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Abstract: In this paper, the localization problems of computable comodules and Hom-

computable coalgebras are studied. By applying some localization techniques, the equivalent con-

ditions for computable comodules and Hom-computable coalgebras are obtained, which extend the

developing of localization theory of coalgebras.
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1 Introduction

It is well known that the localization plays an important role in the theory of algebras.
It was developed continuously from different aspects. The canonical procedure is actually
the formulation of rings of fractions and the associated process of localization which are the
most important technical tools in commutative algebra. Meanwhile, Goodearl, Warfield and
others investigated the localization in the noncommutative case and obtain many nice results.
Also, Gabriel described the localization abstractly in Abelian and Grothendieck category [1].
In the process of localization, one usually applies a functor onto a new category, the quotient
category, which has a right adjoint, the section functor. Specifically, if T : A −→ A′ is an
exact functor between Abelian categories, and S : A′ −→ A is a full and faithful right
adjoint functor of T , then the dense subcategory kerT , with object class {X ∈ A | T (X) =
0}, is a localizing subcategory of A , and the category A′ is equivalent to A/ kerT . In
particular, localization in which A is a Grothendieck category is the same as in Abelian
categories. Starting from the localization of rings, some mathematicians developed a theory
of localization for coalgebras. For instance, Navarro elaborated Gabriel’s ideas in comodule
categories (Grothendieck categories of finite type) in [2–6]. The key point of the theory lies
in the description that quotient category becomes a comodule category. In other words, a
quotient category MC/T is a category of comodules MD for certain coalgebra D, where
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C is a coalgebra, and T is a localizing subcategory of MC . Indeed, this is because the
category MC of right comodules over a coalgebra C is a locally finite Grothendieck category
in which the theory of localization can be applied. The advantage of this is that it is better
to understand than the case of modules over an arbitrary algebra. It is worth mentioning
that the key point in most of such applications is the behaviour of simple comodules through
the action of the section functor. Therefore, by studying on a set of localized coalgebras of
any coalgebra C, we can obtain some information about C or its category of comodules MC .

In this paper, we give a description of the localization in Hom-computable coalgebras.
The paper is organized as follows. In Section 2, we list some notations and basic facts about
coalgebras, localization and quivers, in order to make the article self-contained. In Section
3, we characterize the localization in Hom-computable coalgebras, and obtain two localizing
properties about computable comodules and Hom-computable coalgebras.

2 Preliminaries

Throughout this paper K will be a ground field, and C is a K-coalgebra. We denote
by MC and MC

f the categories of right C-comodules and right C-comodules of finite K-
dimension, respectively.

Following [2], a full subcategory T of MC is said to be dense if each exact sequence

0 −→ M1 −→ M −→ M2 −→ 0

in MC satisfies that M belongs to T if and only if M1 and M2 belong to T . For any
dense subcategory T of MC , there exists an Abelian category MC/T and an exact functor
T : MC −→MC/T , such that T (M) = 0 for each M ∈ T , satisfying the following universal
property: for any exact functor F : MC −→ C such that F (M) = 0 for each M ∈ T , there
exists a unique functor F : MC/T −→ C verifying that F = FT , where C is an arbitrary
Abelian category. The category MC/T is called the quotient category of MC with respect
to T , and T is known as the quotient functor. A dense subcategory T of MC is said to be
localizing if the quotient functor T : MC −→ MC/T has a right adjoint functor S, called
the section functor. If the section functor is exact, then T is called perfect localizing, T is
said to be colocalizing if T has a left adjoint functor H, called the colocalizing functor, T is
called perfect colocalizing if the colocalizing functor is exact.

Let us list some properties of the (co)localizing functors (see [1] and [7]).
Lemma 2.1 Let T be a dense subcategory of the category of right comodules MC

over a coalgebra C. The following statements hold:
(a) T is exact.
(b) If T is localizing, then the section functor S is left exact and the equivalence

TS ∼= 1MC/T holds.
(c) If T is colocalizing, then the colocalizing functor H is right exact and the equivalence

TH ∼= 1MC/T holds.
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In [2] and [8], localizing subcategories are described by means of idempotents in the dual
algebra C∗. In particular, it is proved that the quotient category is the category of right
comodules over the coalgebra eCe, where e is the idempotent associated to the localizing
subcategory. The coalgebra structure of eCe is given by

∆eCe(exe) = Σ(x)ex(1)e⊗ ex(2)e and εeCe(exe) = e(x),

where ∆C(x) = Σ(x)x(1)⊗x(2) for any x ∈ C. If M is a right C-comodule, eM has a natural
structure of right eCe-comodule given by

ρ(ex) = Σ(x)ex(0) ⊗ ex(1)e,

where ρM (x) = Σ(x)x(0) ⊗ x(1) for any x ∈ M .
Lemma 2.2 Let C be a coalgebra and e be an idempotent in C∗. Then the following

statements hold:
(a) The quotient functor T : MC −→MeCe is naturally equivalent to the functor e(−).

T is also equivalent to the cotensor functor −¤CeC.
(b) The section functor S : MeCe −→ MC is naturally equivalent to the cotensor

functor −¤eCeCe.
(c) If T is a colocalizing subcategory ofMC , the colocalizing functor H : MeCe −→MC

is naturally equivalent to the functor Co homeCe(eC,−).
Next, for completeness, we remind some points about quivers and path (co)algebras.

By a quiver, Q, we mean a quadruple (Q0, Q1, h, s) where Q0 is the set of vertices (points),
Q1 is the set of arrows and for each arrow α ∈ Q1, the vertices h(α) and s(α) are the source
(or start point) and the sink (or end point) of α, respectively. If i and j are vertices in Q,
an (oriented) path in Q of length m from i to j is a formal composition of arrows

p = αm · · ·α2α1,

where h(α1) = i, s(αm) = j and s(αk−1) = h(αk) for k = 2, · · · ,m. To any vertex i ∈ Q0 we
attach a trivial path of length 0, say ei, starting and ending at i such that αei = α (resp.
eiβ = β) for any arrow α (resp. β) with h(α) = i (resp. s(β) = i). We identify the set of
vertices and the set of trivial paths. An (oriented) cycle is a path in Q which starts and
ends at the same vertex. Q is said to be acyclic if there is no oriented cycle in Q.

Let KQ be the K-vector space generated by the set of all paths in Q. Then KQ can
be endowed with the structure of a (not necessarily unitary) K-algebra with multiplication
induced by concatenation of paths, that is

(αm · · ·α2α1)(βn · · ·β2β1) =

{
αm · · ·α2α1βn · · ·β2β1, ifs(βn) = h(α1),
0, otherwise,

KQ is the path algebra of the quiver Q. The algebra KQ can be graded by

KQ = KQ0 ⊕KQ1 ⊕ · · · ⊕KQm ⊕ · · · ,
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where Qm is the set of all paths of length m.
Following [8], the path algebra KQ can be viewed as a graded K-coalgebra with comul-

tiplication induced by the decomposition of paths, that is, if p = αm · · ·α2α1 is a path from
the vertex i to the vertex j, then

∆(p) = ej ⊗ p + p⊗ ei +
m−1∑
i=1

αm · · ·αi+1 ⊗ αi · · ·α1 =
∑
ητ=p

η ⊗ τ

and for a trivial path, ei, we have ∆(ei) = ei ⊗ ei. The counit of KQ is defined by the
formula

ε(α) =

{
1, if α ∈ Q0,

0, if α is a path of length ≥ 1.

The coalgebra (KQ, ∆, ε) (shortly KQ) is called the path coalgebra of the quiver Q.
For any coalgebra C, we denote by {Sj}j∈IC

and {Ej}j∈IC
a complete set of pairwise

nonisomorphic simple and indecomposable injective right C-comodules, respectively. From
now on, we fix an idempotent element e ∈ C∗. We also denote by Te the localizing sub-
category associated to e and by {Sj}j∈Ie⊂IC

the subset of simple comodules of the quotient
category. In what follows, we will denote by {Ej}j∈Ie

a complete set of pairwise noniso-
morphic indecomposable injective right eCe-comodules, and assume that Ej is the injective
envelope of the simple right eCe-comodule Sj for each j ∈ Ie.

The K-coalgebra C is said to be basic if the right C-comodule socCC has a direct sum
decomposition socCC = ⊕j∈IC

Sj , where IC is a set, Sj are simple comodules, and Si � Sj

for all i 6= j. Given a basic K-coalgebra C, we fix right comodule decompositions

socCC = ⊕j∈IC
Sj and CC = ⊕j∈IC

Ej ,

where IC is a set and Sj , with j ∈ IC , are pairwise non-isomorphic simple comodules in MC
f

and Ej is the injective envelope of Sj in MC , for each j ∈ IC .
Following [9] and [10], for every M in MC

f , we define the composition length vector

lgthM = (lj(M))j∈IC
∈ Z(IC),

where Z(IC) is the direct sum of IC copies of the free Abelian group Z and lj(M) ∈ N is the
number of simple composition factors of M isomorphic to the simple comodule Sj . Now we
extend the definition of lgthM to a class of infinite-dimensional C-comodules M . We recall
that, given a right C-comodule, the socle filtration of M is the chain soc0M ⊆ soc1M ⊆
· · · ⊆ socmM ⊆ · · · ⊆ M , where soc0M = socM and, given n ≥ 0, socm+1M is the preimage
of soc(M/socmM) under the canonical projection M −→ M/socmM . Note also that, by
definition, the comodule

Mm = socmM/socm−1M = soc(M/socm−1M)

is semisimple, for each m ≥ 0, where we set M0 = socM .
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Following [10] and [11], we get the following definitions. Assume that C is a basic
K-coalgebra.

(a) A comodule M in MC is defined to be computable if, for each j ∈ IC , the sum

lj(M) =
∞∑

m=0

lj(Mm)

called the composition Sj-length of M , is finite, where lj(Mm) is the number of times the
simple comodule Sj appears as a summand in a semisimple decomposition of Mm.

(b) An arbitrary coalgebra C is defined to be Hom-computable if every indecomposable
injective right C-comodule is computable.

(c) If M is a computable C-comodule, the integral vector

lgthM = (lj(M))j∈IC
∈ ZIC

is called the composition length vector of M , where ZIC is the direct product of IC copies
of the free Abelian group Z. The composition length of M is the cardinal number (finite or
infinite)

lgth(M) =
∑
j∈IC

lj(M).

3 Main Results

Definition 3.1 Given a coalgebra C and a comodule M with a subcomodule N , the
comodule M is said to be an essential extension of N (or N is said to be an essential
subcomodule of M) if for every subcomodule H of M , H ∩N = 0 implies that H = 0.

Proposition 3.2 Let e ∈ C∗ be an idempotent. If C is a basic K-coalgebra, then eCe

is also a basic K-coalgebra.
Proof Note that C is basic if and only if CC =

⊕
j∈IC

Ej and that Ce = S(eCe)
as right C-comodule. Moreover, Ce is a direct summand of CC . Then eCe =

⊕
j∈Ie

Ej

because S commutes with direct sums and sends Ej to Ej for each j ∈ Ie. So, eCe is a basic
K-coalgebra.

Proposition 3.3 Let C be a basic K-coalgebra and e ∈ C∗ be an idempotent. If M is
a computable right C-comodule, then eM is a computable right eCe-comodule.

Proof Let us consider the socle filtration of M

soc0M ⊆ soc1M ⊆ · · · ⊆ socmM ⊆ · · · ⊆ M,

where soc0M = socM and give m ≥ 0, socm+1M is the preimage of soc(M/socmM) =
socm+1M/socmM under the canonical projection M −→ M/socmM . Since e(−) is an exact
functor, we obtain the inclusions

e(soc0M) ⊆ e(soc1M) ⊆ · · · ⊆ e(socmM) ⊆ · · · ⊆ eM
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and e(socm+1M)/e(socmM) ∼= e(socm+1M/socmM) is semisimple. We consider the socle
filtration of eM

soc0eM ⊆ soc1eM ⊆ · · · ⊆ socmeM ⊆ · · · ⊆ eM.

From [12], we have e(socmM) ⊆ socmeM , because the socle filtration of eM is the
“largest” series in eM .

Let

Mm = socmM/socm−1M = soc(M/socm−1M),

eMm = socmeM/socm−1eM = soc(eM/socm−1eM) ⊆ soc(eM/esocm−1M)
∼= soc e(M/socm−1M) ⊆ soc(M/socm−1M) = Mm.

Thus lj(eMm) ≤ lj(Mm), and if M is computable right C-comodule, then eM is a computable
right eCe-comodule.

Corollary 3.4 Let C be a basic K-coalgebra and e ∈ C∗ be an idempotent. If C is
Hom-computable, then eCe is also Hom-computable.

Proposition 3.5 Let C be a basic K-coalgebra and e ∈ C∗ be an idempotent such
that S(Sj) = Sj for all j ∈ Ie. If N is computable right eCe-comodule, then S(N) is a
computable right C-comodule.

Proof Let us consider the socle filtration of N

soc0N ⊆ soc1N ⊆ · · · ⊆ socmN ⊆ · · · ⊆ N,

where soc0N = socN and give m ≥ 0, socm+1N is the preimage of soc(N/socmN) =
socm+1N/socmN under the canonical projection N −→ N/socmN . Since S is a left ex-
act functor, we obtain the inclusions

S(soc0N) ⊆ S(soc1N) ⊆ · · · ⊆ S(socmN) ⊆ · · · ⊆ S(N)

and
S(socm+1N)/S(socmN) ⊆ S(socm+1N/socmN)

is semisimple. We consider the socle filtration of S(N)

soc0S(N) ⊆ soc1S(N) ⊆ · · · ⊆ socmS(N) ⊆ · · · ⊆ S(N).

From [12], we have S(socmN) ⊆ socmS(N), because the socle filtration of S(N) is the
“largest” series in S(N).

Let

Nm = socmN/socm−1N = soc(N/socm−1N),

S(N)m = socmS(N)/socm−1S(N) = soc(S(N)/socm−1S(N)) ⊆ soc(S(N)/S(socm−1N))

⊆ socS(N/socm−1N) = soc(N/socm−1N) = Nm.
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Thus lj(S(N)m) ≤ lj(Nm), and if N is computable right eCe-comodule, then S(N) is a
computable right C-comodule.

Following [2], the idempotent e ∈ C∗ is said to be left (right) semicentral if eCe =
eC(eCe = Ce).

Corollary 3.6 Let C be a bacic K-coalgebra and e ∈ C∗ be a right semicentral idempo-
tent. If N is a computable right eCe-comodule, then S(N) is a computable right C-comodule.

Proof By [5], e is right semicentral if and only if S(Sj) = Sj for all j ∈ Ie. Then the
statement follows from the former result.

Example 1 Let KQ be the path coalgebra of the quiver

1 α−→ 2
β−→ 3

and e ∈ C∗ be the idempotent associated to the set Xe = {3}. Then E1 = 〈1〉, E2 =
〈2, α〉, E3 = 〈3, β, βα〉, eE1 = 0, eE2 = 0, eE3 = E3. Thus e is a left semicentral idempotent,
by [5]. If e′ ∈ C∗ is an idempotent associated to the set Xe′ = {1}, then the localized
coalgebra e′Ce′ is S1 and

S(S1) = S1¤e′Ce′Ce′ = e′Ce′¤e′Ce′Ce′ ∼= Ce′ ∼= 〈1〉 ∼= S1.

Thus e′ is a right semicentral idempotent, by [5].

The following notations are given in [13] and [14]. Let Si be a simple C-comodule, we
define the set

I(I i) = {Sj simple C-comodule | there is a path in (QC , dC) from Sj to Si}.

It is easy to see that I(I i) is the set of predecessors of Si in the Gabriel quiver of C (see
[10]). In general, for some subset U ⊆ IC , we set

I(I U) =
⋃
i∈U

I(I i).

Observe that, for any subset U ⊆ IC , the idempotent eU associated to the set of simple
comodules I(I U) is right semicentral, by [5].

Example 2 Consider the quiver Q,

4
α5

ÁÁ>
>>

>>
>>

1
α1 // 2

α3

@@¡¡¡¡¡¡¡

α2
ÁÁ>

>>
>>

>>
5

α6 // 6 // · · ·

3
α4

@@¡¡¡¡¡¡¡
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then the Gabriel quiver (QKQ, dKQ) of KQ is given by

S4

ÃÃA
AA

AA
AA

S1
// S2

>>}}}}}}}

ÃÃA
AA

AA
AA

S5
// S6

// · · ·

S3

>>}}}}}}}

IC = {1, 2, 3, 4, 5, 6, · · · }, if U = {2, 4, 5} ⊆ IC , I(I U) = {S1, S2, S3, S4}, then eU associated
to the set of simple comodules I(I U) is right semicentral; if U = {3, 5, 6} ⊆ IC , I(I
U) = {S1, S2, S3, S4, S5}, then eU associated to the set of simple comodules I(I U) is right
semicentral.

By above results, we get the following localizing properties.
Theorem 3.7 Let C be a basic K-coalgebra. M is a computable right C-comodule if

and only if eUM is a computable right eUCeU -comodule for each finite set U ⊆ IC .
Proof It is only to prove if S(eUM) is computable then M is computable. Let

S(eUM) = N , we have

soc0N ⊆ soc1N ⊆ · · · ⊆ socmN ⊆ · · · ⊆ N.

Since M is an essential subcomodule of N , we obtain the inclusions

soc0N ∩M ⊆ soc1N ∩M ⊆ · · · ⊆ socmN ∩M ⊆ · · · ⊆ N ∩M = M.

We consider the socle filtration of M

soc0M ⊆ soc1M ⊆ · · · ⊆ socmM ⊆ · · · ⊆ M.

From [12], we have socmN ∩ M ⊆ socmM , because the socle filtration of M is the
“largest” series in M .

Let

Mm = socmM/socm−1M = soc(M/socm−1M),

M/socm−1M ⊆ M/socm−1N ∩M ∼= (M + socm−1N)/socm−1N ⊆ N/socm−1N.

Thus lj(Mm) ≤ lj(Nm), and if N is computable right eCe-comodule, then M is a computable
right C-comodule.

By Theorem 3.7 and the definition of Hom-computable coalgebras, we obtain the fol-
lowing corollary.

Corollary 3.8 Let C be a basic K-coalgebra. C is a Hom-computable coalgebra if and
only if eUCeU is a Hom-computable coalgebra for each finite set U ⊆ IC .
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Hom -可计算余代数的局部化
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摘要: 本文研究了可计算余模和Hom -可计算余代数的局部化问题. 利用局部化方法, 得到了可计算

余模和Hom -可计算余代数的等价条件, 推广了余代数上局部化理论的发展.
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