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1 Introduction

In numerical analysis and scientific work, one of the most important occurring problems
is solving nonlinear equations. To solve these equations, we can use iterative methods such
as Newton’s method and its variants. In this paper, we consider iterative methods to find
a real simple root x∗ of a nonlinear equation f(x)=0, where f : D → R is a scalar function
and it is sufficiently smooth in a neighborhood of x∗, and D is an open interval.

Being quadratically convergent, Newton’s method is probably the best known and most
used algorithm. To improve the local order of convergence of Newton’s method, many
modified methods were proposed. One of the third-order modifications of Newton’s method
[1] was given by

xn+1 = xn − f(xn) + f(yn)
f ′(xn)

, (1.1)

where yn = xn − f(xn)/f ′(xn), n ≥ 0. Also, another third-order method [2], that is defined
by

xn+1 = xn − f2(xn)
f(xn)− f(yn)

· 1
f ′(xn)

. (1.2)
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Combining eqs. (1.1) and (1.2), we have

xn+1 = α
[
xn − f(xn) + f(yn)

f ′(xn)

]
+ β

[
xn − f2(xn)

f(xn)− f(yn)
· 1
f ′(xn)

]
.

Taking α = −1, β = 2, we can obtain the following fourth-order iterative method [3]

xn+1 = xn − f2(xn) + f2(yn)
f ′(xn)[f(xn)− f(yn)]

. (1.3)

The present method requires two evaluations of the function and one evaluation of its
first derivative. We consider the definition of efficiency index [3] as p1/m, where p is the
order of the method and m is the number of function evaluations in per iteration required
by the method. The present methods defined by (1.3) has the efficiency index equals to
3
√

4 ≈ 1.587, which is better than the ones of the mentioned third-order methods 3
√

3 ≈ 1.442
and Newton’s method

√
2 ≈ 1.414.

In order to derive more new high-order iterative methods, we present and analyze a
new three-step iterative method by approximating the first derivative of the function in the
third step for solving nonlinear equations. According to the next theorem, the local order
of convergence of the composed method will be at least seven and one iteration this method
requires three evaluations of the function and one evaluation of its first derivative with its
efficiency index 4

√
7 ≈ 1.627. Several numerical examples are given to show the performance

of the new method.

2 Description of the Method

In this section, for construction of the new high-order iterative method, we use the
iterative method given by eq. (1.3).

Theorem 2.1 Let ψ1(x) and ψ2(x) be two iterative methods with order of con-
vergence P and Q, respectively, then the order of convergence of the iterative method
ψ(x) = ψ2(ψ1(x)) is PQ [4].

We consider the iteration scheme of the form




yn = xn − f(xn)
f ′(xn)

,

zn = xn − f2(xn) + f2(yn)
f ′(xn)[f(xn)− f(yn)]

,

xn+1 = zn − f(zn)
f ′(zn)

.

(2.1)

From Theorem 2.1, we can see that the above formulas have an efficiency index of 5
√

8 ≈ 1.516.
To improve the efficiency index, we approximate the first-appeared derivative in the last step
f ′(zn) by a combination of already evaluated function values using divided differences.

We consider the Taylor polynomial of degree 2 for the function f(zn):

f(zn) ≈ f(yn) + f ′(yn)(zn − yn) +
1
2
f ′′(yn)(zn − yn)2, (2.2)
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which implies

f ′(yn) ≈ f [zn, yn]− f ′′(yn)
2

(zn − yn). (2.3)

But f ′′(yn) can be expressed as [4]

f ′′(yn) ≈ 2f [zn, xn]− 2f ′(xn)
zn − xn

= 2f [zn, xn, xn]. (2.4)

It is easy to know that

f ′(zn) ≈ f [zn, yn] + f [zn, xn, xn](zn − yn). (2.5)

And consequently, our contributed iterative method is presented in the following three-step
view 




yn = xn − f(xn)
f ′(xn)

,

zn = xn − f2(xn) + f2(yn)
f ′(xn)[f(xn)− f(yn)]

,

xn+1 = zn − f(zn)
f [zn, yn] + f [zn, xn, xn](zn − yn)

.

(2.6)

In the next section, we will show that our new proposed method (2.6) has seventh-order
of convergence. Per one iteration, method (2.6) requires three evaluations of the function
and one evaluation of its first derivative, so its efficiency index attains 4

√
7 ≈ 1.627 and this

is the main motivation of our paper.

3 Convergence Analysis

Theorem 3.1 Let x∗ ∈ D be a simple zero of a sufficiently differentiable function
f : D → R for an open interval D. Then, the new three-step method that is defined by eq.
(2.6) has the seventh-order convergence and satisfies the following error equation,

en+1 = 4c2c3(4c2c3 − c4 − 4c3
2)e

7
n + O(e8

n),

where en = xn − x∗, ck = (1/k!)f (k)(x∗)/f ′(x∗).
Proof Let en = xn − x∗ and x∗ be a simple zero of f . Using Taylor expansion and

taking into account f(x∗)=0, we have

f(xn) = f ′(x∗)
[
en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n + O(e6

n)
]

(3.1)

and

f ′(xn) = f ′(x∗)
[
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n + 6c6e

5
n + O(e6

n)
]
. (3.2)

Dividing eq. (3.1) by eq. (3.2) gives us

f(xn)
f ′(xn)

= en − c2e
2
n + 2(c2

2 − c3)e3
n + (7c2c3 − 4c3

2 − 3c4)e4
n

+2(4c4
2 − 10c2

2c3 + 3c2
3 + 5c2c4 − 2c5)e5

n + O(e6
n), (3.3)
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and hence

yn = x∗ + c2e
2
n − 2(c2

2 − c3)e3
n − (7c2c3 − 3c4 − 4c3

2)e
4
n

−2(4c4
2 − 10c2

2c3 + 3c2
3 + 5c2c4 − 2c5)e5

n + O(e6
n). (3.4)

Again, expanding f(yn) about x∗ and then using eq.(3.4), we have

f(yn) = f ′(x∗)
[
c2e

2
n − 2(c2

2 − c3)e3
n − (7c2c3 − 3c4 − 5c3

2)e
4
n

−2(6c4
2 − 12c2

2c3 + 3c2
3 + 5c2c4 − 2c5)e5

n + O(e6
n)

]
. (3.5)

After an elementary calculation from eqs. (3.1) and (3.5), we obtain

f(xn)− f(yn) = f ′(x∗)
[
en + (2c2

2 − c3)e3
n + (7c2c3 − 5c3

2 − 2c4)e4
n

+2(6c4
2 − 12c2

2c3 + 3c2
3 + 5c2c4 − 1.5c5)e5

n + O(e6
n)

]
(3.6)

and

f2(xn) + f2(yn) = f ′2(x∗)
[
e2

n + 2c2e
3
n + 2(c3 + c2

2)e
4
n + 2(c4 + 3c2c3 − 2c3

2)e
5
n

+(14c4
2 − 22c2

2c3 + 5c2
3 + 8c2c4 + 2c5)e6

n + O(e7
n)

]
. (3.7)

From eqs. (3.2), (3.6) and (3.7), we can obtain

f2(xn) + f2(yn)
f ′(xn)[f(xn)− f(yn)]

= en + 2(4c2c3 − c4 − 4c3
2)e

4
n

+(40c4
2 − 58c2

2c3 + 8c2
3 + 16c2c4 − 3c5)e5

n + O(e6
n). (3.8)

From eq. (3.8), we obtain

zn − x∗ = −2(4c2c3 − c4 − 4c3
2)e

4
n − (40c4

2 − 58c2
2c3 + 8c2

3 + 16c2c4 − 3c5)e5
n + O(e6

n) (3.9)

and

f(zn) = f ′(x∗)
[
αn + O(α2

n)
]
, αn = zn − x∗. (3.10)

Thus,

f(zn)
f [zn, yn] + f [zn, xn, xn](zn − yn)

= αn

[
1 + 2c2c3e

3
n + O(e4

n)
]
. (3.11)

Hence, we obtain the following error equation

en+1 = αn − f(zn)
f [zn, yn] + f [zn, xn, xn](zn − yn)

= 4c2c3(4c2c3 − c4 − 4c3
2)e

7
n + O(e8

n). (3.12)

This means that the method defined by eq. (2.6) has the seventh-order convergence.
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Remark 1 The efficiency index of our scheme defined by eq. (2.6) is 4
√

7 ≈ 1.627
which is bigger than

√
2 ≈ 1.414 of Newton’s method. Although the new scheme has lower

efficiency index in contrast with 4
√

8 ≈ 1.682 of optimal eighth-order methods in [6–7], its
convergence radius and accuracy for not so close starting points are better than the accuracy
and convergence radii of the optimal eighth-order methods, see Section 4.

Table 1: Comparison of various methods in terms of needed iterations to obtain the root x∗

f Guess (4.1) (4.2) (4.3) (4.4) (4.5) (2.6)
f1 -0.3 7 (28) 4 (16) 4 (16) Div Div 4 (16)

-1.6 Div 4 (16) 4 (16) Div 4 (16) 4 (16)
-4.0 Div 4 (16) 4 (16) Div Div 4 (16)

f2 0.1 5 (20) 3 (12) 3 (12) 3 (15) 3 (12) 3 (12)
1.4 8 (32) 4 (16) 5 (20) 4 (20) 4 (16) 4 (16)

f3 0.42 6 (24) 4 (16) 4 (16) 4 (20) 3 (12) 3 (12)
-1.42 7 (28) 3 (12) 3 (12) 4 (20) 3 (12) 3 (12)

f4 -0.5 7 (28) 20 (80) 19 (76) Div 4 (16) 3 (12)
-1.9 48 (192) 4 (16) 4 (16) 4 (20) 4 (16) 4 (16)

f5 -0.5 9 (36) 12 (48) 19 (76) Div 4 (16) 4 (16)
3.0 Div 4 (16) 4 (16) 4 (20) 4 (16) 4 (16)

4 Numerical Examples

To show the reliability of the new method (2.6), we compare the results with Zhang’s
seventh-order methods [5] and the eighth-order methods in [6–7]. Zhang’s seventh-order
methods are expressed as





yn = xn − f(xn)
f ′(xn)

,

zn = yn − 1
1− 2α + βα2 + γα3

f(yn)
f ′(xn)

,

xn+1 = zn − f(zn)
λ

,

(4.1)





yn = xn − f(xn)
f ′(xn)

,

zn = yn − (1 + 2α)
f(yn)
f ′(xn)

,

xn+1 = zn − f(zn)
λ

,

(4.2)





yn = xn − f(xn)
f ′(xn)

,

zn = yn − (1 + α)2
f(yn)
f ′(xn)

,

xn+1 = zn − f(zn)
λ

,

(4.3)
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where α = f(yn)/f(xn), λ = f [zn, yn]+f [zn, xn, xn](zn−yn), β, γ ∈ R. The optimal efficient
eighth-order method of Thukral and Petkovic [6] and the optimal novel eighth-order method
of Neta and Petkovic [7] are expressed as

Table 2: Comparison of various iterative methods

(4.1) (4.2) (4.3) (4.4) (4.5) (2.6)
δ1 Div 0.47E-042 0.18E-016 Div Div 0.16E-084
|f1| Div 0.00E-000 0.41E-118 Div Div 0.20E-198

COC Div 5.97 5.74 Div Div 6.99
δ2 0.57E-021 0.24E-016 0.37E-032 0.18E-063 0.88E-058 0.86E-068
|f2| 0.81E-043 0.63E-118 0.26E-198 0.13E-197 0.00E-000 0.3E-199

COC 2.00 6.64 6.50 7.91 7.43 6.64
δ3 0.17E-018 0.79E-065 0.43E-100 0.17E-055 0.60E-022 0.17E-075
|f3| 0.86E-037 0.00E-000 0.00E-000 0.00E-000 0.86E-177 0.38E-110

COC 2.00 7.00 7.00 7.91 8.56 8.26
δ4 0.79E-015 0.46E-034 0.45E-015 Div 0.85E-029 0.35E-030
|f4| 0.30E-029 0.00E-000 0.00E-000 Div 0.00E-000 0.00E-000

COC 1.00 6.33 6.50 Div 7.31 6.58





yn = xn − f(xn)
f ′(xn)

,

zn = yn − f(xn) + bf(yn)
f(xn) + (b− 2)f(yn)

· f(yn)
f ′(xn)

,

xn+1 = zn −
[
ϕ(n) +

f(zn)
f(yn)− af(zn)

+
4f(zn)
f(xn)

]
· f(zn)
f ′(xn)

(4.4)

and




yn = xn − f(xn)
f ′(xn)

,

zn = yn − f(xn) + tf(yn)
f(xn) + (t− 2)f(yn)

· f(yn)
f ′(xn)

,

xn+1 = yn + c[f(xn)]2 − d[f(xn)]3,

(4.5)

where where a, b, t ∈ R and




ϕ(n) = 1 + 2κn + (5− 2b)(κn)2 + 2(6− 6b + b2)(κn)3, κn = f(yn)/f(xn),

c =
1

f(yn)− f(xn)

( 1
f [yn, xn]

− 1
f ′(xn)

)
− d

(
f(yn)− f(xn)

)
,

d =
1

f(yn)− f(xn)
· 1
f(yn)− f(zn)

( 1
f [yn, xn]

− 1
f ′(xn)

)

− 1
f(zn)− f(xn)

· 1
f(yn)− f(zn)

( 1
f [zn, xn]

− 1
f ′(xn)

)
.

(4.6)
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Table 3: Comparison the distance of two consecutive approximations δ of various methods
to find the root x∗ with the same Total Number of Evaluation (TNE=3)

δ Guess (4.1) (4.2) (4.3) (4.4) (4.5) (2.6)
δ1 -0.3 0.15E-00 0.16E-05 0.70E-06 Div Div 0.51E-06

-1.6 0.14E+03 0.11E-02 0.16E-02 Div Div 0.34E-06
-4.0 0.20E+22 0.51E-06 0.50E-02 Div Div 0.25E-07

δ2 1.4 0.97E-00 0.77E-02 0.37E-04 0.16E-07 0.10E-06 0.69E-05
0.1 0.32E-04 0.35E-40 0.22E-40 0.58E-47 0.98E-53 0.12E-40

δ3 -1.42 0.93E-01 0.74E-15 0.44E-15 0.64E-13 0.32E-16 0.10E-15
δ4 -0.5 0.26E-01 0.28E-01 0.54E-02 0.33E-01 0.23E-03 0.54E-03

-1.9 0.31E-01 0.12E-04 0.45E-04 0.13E-05 0.15E-07 0.46E-04
δ5 -0.5 0.25E+02 0.20E-05 0.20E-09 0.23E-07 0.66E-09 0.16E-12

3.0 0.68E+05 0.24E-04 0.14E-04 0.15E-04 0.13E-05 0.88E-08

All computations were performed in MATLAB 7.0 with 200 digit floating arithmetic
(VPA=200). When the stopping criterion

|xn+1 − xn|+ |f(xn+1)| < ε (4.7)

is satisfied, xn+1 is taken as an approximate of the exact root x∗. We use the following
functions:

• f1(x) =
√

x4 + 8 sin(
π

x2 + 2
) +

x3

x4 + 1
−
√

6 +
8
17

, x∗ = −2,

• f2(x) = sin x− 0.5, x∗ = 0.523598775598299,
• f3(x) = ex − 4x2 = 0, x∗ = 0.7148059123627778,

• f4(x) = (sinx−
√

2
2

)2(x + 1), x∗ = −1,
• f5(x) = cos x− x, x∗ = 0.739085133215161.
Displayed in Table 1 is the number of iterations (n) and the number of function eval-

uations (NFE) required such that the stopping criteria satisfied, where ε is taken to be
10−15. Moreover, displayed in Table 2 is the distance of two consecutive approximations
δ = |xn+1 − xn|, the value of |f(xn+1)| after the required iterations and the computational
order of convergence (COC) which can be approximated using the formula [8]

COC =
ln |(xn+1 − xn)(xn − xn−1)−1|

ln |(xn − xn−1)(xn−1 − xn−2)−1| . (4.8)

The results in Table 1 and Table 2 show that for most of the functions we tested, the present
method improves the computational efficiency of Newton’s method, the modified Jarratt’s
method defined by eq. (1.2), where the initial guesses of f1, f2, f3, f4 in Table 2 are -4.0,
1.4, -0.42 and -1.9, respectively. Note that for the eighth-order methods defined by eqs.
(4.4)–(4.5), where a=b=t=0, we should pull the attention toward this, which they have a
very low convergence radii and that is why in most of the case; they turn out to divergence
when the starting points are in the vicinity of the zero but not so close. The applications of
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such eighth-order methods as eqs. (4.4)–(4.5) whose convergence radii, are low, are indeed
restricted in practice.

Table 4: Comparison the values of |f(xn+1)| of various methods to find the root x∗ with
the same Total Number of Evaluation (TNE=3)

|f | Guess (4.1) (4.2) (4.3) (4.4) (4.5) (2.6)
|f1| -0.3 0.49E-02 0.22E-41 0.67E-44 Div Div 0.59E-38

-1.6 0.12E+1 0.14E-21 0.61E-18 Div Div 0.37E-46
-4.0 0.12E+1 0.29E-42 0.58E-17 Div Div 0.32E-12

|f2| 1.4 0.11E-00 0.21E-16 0.97E-01 0.15E-63 0.76E-58 0.75E-38
0.1 0.25E-09 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00

|f3| -1.42 0.33E-001 0.10E-105 0.20E-107 0.26E-103 0.12E-130 0.58E-112
|f4| -0.5 0.10E-02 0.84E-03 0.83E-06 0.58E-01 0.20E-28 0.72E-04

-1.9 0.38E-02 0.11E-33 0.84E-30 0.18E-45 0.83E-62 0.83E-30
|f5| -0.5 0.36E+02 0.27E+03 0.15E+06 0.12E+07 0.38E-76 0.56E-92

3.0 0.68E+05 0.17E-34 0.31E-36 0.13E-40 0.83E-90 0.95E-38

We also provide the Total Number of Evaluations (TNE) for each method to obtain the
root up to 15 decimal places in Table 3 and Table 4. As we can see, the contributed method
(1.3) is robust and accurate in comparison with other efficient schemes. By comparisons with
eqs. (4.4)–(4.5), we could claim that the method compete the optimal eighth-order schemes
in [6–7] while its computational complexity is less and its convergence radius is bigger too.
Of course, if the initial guesses be enough close (very close) to the sought zeros, then the
optimal eighth-order methods (4.4)–(4.5) will perform better than (1.3).

Remark 2 Let r be the total operations (including additions, subtractions, divisions,
multiplications and so on) of an iterative method per iteration, then the (extended) compu-
tational index (also known as extended operational index) is defined by r

√
p, where p is the

order of convergence. Now, we can compare the computational index of some well known
high-order methods with our scheme. The computational index of our method is 25

√
6 ≈ 1.074

which is bigger than 39
√

8 ≈ 1.054 of (4.4) and 58
√

8 ≈ 1.036 of (4.5).

5 Conclusions

In this work we present an efficient Newton-type method with eighth-order convergence
by combining previous methods for solving nonlinear equations. Analysis of efficiency shows
that the new algorithm is more efficient and it performs better than classical Newton’s
method and some other methods.
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求解非线性方程七阶收敛的牛顿迭代修正格式

王晓峰1,2 ,石东洋1

(1.郑州大学数学与统计学院,河南郑州 450001)

(2.河南科技学院数学科学学院,河南新乡 453003)

摘要: 本文研究了非线性方程求解的问题. 利用泰勒公式和耦合方法, 获得了一种求解非线性方程的

加速收敛的七阶迭代改进格式, 该格式不需要计算高阶导数, 且具有更大的收敛半径, 大大提高了计算效率.
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