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Abstract: In this paper, nonlinear semiparametric error-in-variables(EV) models are con-
sidered with validation data. Without specifying any error structure equation, two estimators for
the parameter in the nonlinear function are proposed based on the least square method and the
kernel smoothing technique. The obtained estimators are proved to be asymptotically normal. A
simulation study is conducted to show the proposed estimation methods are valid in finite sample.
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1 Introduction

Consider the nonlinear semiparametric model
Y =g(X,8) +m(T) +e, (1)

where Y is the scalar response variable, X is a p-dimensional covariate and T is a univariate
random variable, g(z,3) is a pre-specified function in which § is an unknown parameter
vector in B¢ and m(.) is an unknown smooth function. The model error e are independent
and identically distributed with zero mean. Obviously, model (1) is reduced to be a partially
linear model if let g(X, 3) = X7 4.

Model (1) is a very extensive semiparametric model which was widely studied in many
fields, such as econometric, biology, and environmental science. Li and Nie [1] proposed
an estimation procedure for parameter 3 through a nonlinear mixed-effects approach. Fur-
thermore, Li and Nie [2] analyzed a real data in ecology with this model and proposed two
estimation procedures by profile nonlinear least squares and linear approximation approach.

Huang and Chen [3] obtained the spline profile least square estimator of parameter § when
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the baseline function m(.) was approximated by some graduating functions. Later, Song et
al. [4] provided a sieve least square method when the nonlinear function g(.,.) has some spe-
cial form. Recently, Xiao et al. [5] applied empirical likelihood approach to this model and
compared with the normal approximation method in terms of confidence region of parameter
G.

In practice, some variables of our interest are difficult or expensive to be measured ex-
actly and then are usually replaced by some surrogate observations. The semiparametric
errors-in-variables (EV) model has frequently been applied to many fields and has received
much attention in the literature. The initial assumption is that the variable error is addi-
tive. [6]-][9] applied the empirical likelihood method to partially linear models and varying-
coefficient partially linear models with additive error assumption. However, the additive
error assumption is usually not appropriate in real situation. The realistic case is that the
relationship between the surrogate variables and the true variables is rather complicated and
may be that no error model structure is assumed. In this case, one solution is employing
the help of validation data to capture the underlying relation between the true variables and

surrogate variables.

When the error existed in the covariables, some statistical inference based on validation
data were developed. Wang [10] used this method to partially linear error-in-variable model.
Wang and Rao [11] and Stute et al. [12] developed empirical likelihood approach to linear
models and nonlinear models with errors-in-covariables, respectively. Recently, Wang and
Zhang [13] and Du et al. [14] applied statistical inference to varying coefficient models
and nonparametric regression function with validation sampling. Later, Fang and Hu [15]
considered the nonlinear model with the help of validation data when the error is in the
response. For nonlinear semiparametric models, Xue [16] constructed empirical log-likelihood
ratio statistics for the unknown parameter with the help of validation data. Furthermore,
Liu [17] considered nonlinear semiparametric models with missing response variable and

error-in-covariables.

In this paper, we consider model (1) with explanatory variable X measured with error
and both Y and T measured exactly. Instead of the true variable X, the surrogate variable
X is observed. The relationship between X and X is not additive, which can be evaluated
by regression of X on X. This assumption has been used in other statistical models, such
as in linear models [11] and varying coefficient models [13]. We define two estimators for the
parameter in nonlinear function by considering the two cases where the response variable Y
is available or not in the validation sample. Asymptotic results for the two estimators are
derived, showing that the two proposed estimators are asymptotically normal.

The rest of this paper is organized as follows: we describe the estimation procedures
based on the least square method and kernel method in Section 2. In Section 3, the asymp-
totic normality of the proposed estimators is proved. Some simulation studies are conducted
in Section 4 to evaluate the finite sample properties of the proposed estimators. Finally,

Section 5 concludes the paper.
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2 Estimation

Suppose that X is a p-dimensional surrogate variable for X. Assume that we have
a primary data set containing N independent and identically distributed observations of
{(Y;, X;,T; );Hﬁu} and a validation data set containing n independent and identically dis-
tributed observations of {(X;, X;, T;)",} or {(Y;, X;, X;, T;)"_, }. Tt is also assumed that the
two observation subsets are independent.

Denote Z = (X,T) and G(z,3) = E[g(X,)|Z = z]. Then, model (1) can be rewritten
as

Y =G(Z,B)+m(T)+e, (2)

where € = e+ ¢g(X, ) — G(Z, 3).
Clearly, model (2) is a standard partially nonlinear model if G(.,.) is a known function.
Unfortunately, G(.,.) is usually unknown in practice. To solve this difficulty, we estimate

G(.,.) consistently by the kernel method with validation data as following procedure.
Let

Ro(z,8) =

~ 1 - Z,L—Z
hln;gX“ﬂKl( hln )7 fn(Z):nhlnzzlel( hl,n )7

where K(.) is a kernel function and h, , is a bandwidth.

Then, G(z,3) can be estimated by an(i(zj) Notice that the small value of f,(z) as
the denominator in this estimator, so we can improve this estimator in practice to avoid
technical difficulties. Let fo,(z) = max(f,(2),b,), where b, is a positive constant sequence
that decrease to zero as n increase to infinity. Then, the estimator of G(z, 3) with truncation

version, say @(z, B), is given by

R, (2,8) 23
Fun(2)
Define Gz, 5) = 55G(2,0) = E[gV(X,0)|Z = 2] and ¢"(X,8) = F59(X.0) =

(661 (X,8), -, %d 9(X, ﬂ))T Then, the estimator of G (z, 8), denoted by G (z, ), can
also be obtained by the kernel method.

G(z,8) = (3)

Let
(1) (X, BK
Rn (Z75> hlnzg zvﬁ 1( h1n )7
then, we have
(1)
Gz, ) = T (2:5) (4)
fnb(z)

Using G(z, ) to replace G(z, #) in model (2) and assuming (3 is known, m(t) is estimated
by
n+N
= Y Wn (Y - G(Z5,8)), (5)

j=n+1
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where Wy ;(t) = HNQ(A with K5(.) is a kernel function and hy n is a bandwidth.
Z K2( h2 N )
Similar to m(t,ﬂ) defined in (5), the estimator of E[G(")(Z,3)|T = t], denoted by

ﬁ(t, B), can be estimated by the kernel method, which is defined as

n+N

= > W (G2, 8). (6)

Jj=n+1

Then, the estimator of 3 is defined to be the one which minimizes Sy (B) given by

1 n+N

Sn(B) =~ D (Y = G(Z;.0) — (T, 0))°. (7)

j=n+1
Thus, the estimator of 3, say ﬁN, solves the equation

n+N
S0 G2, 8) (T, )G (25, 5) — (T, ) = 0 (8)
J n+1
Notice that, if we ignore the missing response variable in Liu [17], the estimator B will
reduce to be the B v in this paper. In practice, the response variable Y may be fully observed,
that is to say Y can also be measured in the validation data set. In this case, considering the
validation data {(V;, X;, X;, T;)"_,}, an alternative estimator of 3, say ﬂAnVN, can be obtained
by following procedures.
Let

m(t, §) = Zwm Yi — g(X, 8), (9)

T —
where W,,;(t) = M with K3(.) is a kernel function and hg,, is a bandwidth.

—t

Z K3( h3 )
Similar to (9), the estimator of E[g™") (X, 8)|T = t], denoted by h(t, ), is defined as

h(t, B) :Z 9 (X;, ). (10)

Then, Bn ~ can be obtained by minimizing the sum of least squares

St =i ] X 5= 6 - i

. j=n+1 (11)
#3205 - 90X ) - (87

=1

Thus, Bn ~ solves the equation
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n+N
Tl—iN{ Z (YJ _G(Zjﬂﬂ)_m(TjMB))(é’(l)(Zj,ﬂ)—iL(Tj,B))
. j=n+1 (12)

#3200 - 90X ) T ) (X 8) - BT 8) b =0

i=1
Finally, using estimator 3y or ﬁn ~, we can define the estimator of m(.) as following

n+N

mn(t) = Y Wy (0)(Y; = G(Z;, 5w) (13)

Jj=n+1

n+N

Man(t) = > W0 = G(Z, Bun))- (14)

j=n-+1

3 Asymptotic Property

To state our results, we introduce the following assumptions:
(A1) m(t) has two bounded and continuous derivatives on (0,1).

(A2) T has density function r(¢) on [0,1], and 0 < inf 7(t) < sup r(t) < cc.
0<t<1 0<t<1

(A3) sup,B[e?|Z = 2] < oo, sup, Blg*(X, 8)|Z = 2] < oo, sup, E[gt" (X, 8)%|Z = 2] <
o0, s=1,2,---,d.

(A4) For some k > p, G(z,3) € R*, and Ggl)(z,ﬁ) € R+

(A5) The density of Z, say fz(z), has bounded partial derivative of order one and
satisfies NP(f,(z) < ny) — 0 for some positive constant sequence ny > 0 tending to zero.

(A6) The kernel function K;(.) is a d+ 1-dimensional, continuous and symmetric prob-
ability density function with bounded support. Both K5(.) and K3(.) are symmetric and
bounded probability density function with finite support.

(A7) nhi? bt — oo, nh3* b2 — 0 (k > p), Nhany — oo and Nh3 y — 0, nhs, — o0
and nhg, — 0.

(A8) Both ¥4 () and X3(3) are positive definite matrixes which defined in Theorem 1
and Theorem 2.

(A9) & — X, where X is a nonnegative constant.

Remark 1 (Al), (A2), (A3), (A8) are standard assumptions in partially nonlinear
regression models. (A4) and (A5) are common assumptions in measurement error data with
validation sample. Assumptions (A6), (A7), (A9) are usual used in kernel function and
bandwidths assumptions.

For the estimator By, asymptotic normality is given by the following theorem.

Theorem 1 Under assumptions A1-A9, we have

VN(@By — B) =5 N(0,S7H(B) [Vo(B) + AVA(B)E11(B))
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where —&5 denotes the convergence in distribution, 3, (3) = E[U(Z, 8)U*(Z, 3)] with

U(z,8)=G"(Z,p) - BIGY(Z,0)|T],
Vo(B) = E{[Y — G(Z,8) - m(T)]*U(Z,B)U (2, 8)},
Vi(8) = E{IG(Z,8) — 9(X, B)]*U(2,8)UT(Z, 3)}.

Proof The proof of Theorem 1 is similar to Theorem 2.3 in Xue [16], so we omit it.

Remark 2 The first term in the asymptotic covariance is the contribution of the
primary data in the sample by modeling (2), the partially nonlinear regression relationship
between Y, and Z, T. The second term represents the extra cost due to the estimation of
unknown mean g(X, 3) given Z using the validation data. If A = 0, the second term in the
asymptotic covariance will disappears, and the asymptotic covariance is the same as that in
Li and Nie [2].

For the estimator [in ~, we give the following theorem.

Theorem 2 Under assumptions A1-A9, we have

VN +n(Bun —B) -5 N (0,35 (AV(B)S51(9))
where 3(8) = 2551(8) + 155 32(8) with

2(8) = EIH(X, B)HT (X, B)],

H(X,B) = g"(X,8) - E[gV(X, B)IT]

V(8) = > (Vo(B) + \A(8)) +

1+A 1+/\V2(ﬂ)
Va(B) = EI(Y — g(X.8) — m(T)H(X. §)H" (X, )]

Proof To facilitate the presentation, we give the notations as A%2 = AA” for a vector
or matrix A. Define the left side of (12) is K(f3), that is

n+N
KO =] T 0= 620 - T 0G0 (2,0 - T3,)
j=n+1

30V — (X0, 8) = (T3, ) (g (X5, ) - h(Tl-,m)} (15)

1
=A@ + BOL.

By the motivation of (12), we have K(ﬂAnyN) = 0. Using Taylor expression to K (/) at
ﬂAmN, we get that

By — B=Cr (B )(K(B)) + Op(N~2), (16)
n+N . R n

Where Cn7N</8> = ni]\/‘[ i (G(l)(Z],ﬁ) - h( ]7 Z g(l XM/B - h( za/@))®2]7 ﬁ*
Jj=n+1 i=1

satisfies ||3*—3|| < ||3n.ny—0]|- We can easily prove that C, y(3*) <= — 2551(8)+ 35 22(0)-
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For A((), we have

1 1 n+N
NAB) =5 Y (Y = G(Z;,8) - m(T;)U(Z;, 6)
Jj=n+1
+~ (G(Z;,8) — G(2;,8))U(Z;, )
j=n+1 (17)
1 X ,
ty j§1<m(Tj) — (T}, 8))U(Z;, B) + 0p(N"2)
‘=M, + My + Ms + 0,(N~%).
As the same argument of Liu [17], we can prove that
1 < .
My =~ ;«:(Zi,ﬁ) = (X5, B))U(Z:, ) + 0p(n~%). (18)
Using the Kernel estimation method and Taylor expression, we have
1 n+N
Mz =+ j—;i-l(m(Tj) —m(Tj, 8))U(Z;, B)
n+N 1 n+N n+N .
N > Uz T;) — Z U(Z;,0) Y WrilTy)(m(T:) + &) + 0,(N %)
j=n+1 j:n+1 i=n+1
n+N n+N
¥ Z U(Z;,0) Y WilTy)(m(T;) — m(T))
j =n+1 1=n+1
n+N n+N
- — Z Z;,8) Y Wai(T))es + 0p(N72)
] =n+1 i=n-+1
=0, (N"%).
(19)
This together with (17) and (18), we obtain that
1 1 E
~AB) =y Z Y; = G(Z;,8) —m(T;))U(Z;, B)
e (20)
+ = Z (Zi,8) = 9(X5, B))U(Zi, B) + 0p(N %)
For B((3), by simple calculation, it holds that
B(B) =1 (Y — g(Xi B) — (T2, B)) (o) (Xe, 5) — (T, )
i=1
(21)

:% Z(Yz — 9(X;, 8) — m(T))H(X;, B) + 0,(n"2).
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Then, we have

N [1E
KO = | 2 0= 62 - mT)Uz,.0
Jj=n+1
+ 2 37(G(Z0 8) ~ 9(X U (20, 5) (22

R [ 2090 8) ~ ) H ) o)
This together with (16), (20) and (21) complete the proof.

Remark 3 Obviously, compared to @N, Bn ~ make full use of information, including
response variable Y in the validation data, so it will give more accurate estimator than BN.
This conclusion will be confirmed by simulation studies in the next section. However, in most
applications, the primary data set is much larger than the validation data set, in such case,
there is little information in the validation data, and this will lead to negligible difference
between ﬁN and Bn ~- On the other hand, BN is simple for calculation. So, we recommend
By when \ is large.

Clearly, the asymptotic covariances of By and ,@n ~ can be estimated by combining the

sample moment method and the “plug-in” method. We give the following the notations:

n+N
- 1

£10) = w7 D (GV(Z5.5) - k(T )%,
j=n+1
W(8) = % _glm = G(2;,8) — (T3, )G (25, 8) — h(T, 9)%,
i(8) = i(éwi,ﬁ) —9(X:, ) (GN(Zi, B) = BT, 3),
%(6) =~ i}(gm(xi, B) = h(T:, 3)%*,

Da(8) =~ S (¥ = 9(Xe, B) = (T, 0))2(0) (X0, ) — (T, 5))°

i=1
Then, the asymptotic covariance of By and Bn ~ can be consistently estimated by 21_1 (/5’ ~N) [VO(B N)+
)“/1 (ﬂN)]El_l (/GN) and Egl (ﬁn,N)(V(/Bn,N))Ed_l (ﬁn,N) with

7 Bar) = 1o o) + AV () +

~ A~

‘/2(57171\/')3

1+ A

respectively.

4 Simulation Results
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In this section, we conducted some simulation studies to examine the finite sample
performances of the proposed approaches.

To show the performance of the proposed estimators BN and ﬂAN,n in Section 2, we
compared them with two other estimators: the naive estimator and the gold standard esti-
mator. The naive estimator was obtained by ignoring the measurement error and applying
the standard approach under model (1). The gold standard estimator consider all the true
variable can be observed though it can not be obtained in practice.

The data are generated from the partially nonlinear model:

where g(X, ) = 2exp(—(X) with 8 = 1 and m(T) = sin(277") in which variables T' is
simulated from the uniform distribution on [0,1], X is measured with error and the surro-
gate variable X is generated as X = 125X + 0.2u, X, e,u are standard normal distribu-
tion with truncation constants is 3, respectively. The simulation are run with validation
data and primary data sizes of (n, N). The kernel function K;(z1,22) = Ko(z1)Ko(z2)
with Ko(z) = (15/16)(1 — x%)? if |x| < 1, and 0 for otherwise. Let Ky(z) = Kz(z) =
Ko(z). Take the bandwidths hy,, = 0.2+ n~ Y% hyy = 0.2% N7V/5 hy, = 0.2 n~1/53
and truncation constant b, = 0.1 x n= /42, To show the effects of the rate of the size
of the primary data to the validation data, six cases are studied, which are (n,N) =
(60, 150), (120, 300), (30, 150), (60, 300), (30, 300), (60, 600), respectively. For each case, we
replicated the simulation 1000 times. Table 1 presents the performance of four estimators
of 3. The 'mean’ stands for the average of the 1000 estimates, and 'SD’ is the standard
deviation of the 1000 estimates.

Table 1: Means and deviations of BN, Bn NyBNaive and [?GOM with different sample size

Mean SD Mean SD

A=25 (n,N)=(60,150) (n,N) = (120, 300)
By 0.8642  0.1998 1.0213  0.1552
Bon 09583 0.0321 1.0004  0.0171
BNaive 0.7815  0.0213 0.7806  0.0158
Beoa  1.0002  0.0098 1.0000  0.0060

A=5 (n,N)=(30,150) (n,N) = (60,300)
By 0.8595  0.2039 1.0272  0.1537
Bon 09640  0.0740 1.0004  0.0344
BNaive 0.7817  0.0224 0.7810  0.0164
Beoa  0.9993  0.0101 1.0000  0.0066

A=10 (n,N) = (30,300) (n, N) = (60, 600)
By 0.8680  0.1529 1.0375  0.1192
Bon 09513 0.0779 1.0052  0.0361
BNaive 0.7802  0.0178 0.7800  0.0128

Baota  1.0004  0.0070 0.9999 0.0049
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It follows from Table 1 that the naive estimators have much large bias than the gold
standard estimators and the proposed estimators in all cases. The proposed estimators
have a slight larger bias and SD than the gold standard estimators, which implies that the
proposed estimators BN and Bn ~ work well. Compared with BN and Bm N, Bn ~ performs
better than B  in terms of that Mean is much close to the true value and SD is much smaller.
This is caused by that the Bn n~ involves more information in the estimation equation. But
when the validation data sample is small, we suggest using ﬁN, because it is much simple.

The proposed estimation method performs well among different sample size of (n, N).

5 Conclusions

Nonlinear semiparametric model is a very useful semiparametric model which has been
studied in many literatures. In this paper, we considered the situation of that the covariable
is measured with error, furthermore, there is no specific structure assumption between the
surrogate variable and the true variable. With the help of validation data, we obtain two
estimators for unknown parameter in nonlinear function and prove its asymptotic normality,
respectively. The first estimator is based on the primary data in (7) when applying the
least squares method, moreover, the second estimator considers the response variable Y
is available in the validation data as additional information in (11). The second estimator
gives more accurate estimation at the cost of complexity. However, When the validation data
sample is small and the primary data is large, there is little difference between these two
estimators. In most cases, we recommend the first estimator because it is simple. Simulation

studies show that the estimation methods we proposed are valid.
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