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Abstract: In this paper, some conditions for the nonsingularity and group inverses of linear
combinations of four tripotent matrices is mainly established. By using the method of matrix
decomposition, we obtain some formulae for the inverses and group inverses of them, which perfects
the theory of nonsingularity of linear combinations of k-potent matrices.
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1 Introduction

Let C be the field of complex numbers and C* = C — 0. For a positive integer n ,let M,,
be the set of all n x n complex matrices over C. The symbols rank(A), A*, R(A), and N'(A)
stand for the rank, conjugate transpose, the range space, and the null space of A € M,,,
respectively. Recall that a matrixA € M,, is tripotent if A% = A.

The nonsingularity of linear combinations of idempotent matrices and k-potent matrices
was studied in, for example [1-4]. The nonsingularities of the combinations ¢; P+c2Q —c3 PQ
and ¢; P+ coQ — c3PQ — c4QP — c5s PQP of two idempotent matrices P, ) were investigated
in [5] and [6], respectively. The considerations of this paper are inspired by Benitez et al. [7].
They established necessary and sufficient conditions for the nonsingularity of combinations
T = 1Ty + 2T + e3T5 — ca(ThTo + T53T) + ToT3) of three trioptent matrices and gave some
formulae for the inverse of T' = 111 + 2T + ¢3T3 — co(T1Ts + 13Ty + T5T3) under some
conditions.

In this paper we consider a combination of the form
T = ClTl + CQTQ + Cng + C4T4, (11)

where ¢y, co,c3,¢4 € C* and 11,715,135, T, € M,, are three tripotent matrices. The purpose

of this paper is mainly twofold: first, to establish necessary and sufficient conditions for the
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nonsingularity of combinations of form (1.1); second, to give some formulae for the inverse
of them.

Now, let us give the following additional concepts and properties. A given matrix
A € M,, is said to be group invertible if there exists a matrixX € M,, such that

AXA=A; XAX = X; AX = XA (1.2)

hold. If such an X& M,, exists, then it is unique, customarily denoted by A* (see e.g. [8]). A
matrix A € M,, is group invertible if and only if there exist nonsingular S € M,,, C € M,
such that A = S(C®0)S~!,r being the rank of A (see [9], Exercise 5.10.12). In this situation,
one has A* = S(C~! @ 0)S~!. This latter representation implies that any diagonalizable
matrix is group invertible. Moreover, it is well known that A € M,, is nonsingular if and
only if N'(A) = 0. Furthermore, if A € M,, and k is a natural number greater than 1, then
A satisfiesA* = A if and only if A is diagonalizable and the spectrum of A is contained in
"V1UO0 (see e.g. [10]).

Special types of matrices, such as idempotents, tripotents, etc., are very useful in many
contexts and they have been extensively studied in the literature. For example, quadratic
forms with idempotent matrices are used extensively in statistical theory. So it is worth
to stress and spread these kinds of results. Evidently, if T" is a tripotent matrix, then 7T is
group invertible and 7% = 7. Many of the results given in this work will be given in terms

of group invertible matrices.

2 Main Results and Proofs

If A € M, satisfying A% = I,, , We call A an involutory matrix. On the inverse of linear
combinations of involutory matrices, we have the following results.
Lemma 2.1 Let A,B,C,D € M, be involutory matrices and they are mutually

commuting, a,b,c,d € C* and

(a+b+c+d)(a—b+c+d)(a+b—c+d)(a+b+c—d)
(a—b—c+d)(a—b+c—d)(a+b—c—d)(a—b—c—d)#0,

then
(aA+bB + cC +dD)™*
= %(%A +29B 4+ 23C + 24D + 20ABC + 20ABD + 23ACD + z,BCD), (2.1)
where
m = ar;+bry+crs+drs=(a+b+c+d)(a—b+c+d)(a+b—c+d)
(a+b+c—d)(a—b—c+d)(a—b+c—d)(a+b—c—d)(a—b—c—d),
21 = 2bc(a’® —2a®b* + ab* — 2a°c* — 2ab*c® + ac* + 2a°d* + 2ab*d* + 2ac*d* — 3ad*),
2y = 2bd(a® — 2a*b* + ab* + 2a>c® + 2ab*c? — 3ac* — 2a3d* — 2ab?d® + 2ac*d® + ad?),

z3 = 20d(a5 +2a%b? — 3ab* — 2a3c* + 2ab*? + ac* — 2a3d? + 2ab*d® — 2aPd® + ad4)7
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2y = 2bcd(—3a* 4 2a%b? + b* + 2a*c? — 20°c* + ¢* + 2a*d* — 2b%d* — 2c2d* + dY),

v = —(—a" +3a°b? — 3a®b* + ab® + 3a°c? — 2a*b*c? — ab*c® — 3a’ct — ab’c* + ac® + 3a°d?
—2a*b?d?® — ab*d® — 2a*c*d* + 10ab’c*d® — ac*d® — 3a*d* — ab*d* — ac’d* + ad®),

zy = —b(a® —3a*b? + 3a%b* — b° — a*c® — 2a*b*c? + 3ab*c® — a’c* — 3b*c* + & — a*d?
—2a*V*d* + 3b*d* + 10a*c*d* — 2b°c*d® — *d* — a*d* — 3b*d* — 2d* + d°),

3 = —c(a®—a't?® —a®b* +b° — 3a*c® — 2a?b*c? — 3b*c? + 3a’c* + 3b ¢t — & — a*d?
+10a*b*d* — b*d® — 2a°c*d® — 2b°c*d® + 3¢*d® — a*d* — b*d* — 3c*d* + d°),

vy = d(—a®+a'® + a®b* — b° + a’c® — 10a*b?c* + b*c? + aPct + b?ct — 8 + 3atd® + 2a*b*d?

+3b*d? + 2a*c*d? + 2b**d? + 3c*d® — 3a*d* — 3b*d* — 3c*d* + d°).

Corollary 2.1 Let A, B,C € M, be involutiory matrices and they are mutually
commuting, a,b,c € C* and (a+b+c)(a—b+c)(a+b—c)(a—b—c)#0, then

1
(aA+bB+cC) ' = —(zA+yB+ 2C + wABCQC), (2.2)
m
where

m = axy + by + cxs +drs = (a+b+c)la—b+c)la+b—c)(la—b—c),

3 3

r=a®—ab®—ac?,y=0b>—bc® —ba®, 2 = c* — ca® — cb?, w = 2abe.

Proof In Lemma 2.1, put D =0 and d = 0, we will obtain Corollary 2.1.

About group inverses of linear combinations of three tripotent matrices, we give the
following Lemmas.

Lemma 2.2 (see [7], Theorem 2.2) Let T3,75,75 € M, \ {0} be three mutually
commuting tripotent matrices and ¢y, ¢z, ¢; € C* such that (¢;+c¢;)(¢;—¢;) #0 (4,5 =1,2,3
and i # j) and

(c1+ca+c3)(er —ea+es)(er +ea—c3)(er —ea —c3) #0,
then
R(TE+ Ty +T5) = R(eyTh + coTo + e3T3), N (T + Ty + T3) = N(eyTh + coTy + ¢3T3),
111 + ¢ + c3T5 is group invertible, and
(eTy + coTy + esTs)* = q(Ty, To, Ts)TPTETE 4 pey ey (Th, To) TETE (I, — T2)
Herea (T, T)TE (L = T3) + Pey e (T, Ts) (I = TF), (2.3)

where p,;, : C* — C and ¢ : C* — C are the following complex polynomials,
b2 2

2 a 2 1 1 w2 2
pa,b(z,w):mzw —l—mz w—l—gz—l—gw (a,b e C*,a” # b°),

(3 — 163 — c163)z + (€3 — cac — cact)w + (¢ — 3¢t — czcd)u + 2¢icac32wH0
(1 +ca+c3)(c1 —ca+c3)(er +c2—c3)(c1 —ca —c3) .

q(z,w,u) =

(2.4)
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In particular, if T? + T3 + T3 is nonsingular, then ¢,T) + c2T + ¢33 is nonsingular and
(e1 Ty + coTs + ¢3T3) 7t is given by (2.3).
Lemma 2.3 (see [7], Theorem 2.3) Let T}, 75,75 € M,, be three mutually commuting

tripotent matrices, then 77 4+ 75 + T3 is nonsingular if and only if
L, +T0To + ToTs + TsT) + T 1o T

and T? + T3 + T3 are nonsingular.
Now we give the nonsingularity and group inverses of linear combinations of four tripo-

tent matrices. And we denote

(aA+bB + cC +dD)™*
1
= a(xlA +29B 4+ 23C + 24D + 21 ABC + 2 ABD + 23 ACD + 2, BCD)
= ha,b7c,d(A7 Ba 07 D)
in (21), (CITI + CQTQ + CgT‘g)’j = kcl,cQ,03 (Tla TQ, T3> in (23), pa’b(z,w) and q(Z, w, U) are the
same in (2.4).

Theorem 2.1  Let 71,753,173, T, € M,, \ {0} be four mutually commuting tripotent

matrices and ¢y, ¢o, ¢3, ¢4 € C* such that

(ci +¢j)(ci—c¢;) #0 (i,5 =1,2,3,4 and i # j),
(ci+eij+cer)(ec—cj+ep)ci+e;—cr)(e—cj—cp) #0 (4,5 =1,2,3,4 and i < j < k),
(cr+catestea)(cr—cat+ces+ea)(ean+ce—cztca)(cn+ca+c3—ca)

(

cp—ca—c3tcey)(ep—cates—cy)(er+ea—cg—cy)(er —ca—eg —cy) #0,
then

R(TY + T3 + T3 + T7) = R(er Ty + 2Tz + ¢35 + s Ty),
NI+ T3 + T+ T7) = N(anTh + eoTs + ¢35 + ¢4 Ty),

111 + coTs + c3T5 + ¢4T) is group invertible, and

(e1Th + oo + 315 + C4T4)ﬁ = hey eoeniea(T1, To, T, T4)T12T22T32T42
T Ty TV TATITE, — T2) + Ky (T, T TTTR(E, — T3)
+kc1,C3,C4 (Th T37 T4)T12(In - T22) + k62,03704 (T27 TB? T4)(In - T12) (25)
Proof By (see [9], Exercise 5.10.12), there exist nonsingular matrices S; € M,, and
X1 € M,,_; such that T} = S1(X; & O)Sfl. The tripotency of 71 and the nonsingularity of

X lead to X? = I,,_; as TT; =1T;T,j = 2,3,4. We can write matrices 15, T3 and Ty as
follows

X2 0 1 X3 0 1 X4 0 1
T, =S8 STl Ty =8 Sl T,=S S (2.6
2 1(0 E2>1 3 1<0 E3>1 4 1(0 E4)1( )
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with EQ,Eg,E4 S Mt, and

Let us notice that matrices X5, X3, X4, Fs, E3, E4 are tripotent because T,, T3 and T}, are
tripotent. By applying again ( see [9], Exercise 5.10.12), there exist nonsingular matrices
Sy € My _y and Yy € M,,_;_, such that X5 = So(Ys @ 0)551 ,where Y2 = I,, ; ,. From
(2.7) we can write

Y, 0 » Y, 0 . Y, 0 »
X, =8 S5l Xy=S Sl X, =S S51.(2.8
! 2(0 D1>2 3 2(0 D3>2 * 2(0 D, 2 +(28)

Observe that Y2 =1, ; ,, D} =1,Y? =Y, D} =D, (i,j = 3,4) and

By applying again (see [9], Exercise 5.10.12), there exist nonsingular matrices S3 € M,,_;_
and Z3 € M,_,_,_, such that Y3 = S3(Z3 © 0)S; ', where Z2 = I,,_,_,_,. From (2.8) we

can write

Zl O —1 ZQ O 1 Z4 0 1
Y, =S Sl Y, =S Sl v, =S S71.(2.10
! 3(0 Cl>" ? 3(0 02>3 : 3(0 C, 3 (210)

Observe that Z = Z2 = I, s ,.,C} = C: = 1,7} = 7,,C} = Cy and Z;Z; =
Z;7;,C;C; = C;C; (i,j=1,2,3,4).

Finally, utilize again ( see [9], Exercise 5.10.12) to matrix Z; to obtain nonsingular
matrices Sy € M,,_y_s_, and Ay € M, such that Z, = S4(A4 @ 0)5’;1 with A2 = I,. By

carrying out the same routine as before, we can write

A1 0 —1 A2 O —1 A3 O —1
Z =S S Z, =8 St Z, =8 Syt (211
1 4( 0 Bl) 4 2 4< 0 B2> 4 3 4 0 33 4 ( )

where A? = I, 4 ¢, ,B? =1, (i =1,2,3) and 4;4; = A;A;,B;B; = B;B; (i,j =
1,2,3,4).

Let us define m = n—t—r—wu. By setting S = S1(Se @ 1;)(Ss DI D L) (S4B I, DI}),
one easily has

T'=SA6B3C,&D &0)S ' Th=SA8B,dC, 08 Ey)S™ 1,
Ts=S5(A3&Bs® 08 D3 @ E3)S™, Ty = S(As @08 Cy & Dy Ey) S,

and the matrices A? =1, (i=1,2,3,4); B?=1, (i=1,2,3); C? =1, (1=1,2),C% = Cy;
D% = IS,D? = DZ(Z = 3,4), E? = Ei (’L = 2,3,4) In addition, the families {Ai}i:1,2,3,47
{Bi}iz123, {Ci}iz1.2.4, {Di}iz134 ,{Ei}i=2,34 are commutative.
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Observe that
TP+ T3 +T3+T; = S[ALL,®31,8(C+C3+C;)®(D3+ D5+ D) ®(Es+ E3+E;)|S™ (2.12)
and
Ty + coTo + c3T3 + cyTy = S[(c1 A1 + caAs + c3As + ¢4 Ay) @ (1 By + caBa + ¢3B3)
B(c1C) + c2Cs + c4Cy) @ (c1 Dy + c3Ds + c4Dy) @© (coFa + c3Es + ¢4 E4)]S™.  (2.13)

By Lemma 2.1, Corollary 2.1 and Lemma 2.2, we have that c¢; Ay + co Az + c3As + c4 Ay
and c¢; By + ¢oBs + ¢3 B3 are nonsingular and

(ClAl + C2A2 + C3A3 + 04144>71 = h01702703704 (Ala A2a A37 A4>7
(c1B1 4 2B + ¢3Bs) ™" = q(B1, Bs, Bs).

Since c; A1 + caAs + c3As + c4 Ay and ¢y By + ¢3 By 4+ ¢3 B3 are nonsingular, then
N(ClAl + CgAQ + 03A3 + C4A4) = N(4Im),N(ClB1 + 62B2 + 63B3) = N(glu)
Lemma 2.2 leads to

N(e1Cy + c2Cs + e4,Cy) = N(CF + C3 + CF),

N(ClDl + Cng + C4D4) = N(D% + Dg% + Di),

N(cyEy + c3Fs + c4Ey) = N(E; + E3 + Ej),
and analogous identities for the range space. By considering (2.12) and (2.13), and Lemma
2.2 we get that the null space (range space) of ¢;T1 + c2T5 + ¢35 + ¢4y equals to the null
space (range space)T}? + T3 + T2 + Tj.

By Lemma, 2.2 we have the group invertibility of ¢;C1 +coCo+4¢4Cy, 1 D1+ c3D3+c4Dy,

and coFy + c3F3 + c4 Fy, we get

(101 + 20y + 0404)ti = ke, ense0,(Cr, Ca, Cy),
(¢1D1 + ¢3D3 + C4D4)ﬁ = ke, e5,00(D1, D3, Dy),
(coFs + c3Es + C4E4)ﬂ = Fkey cq,c4(Ea, B3, Ey).
The second part of Lemma 2.3 leads to the group invertibility of c1 T + coTs + c3T5 + 4T}
and
(e Ty + coTy + 3T + caTh)* = S(Rey cn.cn.ca (A1, Az, Az, Ay) @ q(By, By, Bs)
@kcl,CQ,C4,(Cla 02) 04) @ k61,03,04 <D17 D37 D4) @ k62,63,04 (E21 E37 E4))S_1' (2'14>

Now, observe that

S(I,®0808080)S™ ! =TITST;TY,
SO®L,e0®0®0)S™ ! =TTy Ty (1, — Ty,
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SO0e0® L ®030)S™" =TT (I, — T3),
SO0@0®0® I, ®0)S™" =TI, — T3),
SOe0000@,)S™ =1, - T}

Thus we have

S(h61762,c3764(A17 A27 A37 A4) S Q(Bl, BZ> BS) G080 O)S_l

= heyenesies(Th, T2, T, T4)TfT§TSQT42 +q(Th, Ts, T3)T12T22T32(In — Tf), (2.15)
S(O ®0d kC1-,C2,C4,(Clv 027 04) ®0d O)S_l = k01,02,64,(T17 TQ? T4)T12T22(In - T32)7
(2.16)

S(O o080 k017037€4 (D17 D37 D4) S O)S_l = k01,03-,64 (T17T37 T4)T12(In - T22)7 (217)
SOB0D0D 0D key.ey.co(Bay Bz, E4))S™" = key egoea(To, T3, Ty) (I, — T7).  (2.18)

Considering (2.14)—(2.18) finishes the proof.

Corollary 2.2  Let 11,75, 73,7y € M, \ {0} be four mutually commuting tripotent
matrices and ¢y, ¢o, c3, ¢4 € C*if T12—|—T22—|—T32—|—T42 is nonsingular,then ¢, Th +coTo+c3T3+c4Ty
is nonsingular and (¢, T} + coTs + ¢3T5 + ¢4Ty) 7t is given by (2.5).

Theorem 2.2 Let 71,753,735, T, € M, \ {0} be four mutually commuting tripotent
matrices, then Ty + T5 4+ T35 + Ty is nonsingular if and if only

L+ T+ T T+ T+ T T+ T Ty + T3y + T Dy T + TV Iy Ty + TV T, + 1o 15T, + T T 15T,

and T¢ + T3 + T§ + T} are nonsingular.

Proof  Since Ti,7T,,7T3 and T, are tripotent and mutually commutating, they are
simultaneously diagonalizable (see, e.g. [11], p.52). Hence there is a single similarity
matrix S € M,, such that T} = Sdiag(A\y,---,\,)S™ ', Ty = Sdiag(py, -« ,pn)S™t, Ty =
Sdiag(y1, -+, 72)S™!, Ty = Sdiag(ry, -, 7,)S™" being {A\:}iLy, {pitiny, {vitie, and {7},
are the ordered sets of eigenvalues of 17, Ty, T3 and T with proper multiplicities, respectively.
On the other hand,

Ty + Ty + Ts 4 Ty = Sdiag( M + g1 +91 + 71,0+ s An + i + Yo + 70) S~ (2.19)
L, + T +TNT5 + 10T, + 1505 + 15T, + 13T, + 111513
VT Ty + TVTTy 4 ToT5T, + ThIRT5T,

= Sdiag(g(M +p1 + 71 +71)5 5 9(An + i + Yo + 7)) ST (2.20)

and
TP+ T3 + T35 + T = Sdiag(A\f + p3 +97 + 70, A0+ pe + 795 +72)S 7, (2.21)
where g : C* — C is given by

g(x,y,z,w) =14+ 2y +xz + 2w+ yz + yw + 2w + zyz + ryw + rzw + yzw + ryzw.
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Assume that T} + Ty + T35 + T} is nonsingular. From (2.19) we get \; + p; +v; + 7 # 0
for any i = 1,2,--- ,n and hence (\;, pii, 7, 7:) € ®*\ Q for all i = 1,2,--- ,n , where
o = {-1,0,1},
Q = {(0,0,1,-1),(0,0,~1,1),(0,1,0, 1), (0,~1,0,1),(0,1,—1,0), (0, —1,1,0),
(1,0,0,—1),(~1,0,0,1), (1,0,—1,0), (=1,0,1,0), (1, —1,0,0), (—1,1,0,0), (1,1, -1
(1,-1,1,-1),(1,-1,-1,1),(-1,1,1,-1),(-1,1,-1,1),(-1,-1,1,1),(0,0,0,0) }.

Therefore, it is obtained that g(\; + p; +7v; + 7)) # 0 and A2 + p? + 42 + 77 # 0 for all
i=1,2,---,n. In view of (2.20) and (2.21) it is seen that

I, + V1o +T1T5+TVTy + 1515 + 15T, + 15T,
+TVT1oT3 + TV Ty + ThT5Ty + ToT5T, + TV IS T5T,

and T 4+ Ty + T7 + T} are nonsingular.
Now, assume that

I, + VT + VT + TV + 15T + 15Ty + 15Ty
+ 0V TTs + VI Ty + ThVIETy + 1151, + ThI515T)

and Tf + T3 + T7 + T} are nonsingular. From the nonsingularity of the first matrix, we get
L N+ Nivi + NiTi + i + pami + 0T+ Xipayi + XipaTi + i + Xipavimi 0

foralli=1,2,--- ,n. If Ty +T5 + T3 + T, were singular, then there would exist some j €
{1,2,--- ,n} such that \; +p; +7; +7; = 0. So, the unique solution satisfying simultaneously
these two equations would be (\;, i, v, ) = (0,0,0,0). Hence

N+ +2+712=0,
which would contradict to the assumption of the nonsingularity of
TP +T5 +T5 + T3

So the proof is completed.
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