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1 Introduction

In this paper, the graphs are undirected simple graphs and for other terminologies we
follow [1]. Let G = (V, E) be a graph with vertex set V = V(G) and edge set E = E(G).
Every maximal complete subgraph K of graph G is called a clique of GG, the order of a largest
complete subgraph is called the clique number of GG, denoted by w(G). A clique K is called
non-trivial if K # K;. Let G; and G5 be any two disjoint graphs. Then G; V G2 denotes
the join graphs of G; and Go:

V(G V Gy) = V(G1) JV(G),
E(G1V Gs) =E(G)UE(Gy)J{uww:u e V(Gy),v € V(Ga)}.

Let G = (V, E) be a graph. For a function f : E — {41, —1} and a subset S of E(G),

define f(S) = Y_ f(e). For convenience, for a given graph G = (V, E), an edge e € E(G)
e€S
is said to be a +1 edge of G if f(e) = +1, analogously, an edge e € F(G) is said to be a -1

edge of G if f(e) = —1. Write E; = {e € E(G)|f(e) = +1}, B2 = {e € E(G)|f(e) = —1}.
Definition 1.1 [2] Let G = (V, E) be a simple graph. A function f : E — {+1,—1}

is said to be a signed clique edge dominating function of G if > f(e) > 1 for every
ecE(K)
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non-trivial clique K in G. The signed clique edge domination number of G is defined to

be v.,,(G) = min{ > f(e) : f is a signed clique edge dominating function of G}.
e€E(G)

particular, for empty graph K, define v, ,(K,) = 0.

In recent years, domination number and its variations were studied extensively. The
monographs [2] contain extensive reviews of topics. Signed edge domination was studied in
[3, 4], signed clique edge domination was studied in [5], signed star domination in [6], signed
cycle domination in [7], minus edge domination in [8], signed edge total domination in [9)].
In this paper, we determine the signed clique edge domination numbers of graphs K, V P,
and K,, VvV C,,.

2 Main Result

Theorem 2.1 For any positive integer n > 3 and m > 3,

206 —n)| 2] — (n+ )m+ "2 11 when n = 3,4,5,

'Y;cl(Kn V Pp) = 2
f(n+1)m+2n+3+%, when n > 6.

Proof Let f be a signed clique edge dominating function of graph G = K,, V P,, such

that v..,(G) = f(E) = 3_ f(e). The vertices of K, are v1,vy,--v, in this order, and the
eck

vertices of P, are wuj,us,- - Uy, in this order. Then \E(G)|:@ + (n+1)m — 1. Let
A={vu;li=1,2,---n,j=1,2,---m} J{wui1]i = 1,2,--- ;m —1}.

We first prove lower bound.

Case 1 n =3,4,5, then

n(n—1)

o +1 (2.1)

Yea(G) 2 2(6 =) ] = (n+ ym +

Let s (respectively ¢) be the number of +1 (respectively -1) edges of G, thus "("2_1) +
(n+1)ym—1=s5+t,7,,(G) =s—t.

Suppose that (2.1) does not hold. Then 7, ,(G) < 2(6 —n)[ 2] — (n+ 1)m + 22 11,
Hence t > (n+1)m — (6 — n)[ %] — 1. Let the number of -1 edges in A be r.

Case 1.1 m =0 (mod 2).

Suppose 3(n — 2)% + (m —1) < r < (n+ 1)m — 1. By the pigeonhole principle,
there exists a clique K, 12 € G, that the number of -1 edges is at least 3n — 4, such that

>>  f(e) <0. This is a contradiction.
e€EE(Kn42)
If

m  n(n—1)
Dm— (6 —n)m — 20— 2
(n+ m— (6 —m) ™ "
then the number of -1 edges in E(G) \ A is at least 1. By the pigeonhole principle, there
exists a Ko € G, such that Yy ) f(e) < 0. This is a contradiction.

Case 1.2 m =1 (mod 2).

| /\

<3(n-— 2)% + (m —1),
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Suppose n[%5|+2(n—3)[% |+ (m—1) <r < (n+1)m—1. By the pigeonhole principle,
there exists a clique K, .o € G, that the number of -1 edges is at least 3n — 4, such that

> f(e) <0. This is a contradiction.
e€E(Ky42)

If

(n—-1)
2

(n+1)m— (6 —n)| 5] - = <r<3m—2)| T +n+(m-1),

then the number of -1 edges in E(G) \ A is at least 1. By the pigeonhole principle, there

exists a K, 42 € G, such that > f(e) <0. This is a contradiction.
e€E(Kpi2)

Hence 7,,(G) > 2(6 —n)[ 2| — (n+ 1)m + n(n2—1) 41
Case 2 n > 6. Then

(-Dlzi+t 41

Voar(G) = =(n+ D)m+ 2+ 3+ ——

Let f be a signed clique edge dominating function of G such that ~,,(G) = f(G), and
s the number of 41 edges of G. Then ~.,(G) = 2s — |E(G)]. And > f(e) > 1 for

e€E(Kpnt2)
every non-trivial clique K, ;2 in G. Hence s > so = |{e € E(K,12) | f(e) = 1}|.
Note that
n(n —1 n+2)(n+1
26) = "D g 1y 1, (B () = DD

Since f(K,42) > 1, s > [%J + 1. Then s > L%J + 1. Hence

(-Dlzl+t 41

Yoa(G) =25 — |B(Q)| > —(n+ 1)m + 2n + 3 + .

Next consider the upper bound.
We define the signed clique edge dominating function f of graph G as follows:
For n = 3, let

1) { +1, when e € K3 J{viu;li =1,2,3,7=0 (mod 2)};
e) =

—1, otherwise.

For n =4, let
i) +1, when e € Ky J{viu;li =3,4,j =0 (mod 2)};
e) =
—1, otherwise.
For n =5, let
i) +1, when e € K5 J{viu;li =5, =0 (mod 2)};
e) =
—1, otherwise.
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For n = 3,4, 5, every non-trivial clique K,,,» in GG, we have

S o= Y fo- Y e

e€E(Knt2) e€E1 ) E(Kni2) e€Ey ) E(Kpny2)
-1
=%+(6—n)—(3n—5)
-1
— % —dn+11 > 1.
Hence 7,,(G) < Y fle)=2(6-n)[Z] - (n+ L)m+ 7L(n2—1) ey

e€cE(G)
For n > 6, let the number of +1 edges in K, is L%J + 1. All other edges are

assigned -1. For every non-trivial clique K15 in G, we have

S o= Y fo- Y fe

e€E(Knq2) e€E1 | E(Knt2) e€EE> (| E(Kn42)
(n+2)(n+1) (n+2)(n+1)
4 2
{ 1, n=0,1 (mod 4);

- 2, n=2,3 (mod 4).

=2| |+2-

Hence .
(-Dlzi+t 41

Yol G) < Y fle)=—(n+1)m+2n+3+ ;

e€E(G)
Theorem 2.2 For any positive integer n > 3 and m > 3,

26 —n)[F] —(n+1)m+ @, when n = 3,4,5

V;Cl(Kn VCp) = n
—(n+1)m+2n+2+%, when n > 6.

Proof Let f be a signed clique edge dominating function of graph G = K,, vV C,, such

that v..,(G) = f(E) = 3 f(e). The vertices of K, are vi,vs,--v, in this order, and the
ecE

vertices of C,,, are uy, us, - - - Uy, in this order. Then \E(G)|:% + (n+ 1)m. Write

A={vyli=1,2,--n,5 = 1,2, m} | Jwwgpali = 1,2, ,m = 1} J{uawa}.
n = 3,4,5, we first prove lower bound.

V2a(G) 2 26— m)[5] = (n+ 1) + n(n—1)

Let s (respectively t) be the number of +1 (respectively -1 ) edges of G. Thus

n(n —1)

s Tt Dm=s+t, 7,(G)=s—t.

Suppose that (2.2) does not hold. Then 7,,(G) < 2(6 — n)[2] — (n + 1)m + ”(”T_l)
Hence t > (n+ 1)m — (6 — n)[%%]. Let the number of -1 edges in A be 7.
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Case1 m =0 (mod 2).

Suppose 3(n —2)% +m < r < (n+ 1)m . By the pigeonhole principle, there exists a
clique K12 € G, That the number of -1 edges is at least 3n—4, such that

> fle)<o0.

e€E(Knt2)
This is a contradiction.

If

(n+)m—(6—m)™ - =1

- —|—1§7’§3(n—2)%+m.

Then the number of -1 edges in E(G) \ A is at least 1. By the pigeonhole principle, there
exists a K, 12 € G, such that >

f(e) <0. This is a contradiction.
e€EE(Ky42)

Case 2 m =1 (mod 2).

Suppose n| | + 2(n — 3)[F] +m < r < (n+ 1)m. By the pigeonhole principle,
there exists a clique K, 1o € G, that the number of -1 edges is at least 3n — 4, such that
>

f(e) <0. This is a contradiction.
e€EE(Ky42)

If

(n+1)m—(6—n)[%1 —@HSTSM%JHW—SN%HW

then the number of -1 edges in E(G) \ A is at least 1. By the pigeonhole principle, there
exists a K, 1o € G, such that >

f(e) <0. This is a contradiction.
eeE(KnJr?)

In summary,

Year(G) > 2(6 — n)(% ~ (ot Dm+ w

Next we consider the upper bound. The upper bound is obtained by specifying a signed
clique edge dominating function. We define the signed clique edge dominating function f of
G as follows:

For n = 3, let

) { +1, when e € K3 J{viu;li =1,2,3,7=1 (mod 2)};
e) =

—1, otherwise.

For n =4, let

1) +1, when e € Ky J{viu;li =3,4,7=1 (mod 2)};
6 =
—1, otherwise.

For n =5, let

f(e)

+1, when e € K5 J{viu;li=5,=1 (mod 2)};
—1, otherwise.
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For n =3,4,5, m =1 (mod 2), consider clique K, > of include edge uiuy,,

S 0= fe -3 fe

e€EE(Kp42) ec by e€ By
n(n —1)
= =5 +2(6—n) ~ (4n—11)
-1
- n(”T) —6n+23> 1.
We have ( 3
, m n(n —
Y@ S S fle) =26 -m)[T] — (n+ m o+ M

e€E(G)

For other cases the proof is similar to Theorem 2.1.
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