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Abstract: We study the structure of some kinds of cyclic function fields with degree l. By

the means of prime ideal decomposition and the computation of first cohomology of the ideal class

group，we get the lower bound of the l-ranks of the class group of these function fields. In addition,

we find a necessary condition on when these kinds of fields have ambiguous class containing no

ambiguous ideals.
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1 Introduction

Let k = Fq(T ) be the rational function field with constant field Fq, the finite field
with q elements, where q is a power of an odd prime number. The set R = Fq[T ] of all the
polynomials of T over Fq is called the integral domain of k. A finite extension of k is called an
algebraic function field. Let l ≤ 19 be a prime number such that l|(q−1). The function fields
k( l

√
(D(T )) (where D(T ) are not the l-th power of any polynomial) are l-th cyclic function

fields. Artin studied the case l = 2 systematically in [1]. By the discussing of ambiguous
ideal classes Zhang (see [2]) explicitly expressed the 2-rank of the class group of k(

√
(D(T ))

and gave a necessary and sufficient condition for the class number to be odd. Zhang’s result
was used by Ma and Feng (see [3]) to study the ideal class groups of imaginary quadratic
function fields. They obtained a condition for the ideal class groups having exponent ≤ 2.

Here we study the general l-th function fields K = k( l
√

D), where 2 < l ≤ 19. Denote
the Galois group of K/k as Gal(K/k) = 〈σ〉 = {1, σ, σ2, · · · , σl−1}. The integral closure of
R in K (denoted as OK) is called the integral domain of K. The invertible elements (units)
of OK constitute a group UK , the unit group of K or OK .

K is called a real l-th function field if D is monic and the degree of the polynomial D is a
multiple of l, otherwise, we call K a imaginary function field. In the real case, UK = F×q ×VK ,
where VK is a free abelian group with rank l − 1. A set of generators of it is called a basic
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system of units. Let UK = F×q × VK , where VK is a free abelian group with rank l − 1 . If
there is an element ε of UK satisfying

VK = 〈ε, εσ, εσ2
, · · · , εσl−2〉,

then ε is called a Minkowski unit of K. It is known (see [4]) that has Minkowski unit if l is
a prime number ≤ 19. Here and afterward, we assume that l is a prime number ≤ 19.

Similar to number fields, the set I(K) of fractional ideals of K is a group with respect
to the multiplication of ideals. All the principal fractional ideals constitute a subgroup P(K)
of I(K), the so called principal ideal subgroup. The quotient group H(OK) = P(K)/I(K)
is called the ideal class group of K. An ideal class containing ideal a is denoted as [a]. It is
a classical result that the ideal class group of K is a finite abelian group. From the study of
the properties and the constructions of the ambiguous ideal classes we’ll prove the following
theorems.

Theorem 1.1 Let K = k( l
√

D) with D = aP1(T )α1P2(T )α2 · · ·Ps(T )αs , where a ∈ F×q ,
P1(T ), P2(T ), · · · , Ps(T ) are irreducible polynomials in Fq[T ] and 1 ≤ α1, α2, · · · , αs < l.
Then we have

RanklH(OK) ≥
{

s− 2, if K is real and Nε = 1;
s− 1, otherwise.

Theorem 1.2 Suppose that K = k( l
√

D) is a real l-th cyclic function field and Nε = 1.
If D = X l − gY l (where X, Y ∈ R, g is a generator of F×q ), then the ideal class group of K

has an ambiguous class not containing any ambiguous ideal.

2 The Proofs of Lemmas and Theorems

Definition 2.1 An ideal a of K is called an ambiguous ideal of K if aσ = a. An ideal
class [a] of K is called ambiguous if [a]σ = [a].

An ambiguous class is of order 1 or l: if an ambiguous ideal class [a] 6= [1], then

[a]l = [a] · [a]σ · · · [a]σ

= [a] · [a]σ · · · [a]σ
2

= · · · · · ·
= [a] · [a]σ · · · [a]σ

l−1

= [Na]
= [1].

Assume that D = P α1
1 P α2

2 · · ·P αs
s , then the principal ideal (Pi) of k factors as (Pi) =

Pl
i (i = 1, 2, · · · , s) in K. It is obvious that the ideals

s∏
i=1

Psi

i (si ∈ {0, 1, · · · , l − 1}) and (1), ( l
√

Di) (i ∈ {1, · · · , l − 1})
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are all ambiguous ideals of K, here Di is the l-free part of Di. In addition, if K is a real l-th
cyclic function field and its Minkowski unit ε satisfies NK/kε = 1, from Hilbert theorem 90,
there is an element γ ∈ OK such that ε = γ/γσ. Under this condition,

(γi) and (γi l
√

Dj) (i, j ∈ {0, 1, · · · , l − 1})

are also ambiguous ideals of K.
In fact, we have listed all the ambiguous ideals of K:
Lemma 2.2 If an ambiguous ideal A of K does not have rational factors, it must be

of the form

A =
s∏

i=1

Psi

i , where Pi|Pi, si ∈ {0, 1, · · · , l − 1}.

Proof Let A be an unprincipal ambiguous ideal without rational factors. It factors
as

A =
∏
i∈I

Pai

i

∏
j∈J

Q
bj

j ,

where Pi’s are ramified prime ideals and Qj ’s are splitting ones. From the definition of
’ambiguous’, we know that

A = Aσ =
∏
i∈I

Pai

i

∏
j∈J

Q̄
bj

j ,

where Q̄ = Qσ. The uniqueness of factorization leads to bj = 0,∀j ∈ J .
Lemma 2.3 A principal ambiguous ideal without rational factors must be of the fol-

lowing forms:
(1) ( l

√
Di) (i ∈ {0, 1, · · · , l − 1});

(2) if K is a real l-th cyclic function field and its Minkowfski unit ε satisfies NK/kε = 1,

then ε can be written as ε = γ/γσ. Whence (γi) and (γi l
√

Dj) (i ∈ {0, 1, · · · , l − 1}, j ∈
{1, · · · , l − 1}) are principal ambiguous ideals of K.

Proof If (z) is a principal ambiguous ideal without rational factors, where z ∈ OK ,
then (z) = (z)σ. This means that z/zσ = u ∈ UK , and Nu = 1.

Case 1 Suppose that K is imaginary. Then u ∈ F×q = 〈g〉 and there exists a positive
integer m such that u = g

q−1
l m (m ∈ {1, · · · , l − 1}). Without lost of generality, we can

choose that l
√

D
σ

= g
1−q

l
l
√

D. So we have

l
√

Dm

σ
= g

1−q
l m l

√
Dm = u−1 l

√
Dm.

It follows that
z/ l

√
Dm = zσu/ l

√
Dm =

(
z/ l

√
Dm

)σ

,

and so z/ l
√

Dm ∈ k. Because (z) does not have rational factors, we have (z) = ( l
√

Dm).
Case 2 Assume that K is a real function field and N(ε) = gm 6= 1 (where ε is the

Minkowski unit of K ). Suppose, without lost of generality, let m ∈ {1, 2, · · · , l − 1}. Then

u = cεa0
0 εa1

1 · · · εal−2
l−2 , where c ∈ F×q ; εi = εσi

, ai ∈ Z (i = 0, 1, · · · , l − 2).
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Take norms of both side, we get 1 = Nu = clg(a0+a1+···+al−2)m. Hence l|(a0 +a1 + · · ·+al−2).
Set

bl−2 = m(a0 + a1 + · · ·+ al−2)/l,

β0 = bl−2, b0 = a0 − β0;
β1 = bl−2 − b0, b1 = a1 − β1;
· · · · · ·
βl−3 = bl−2 − bl−4, bl−3 = al−3 − βl−3;
βl−2 = bl−2 − bl−3.

Then we have
u = cεb0

0 εb1
1 · · · εbl−2

l−2 εβ0
0 εβ1

1 · · · εβl−2
l−2 .

Let
η1 = εb0

0 εb1
1 · · · εbl−2

l−2 , η2 = εβ0
0 εβ1

1 · · · εβl−2
l−2 .

We know from Nε = gm that εl−1 = gmε−1
0 ε−1

1 · · · ε−1
l−2. It implies that

ησ
1 = εb0

1 εb1
2 · · · εbl−2

l−1

= εb0
1 εb1

2 · · · εbl−3
l−2 · gmbl−2ε

−bl−2
0 ε

−bl−2
1 · · · ε−bl−2

l−2

= gmbl−2ε
−bl−2
0 ε

b0−bl−2
1 · · · εbl−3−bl−2

l−2

= gmbl−2ε−β0
0 ε−β1

1 · · · ε−βl−2
l−2

= gmbl−2η−1
2 .

That is

z/zσ = cη1η2 = cgmbl−2η1η
−σ
1 ,

z/η1 = cgmbl−2(zσ/ησ
1 ) = c′(z/η1)σ, where c′ ∈ F×q .

Similar to Case 1, there is a s ∈ {0, 1, · · · , l − 1} such that

(z) = (z/η1) =
(

l
√

D
s
)

.

Case 3 K is a real function field and N(ε) = 1. From Hilbert theorem 90, we know
that there exists a γ ∈ OK such that ε = γ/γσ. Denote γσi

= γi, we have

εi = εσi = γσi

/γσi+1
= γi/γi+1.

Hence
z/zσ = u = cεa0

0 εa1
1 · · · εal−2

l−2 , where cl = 1.

Set γ̃ = γa0
0 γa1

1 · · · γal−2
l−2 . It follows that

z/γ̃ = c(z/γ̃)σ,
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and so
(z) = (γs) or

(
γs l
√

D
t
)

where s, t ∈ {1, 2, · · · , l − 1}.
Proof of Theorem 1.1 From the above lemmas the number A of ideal classes con-

taining ambiguous ideals of K = ( l
√

aP1(T )α1P2(T )α2 · · ·Ps(T )αs) satisfies

A =

{
ls−2 if K is real and Nε = 1;
ls−1 otherwise .

This means

RanklH(OK) ≥
{

s− 2, if K is real and Nε = 1;
s− 1, otherwise.

Let’s count all the ambiguous ideal classes of K.
Lemma 2.4 Denote the ideal class group of K as H(OK). Let H(OK)G express its

subgroup consists of all the ambiguous ideal classes. Then

∣∣H(OK)G
∣∣ =

ls+δ−1

(F×q : NK/kK×⋂
F×q )

.

where δ =

{
0, if K is real ;

1, if K is imaginary.

Proof For simplicity, we denote the ideal group, the principal ideal group and the
ideal class group of field L as IL, PL, and CL respectively. With our field K we have exact
sequence (see [5])

0 −→ PK −→ IK −→ CK −→ 0.

Because H1(G, IK) = ⊕℘H1(G℘,Z) and H1(G℘,Z) = 1, we have H1(G, IK) = 1. That
means that the exact sequence

0 −→ P G
K −→ IG

K −→ CG
K −→ H1(G, PK) −→ 0

holds. It is the same to say that we have the following short exact sequence

0 −→ IG
K/P G

K −→ CG
K −→ H1(G, PK) −→ 0.

It follows that ∣∣CG
K

∣∣ = (IG
K : P G

K ) ·#H1(G, PK).

But we have IG
K ⊃ P G

K ⊃ PK , so

(IG
K : P G

K ) = (IG
K : Pk)/(P G

K : Pk) = (IG
K : Ik)/(P G

K : Pk) = e0(K)/(P G
K : Pk),

where e0(K) = ls is the product of the ramified indices of all the ramified prime ideals of K.
It is seen from Hilbert theorem 90 that H1(G,K×) = 0. From the short exact sequence

0 −→ UK −→ K× −→ PK −→ 0
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we obtain the long exact sequence

0 −→ Uk −→ k× −→ P G
K −→ H1(G,UK) −→ 0.

Moreover, we conclude that

0 −→ Pk −→ P G
K −→ H1(G,UK) −→ 0

are exact. It means that

(P G
K : Pk) = #H1(G,UK) = #H0(G,UK)/Q(G,UK).

where the Herband quotient

Q(G,UK) =
1
l

∏
v∈S∞

evfv =
1
l
e∞f∞ =

{
1
l
, if K is real ;

1, if K is imaginary .

Thus we have

(P G
K : Pk) =

l ·#H0(G,UK)
e∞f∞

=

{
l ·#H0(G,UK), if K is real ;

#H0(G,UK), if K is imaginary .

On the other hand, we have exact hexagon

H0(UK) −→ H0(K×)
↗ ↘

H1(PK) H0(PK)
↖ ↙

H1(K×) ←− H1(UK)

and get exact sequence

0 = H1(K×) −→ H1(PK) −→ H0(UK) −→ H0(K×).

So

#H1(PK) = # ker(Uk/NK/kUK −→ k×/NK/k) = (NK/k(K×) ∩ Uk : NK/k(UK)).

But Uk ⊃ (NK/k(K×)
⋂

Uk) ⊃ NK/k(UK), hence

#H1(G,PK) = #(Uk : NK/k(UK))/(Uk : NK/k(K×)
⋂

Uk).

It implies that

∣∣H(OK)G
∣∣ = (IG

K : P G
K ) ·#H1(G,PK) =

e0e∞f∞
l · (F×q : NK/kK×⋂

F×q )
.
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Proof of Theorem 1.2 If K is real, then

∣∣H(OK)G
∣∣ =

ls−1

(F×q : NK/kK×⋂
F×q )

.

If D = X l − gY l, then

η =
X

Y
−
√

D

Y
∈ K∗ and Nη = g.

So NK/kK
∗⋂

F×q = F×q and (H(OK)G) = ls−1.

On the other hand, if Nε = 1, then there are ls−2 ambiguous ideals. Thus we can see,
in this case, there is an ambiguous ideal class not containing any ambiguous ideal.
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一些循环代数函数域的不分明理想类

张 峰

(河北北方学院理学院数学系, 河北张家口 075000)

摘要: 本文研究了一些l次循环函数域的理想类群的不分明理想类的结构问题. 利用函数域的素理想

分解理论和理想的一阶上同调理论, 得到了这几类循环函数域的理想类群的l -秩的下界. 进一步, 我们还得

了一些不分明理想类中不含不分明理想的域的充分条件.
关键词: 循环函数域; 不分明理想类; 理想类群
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