
x, y ∈ F n

3 . The Lee weight of x + vy is the Hamming weight of its Gray image. Then,
ϕ is weight-preserving map from (Rn

3 , Lee weight) to (F 2n
3 , Hamming weight), that is,

wL(h) = wH(ϕ(h)).

3 Linear Codes Over F3 + vF3

If A and B are codes, we denote that A ⊗ B = {(a, b)|a ∈ A, b ∈ B} and A ⊕ B =
{a + b|a ∈ A, b ∈ B}.

The following results can be found in [2].
A nonzero linear code C over R has a generator matrix which after a suitable permuta-

tion of the coordinate can be written in the form

G =




Ik1 (1− v)B1 (1 + v)A1 (1 + v)A2 + (1− v)B2 (1 + v)A3 + (1− v)B3

0 (1 + v)Ik2 0 (1 + v)A4 0
0 0 (1− v)Ik3 0 (1− v)B4


 ,

(3.1)
where Ai and Bj are ternary matrices, and |C| = 9k13k23k3 .

Let H be a code over R3. Define

H+ = {s|∃t ∈ F n
3 |(1 + v)s + (1− v)t ∈ H}

and
H− = {t|∃s ∈ F n

3 |(1 + v)s + (1− v)t ∈ H}.
We have H = (1 + v)H+ ⊕ (1 − v)H−. Obviously, the code H+ is permutation-equivalent
to a code with generator matrix of the form

G1 =

(
Ik1 0 2A1 2A2 2A3

0 Ik2 0 A4 0

)
, (3.2)

where Ai are ternary matrices. And the ternary code H− is permutation-equivalent to a
code with generator matrix of the form

G2 =

(
Ik1 2B1 0 2B2 2B3

0 0 Ik3 0 B4

)
, (3.3)

where Bi are ternary matrices.
Theorem 3.1 If H is a linear code of length n over R3, then ϕ(H) = H+ ⊗H−, and

ϕ(H) is linear.
Proof For any (x1, x2, · · · , xn, y1, y2, · · · , yn) ∈ ϕ(H), let

hi = xi(1 + v) + yi(1− v) = (xi + yi) + v(xi − yi), i = 1, 2, · · · , n
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and let h = (h1, · · · , hn). Then ϕ(h) = (x1, x2, · · · , xn, y1, y2, · · · , yn). Since ϕ is a bijection,
h = (h1, · · · , hn) ∈ H. By the definitions of H+ and H−, we have

(x1, x2, · · · , xn) ∈ H+, (y1, y2, · · · , yn) ∈ H−,

hence (x1, x2, · · · , xn, y1, y2, · · · , yn) ∈ H+ ⊗H−. This implies that ϕ(H) ⊆ H+ ⊗H−.
Conversely, for any (x1, x2, · · · , xn, y1, y2, · · · , yn) ∈ H+⊗H−, where (x1, x2, · · · , xn) ∈

H+, (y1, y2, · · · , yn) ∈ H−, there are s = (s1, · · · , sn), t = (t1, · · · , tn) ∈ H, such that

si = (1 + v)xi + (1− v)ai, ti = (1 + v)bi + (1− v)yi,

where ai, bi ∈ F3, 1 ≤ i ≤ n. Since H is linear, we obtain that

h = −(1 + v)s− (1− v)t = (1 + v)x + (1− v)y ∈ H,

where x = (x1, x2, · · · , xn) ∈ F n
3 , y = (y1, y2, · · · , yn) ∈ F n

3 . It follows that ϕ(h) =
(x1, x2, · · · , xn, y1, y2, · · · , yn), which gives H+⊗H− ⊆ ϕ(H). Therefore ϕ(H) = H+⊗H−.

The second result is easy to be verified.
Corollary 3.2 Let H = (1 + v)H+ ⊕ (1− v)H− be a linear code of length n over R3.

Then dL(H) = min{d(H+), d(H−)}, where d(H+) and d(H−) denote the minimum weight
of ternary codes of H+ and H−, respectively.

Theorem 3.3 Let H⊥ be the dual code of H. Then ϕ(H⊥) = ϕ(H)⊥. Moreover, if H

is a self-dual code, so is ϕ(H).
Proof To prove the theorem, we first show

ϕ(H⊥) ⊂ ϕ(H)⊥,

i.e., ∀h1, h2 ∈ Rn
3 ,

[h1, h2] = 0 ⇒ [ϕ(h1), ϕ(h2)] = 0. (3.4)

To this extent, we assume that

h1 = x1 + vy1, h2 = x2 + vy2.

Then we have
[h1, h2] = [x1, x2] + [y1, y2] + ([x1, y2] + [y1, x2])v.

Note that [h1, h2] = 0 if and only if

[x1, x2] + [y1, y2] = 0, (3.5)

[x1, y2] + [y1, x2] = 0, (3.6)

since ϕ(h1) = (−(x1 + y1), y1 − x1), ϕ(h2) = (−(x2 + y2), y2 − x2), then we have

[ϕ(h1), ϕ(h2)] = 2([x1, x2] + [y1, y2]) = 0,
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by (3.5), this completes the proof of (3.4). Therefore

ϕ(H⊥) ⊂ ϕ(H)⊥. (3.7)

By Theorem 3.1, ϕ(H) is a ternary linear code of length 2n of size |H|. So by the usual
properties of the dual of ternary codes, we know that

|ϕ(H)⊥| = 32n

|ϕ(H)| =
32n

|H| .

Since R3 is a Frobenius ring, we have |H| · |H⊥| = 32n. Hence, this implies

|ϕ(H⊥)| = |ϕ(H)⊥|. (3.8)

Combining (3.7) and (3.8), we have ϕ(H⊥) = ϕ(H)⊥.
Corollary 3.4 Let H = (1 + v)H+ ⊕ (1− v)H− be a linear code of length n over R3.

Then ϕ(H⊥) = (H+)⊥ ⊗ (H−)⊥. Moreover, we have H⊥ = (1 + v)(H+)⊥ ⊕ (1− v)(H−)⊥.
Proof Follows by applying Theorem 3.1 and Theorem 3.3.
We want to finish this section by remarking a MacWilliams identity for the Lee weight

enumerators of linear codes over R3. Suppose H = (1 + v)H+
⊕

(1− v)H− is a linear code
of length n over R3 and let

LeeH(X̄, Ȳ ) =
∑
h∈H

X̄2n−wL(h)Ȳ wL(h)

be the Lee weight enumerator of H. Now, since ϕ maps H to a ternary linear code of length
2n and since ϕ is weight preserving, we see that

LeeH(X̄, Ȳ ) = Hamϕ(H)(X̄, Ȳ ),

where Hamϕ(H)(X̄, Ȳ ) denotes the Hamming weight enumerator of ϕ(H).
We see, by Theorem 3.3 that ϕ(H⊥) = ϕ(H)⊥, and since we have the ordinary MacWilliams

identity for Hamming weight enumerator of ternary linear codes, we get

LeeH⊥(X̄, Ȳ ) = Hamϕ(H⊥)(X̄, Ȳ ) = Hamϕ(H)⊥(X̄, Ȳ )

=
1

|ϕ(H)|Hamϕ(H)(X̄ + 2Ȳ , X̄ − Ȳ )

=
1

|H+| · |H−|HamH+
⊗

H−(X̄ + 2Ȳ , X̄ − Ȳ )

=
1

|H+| · |H−|HamH+(X̄ + 2Ȳ , X̄ − Ȳ ) ·HamH−(X̄ + 2Ȳ , X̄ − Ȳ )

= Ham(H+)⊥(X̄, Ȳ ) ·Ham(H−)⊥(X̄, Ȳ ).

Thus we have proved the following corollary.
Corollary 3.5 Suppose that H = (1 + v)H+ ⊕ (1− v)H− is a linear code of length n

over R3 and let LeeH(X̄, Ȳ ) denote its Lee weight enumerator as defined above, then

LeeH⊥(X̄, Ȳ ) = Ham(H+)⊥(X̄, Ȳ ) ·Ham(H−)⊥(X̄, Ȳ ).
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4 Cyclic and Negacyclic Codes F3 + vF3

Theorem 4.1 If H = (1+v)H+⊕ (1−v)H− is a linear code of length n over R3, then
H is a cyclic code over R3 if and only if H+,H− are ternary cyclic codes.

Proof For any h = (h0, h1, · · · , hn−1) ∈ H, where

hi = xi(v + 1) + yi(1− v) = (xi + yi) + v(xi − yi), i = 0, 1, · · · , n− 1.

Taking x = (x0, x1, · · · , xn−1), y = (y0, y1, · · · , yn−1), we obtain that x ∈ H+, y ∈ H−. If
H+,H− are ternary cyclic codes, then σ(x) ∈ H+, σ(y) ∈ H−. Hence σ(h) = (v + 1)σ(x) +
(1− v)σ(y) ∈ H, which implies that H is a cyclic code over R3.

Conversely, for any x = (x1, x2, · · · , xn) ∈ H+, y = (y1, y2, · · · , yn) ∈ H−, writing
h = x(v +1)+y(1−v), then h ∈ H. Suppose that H is a cyclic code over R3. Then we have

σ(h) = (v + 1)σ(x) + (1− v)σ(y) = (σ(x) + σ(y)) + v(σ(x)− σ(y)) ∈ H.

Therefore ϕ(σ(h)) = (σ(x), σ(y)) ∈ H+ ⊗ H−. We obtain that σ(x) ∈ H+, σ(y) ∈ H−,
which proves that H+,H− are ternary cyclic codes.

Similarly, we can prove the following theorem.
Theorem 4.2 If H = (1 + v)H+ ⊕ (1 − v)H− is a linear code over R3, then H is a

negacyclic code over R3 if and only if H+,H− are ternary negacyclic codes.
The following corollary is easy to be proved.
Corollary 4.3 If H is a cyclic (or negacyclic) code over R3, then the dual code H⊥ is

also cyclic (or negacyclic).
Theorem 4.4 If H = (1 + v)H+⊕ (1− v)H− is a cyclic code of length n over R3, then

H = 〈(1 + v)g1(x) + (1− v)g2(x)〉 and |H| = 32n−deg(g1(x))−deg(g2(x)), where g1(x) and g2(x)
are the monic generator polynomials of H+ and H−, respectively.

Proof By Theorem 4.1, we have

H+ = 〈g1(x)〉 ⊂ F3[x]
〈xn − 1〉 ,H

− = 〈g2(x)〉 ⊂ F3[x]
〈xn − 1〉

and

H = {h(x)|h(x) = (1 + v)f1(x) + (1− v)f2(x), f1(x) ∈ H+, f2(x) ∈ H−}.

Therefore,

H ⊂ 〈(1 + v)g1(x), (1− v)g2(x)〉.

Note that

−(1 + v)[(1 + v)g1(x) + (1− v)g2(x)] = (1 + v)g1(x)

and −(1− v)[(1 + v)g1(x) + (1− v)g2(x)] = (1− v)g2(x), so

H ⊂ 〈(1 + v)g1(x) + (1− v)g2(x)〉.
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On the other hand, for any

h(x)[(1 + v)g1(x) + (1− v)g2(x)] ∈ 〈(1 + v)g1(x) + (1− v)g2(x)〉,

where

h(x) ∈ R3[x]/〈xn − 1〉,

there are m1(x),m2(x) ∈ F3[x] such that (1 + v)h(x) = (1 + v)m1(x) and

(1− v)h(x) = (1− v)m2(x).

So 〈(1 + v)g1(x) + (1− v)g2(x)〉 ⊆ H. This implies that

H = 〈(1 + v)g1(x) + (1− v)g2(x)〉.

Since |H| = |H+| · |H−|, then |H| = 32n−deg(g1(x))−deg(g2(x)).
Corollary 4.5 Every ideal of R3[x]

〈xn−1〉 is principal.
If f(x) = a0 + a1x + · · ·+ arx

r, then the reciprocal of f(x) is the polynomial

f∗(x) = ar + ar−1x + · · ·+ a0x
r.

Symbolically, f∗(x) can be expressed by f∗(x) = xrf( 1
x
).

Corollary 4.6 With the notations as in Theorem 4.4. Let

xn − 1 = h1(x)g1(x) = h2(x)g2(x),

then H⊥ = 〈(1 + v)g∗1(x) + (1− v)g∗2(x)〉 and |H⊥| = 3deg(g1(x))+deg(g2(x)).

Theorem 4.7 Let xn−1 =
∏r

i=1 psi

i (x) be unique representations of xn−1 as a product
of ireducible pairwise-comprime polynomial in F3[x]. Then the number of the cyclic code of
length n over R3 is

∏r

i=1(si + 1)2.
Proof The result directly follows from the fact that the number of ternary cyclic code

of length n is
∏r

i=1(si + 1).

5 v-Constacyclic Codes Over R3

A v-constacyclic shift τ acts on Rn
3 as

τ(k0, k1, · · · , kn−1) = (vkn−1, k0, k1, · · · , kn−2).

A linear code H over R3 of length n is said to be a v-constacyclic code if invariant under
the v-constacyclic shift, i.e., τ(H) = H.

Theorem 5.1 Let H = (1 + v)H+ ⊕ (1 − v)H− be a linear code of length n over R3.
Then H is a v-constacyclic code of length n over R3 if and only if H+,H− are cyclic and
negacyclic codes of length n over F3, respectively.
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Proof For any h = (h0, h1, · · · , hn−1) ∈ H, we can write its components as hi =
xi(v + 1) + yi(1− v), where xi, yi ∈ F3, 0 ≤ i ≤ n− 1. Let

x = (x0, x1, · · · , xn−1), y = (y0, y1, · · · , yn−1),

then x ∈ H+, y ∈ H−. If H+,H− are cyclic and negacyclic codes over F3, respectively, then
σ(x) ∈ H+, γ(y) ∈ H−. Therefore, we have

τ(h) = (v(xn−1(1 + v) + yn−1(1− v)), x0(1 + v) + y0(1− v), · · · , xn−2(1 + v) + yn−2(1− v))

= (xn−1(1 + v) + yn−1(v − 1), x0(1 + v) + y0(1− v), · · · , xn−2(1 + v) + yn−2(1− v))

= (xn−1, x0, x1, · · · , xn−2)(1 + v) + (−yn−1, y0, y1, · · · , yn−2)(1− v)

= (1 + v)σ(x) + (1− v)γ(y) ∈ H.

This proves that H is a v-constacyclic code over R3.
Conversely, for any x = (x0, x1, · · · , xn−1) ∈ H+, y = (y0, y1, · · · , yn−1) ∈ H−. Let

hi = xi(v + 1) + yi(1− v), 0 ≤ i ≤ n− 1. Then h = (h0, h1, · · · , hn−1) ∈ H. Suppose that H

is a v-constacyclic code over R3, then τ(h) = (v +1)σ(x)+(1−v)γ(y) ∈ H, thus σ(x) ∈ H+

and γ(y) ∈ H−. Therefore, H+,H− are cyclic and negacyclic codes over F3, respectively.
Theorem 5.2 If H = (1 + v)H+ ⊕ (1− v)H− is a v-constacyclic code of length n over

R3, then H = 〈(1+ v)g1(x), (1− v)g2(x)〉 and |H| = 32n−deg(g1(x))−deg(g2(x)), where g1(x) and
g2(x) are the monic generator polynomials of H+ and H−, respectively.

Proof By Theorem 5.1, we have

H+ = 〈g1(x)〉 ⊂ F3[x]
〈xn − 1〉 ,H

− = 〈g2(x)〉 ⊂ F3[x]
〈xn + 1〉

and
H = {h(x)|h(x) = (1 + v)f1(x) + (1− v)f2(x), f1(x) ∈ H+, f2(x) ∈ H−}.

Therefore,

H ⊂ 〈(1 + v)g1(x), (1− v)g2(x)〉 ⊆ R3[x]
〈xn − v〉 .

For any

(1 + v)g1(x)h1(x) + (1− v)g2(x)h2(x) ∈ 〈(1 + v)g1(x), (1− v)g2(x)〉 ⊆ R3[x]
〈xn − v〉 ,

where h1(x), h2(x) ∈ R3[x]
〈xn−v〉 , there are m1(x),m2(x) ∈ F3[x] such that

(1 + v)h1(x) = (1 + v)m1(x)

and (1 − v)h2(x) = (1 − v)m2(x). So 〈(1 + v)g1(x), (1 − v)g2(x)〉 ⊆ H. This implies that
H = 〈(1+v)g1(x), (1−v)g2(x)〉. Since |H| = |H+| · |H−|, then |H| = 32n−deg(g1(x))−deg(g2(x)).

Theorem 5.3 With the notations as in Theorem 5.2. If H = 〈(1+v)g1(x), (1−v)g2(x)〉,
then there is a unique polynomial g(x) such that H = 〈g(x)〉 and g(x)|xn − v, where

g(x) = (1 + v)g1(x) + (1− v)g2(x).
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Proof Since g(x) = (1 + v)g1(x) + (1− v)g2(x), 〈g(x)〉 ⊂ H. Note that

−(1 + v)g(x) = (1 + v)g1(x)

and −(1− v)g(x) = (1− v)g2(x), so H ⊂ 〈g(x)〉. Hence H = 〈g(x)〉. Since g1(x)|xn − 1 and
g2(x)|xn + 1, there are r1(x), r2(x) ∈ F3[x] such that xn − 1 = g1(x)r1(x) and

xn + 1 = g2(x)r2(x).

It follows that
xn − v = g(x)[2(v + 1)(xn − 1) + 2(1− v)(xn + 1)].

Hence, g(x)|xn − v. Then uniqueness of g(x) can be followed from that of g1(x) and g2(x).
Corollary 5.4 Every ideal of R3[x]

〈xn−v〉 is principal.
Now, we consider the dual codes of v-constacyclic codes of length n over R3 and we

have the following results.
Theorem 5.5 If H is a v-constacyclic code of length n over R3, then its dual code H⊥

is also a v-constacyclic code over R3.
Proof The proof is trivial since v = v−1 and the dual of a v-constacyclic code is a

v−1-constacyclic.
By Theorem 5.5 and Corollary 3.4, it is easy to see that the above results of v-

constacyclic codes can be carried over respectively to their dual codes. We list them here
for the sake of completeness.

Corollary 5.6 Let H = 〈(1 + v)g1(x), (1− v)g2(x)〉 be a v-constacyclic code of length
n over R3, g1(x) and g2(x) be the monic generator polynomials of H+ and H−, respectively,
and xn − 1 = g1(x)p1(x) and xn + 1 = g2(x)p2(x). Then

(1) H⊥ = 〈(1 + v)p∗1(x), (1− v)p∗2(x)〉 and |H⊥| = 2degg1(x)+degg2(x);
(2) H⊥ = 〈p(x)〉, where p(x) = (1+v)p∗1(x)+(1−v)p∗2(x) and p(x)|xn−v, where p∗1(x)

and p∗2(x) are the reciprocal polynomial of p1(x) and p2(x), respectively.

6 Examples

Now, we give the following two examples to illustrate the above results.
Example 6.1 Consider all cyclic codes over R3 of length 2. Since x2−1 = (x−1)(x+1)

in F3[x], there are 15 nonzero cyclic codes over R3 of length 2. Table 1 gives the list of all
cyclic codes. The ones marked with * denote the optimal ones.

Example 6.2 Consider all v-constacyclic codes over R3 of length 4. Since

x4 − 1 = (x− 1)(x + 1)(x2 + 1)

and x4 + 1 = (x2 + x − 1)(x2 − x − 1) in F3[x], there are 31 nonzero v-constacyclic codes
over R3 of length 4. Table 2 gives the list of all v-constacyclic codes. The ones marked with
* denote the optimal ones.
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Table 1 All cyclic codes over R3 of length 2 and ternary images

code generator matrices order generators dL Gray images

H1

(
1 0
0 1

)
34 2 1 [4, 4, 1]∗

H2

(
2 2
0 1 + v

)
32 2 + (1− v)x 1 [4,3,1]

H3

(
−1 1
0 1 + v

)
33 2 + (v − 1)x 1 [4,3,1]

H4

(
1 + v 0

0 1 + v

)
32 1 + v 1 [4,2,1]

H5

(
1 1
0 v

)
33 2 + (1 + v)x 1 [4,3,1]

H6

(
2 0
0 2 + v

)
32 (1 + v) + 2x 2 [4, 2, 2]∗

H7

(
2 2

)
32 2 + 2x 2 [4, 2, 2]∗

H8

(
1 + v 1 + v

)
32 (1 + v) + (1 + v)x 2 [4, 3, 2]∗

H9

(
1 −1
0 v

)
33 v + (1 + v)x 1 [4,3,1]

H10

(
2 0
0 2

)
32 v + 2x 2 [4, 2, 2]∗

H11

(
1 −1

)
32 1 + 2x 2 [4, 2, 2]∗

H12

(
−(1 + v) 1 + v

)
33 −(1 + v) + (1 + v)x 2 [4, 3, 2]∗

H13

(
1− v 0

0 1− v

)
32 1− v 1 [4,2,1]

H14

(
1− v 1− v

)
3 (1− v) + (1− v)x 2 [4,1,2]

H15

(
1− v −(1− v)

)
3 2 2 [4,1,2]
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Table 2 All v-constacyclic codes over R3 of length 4 and ternary images

code generator polynomials Gray images
H1 2 [8, 8, 1]∗

H2 (1 + v) + (1− v)(x2 + x + 1) [8,6,1]
H3 (1 + v) + (1− v)(x2 − x− 1) [8,6,1]
H4 1 + v [8,4,1]
H5 (1 + v)(x− 1) + (1− v) [8,7,1]
H6 (1 + v)(x− 1) + (1− v)(x2 + x + 1) [8, 5, 2]∗

H7 (1 + v)(x− 1) + (1− v)(x2 − x− 1) [8, 5, 2]∗

H8 (1 + v)(x− 1) [8,3,2]
H9 (1 + v)(x + 1) + (1− v) [8,7,1]
H10 (1 + v)(x + 1) + (1− v)(x2 + x− 1) [8, 5, 2]∗

H11 (1 + v)(x + 1) + (1− v)(x2 − x− 1) [8, 5, 2]∗

H12 (1 + v)(x + 1) [8,3,2]
H13 (1 + v)(x2 + 1) + (1− v) [8,6,1]
H14 (1 + v)(x2 + 1) + (1− v)(x2 + x + 1) [8,4,2]
H15 (1 + v)(x2 + 1) + (1− v)(x2 − x− 1) [8,4,2]
H16 (1 + v)(x2 + 1) [8,2,2]
H17 (1 + v)(x2 − 1) + (1− v) [8,6,1]
H18 (1 + v)(x2 − 1) + (1− v)(x2 + x− 1) [8,4,2]
H19 (1 + v)(x2 + 1) + (1− v)(x2 − x− 1) [8,4,2]
H20 (1 + v)(x2 + 1) [8,2,2]
H21 (1 + v)(x− 1)(x2 + 1) + (1− v) [8,5,1]
H22 (1 + v)(x− 1)(x2 + 1) + (1− v)(x2 + x− 1) [8,2,3]
H23 (1 + v)(x− 1)(x2 + 1) + (1− v)(x2 − x− 1) [8,2,3]
H24 (1 + v)(x− 1)(x2 + 1) [8,1,4]
H25 (1 + v)(x + 1)(x2 + 1) + (1− v) [8,5,1]
H26 (1 + v)(x + 1)(x2 + 1) + (1− v)(x2 + x− 1) [8,3,3]
H27 (1 + v)(x + 1)(x2 + 1) + (1− v)(x2 − x− 1) [8,3,3]
H28 (1 + v)(x + 1)(x2 + 1) [8,1,4]
H29 1− v [8,3,1]
H30 (1− v)(x2 + x− 1) [8,2,3]
H31 (1− v)(x2 − x− 1) [8,2,3]

7 Conclusion

In this paper, we studied cyclic and v-constacyclic codes over R3 with an arbitrary
length. The dual of the cyclic and v-constacyclic of codes are studied as well. An example of
the cyclic and constacyclic codes over R3 with fixed length is given, respectively. With two
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examples in hand, we can urge the researchers to search for new ternary codes with good
paraments as images of two families of codes. Another two important families for study
would be the families of cyclic and constacyclic codes over Fp + vFp where p is a prime
number and p > 3.
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环F3 + vF3上的循环码与常循环码

刘修生1, 许小芳1, 黄振华2

(1. 湖北理工学院数理学院, 湖北黄石 435003)

(2. 湖北师范学院数学与统计学院, 湖北黄石 435002)

摘要: 本文研究了环F3 + vF3上的循环码与常循环码. 通过环F3 + vF3与域F3上的循环码之间关系,

证明了环F3 + vF3上循环码是由一个多项式生成的. 最后, 用类似的方法, 得到了环F3 + vF3上v -常循环码

也是由一个多项式生成的.
关键词: 循环码; 常循环码; Gray 映射; 生成多项式
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