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Abstract: In this paper, we study the application of the Pareto positive stable distribution in

insurance. The parameter estimates of Pareto positive stable distribution, normal distribution and

Pareto distribution are obtained using the method of maximum likelihood estimates. By Akaike

information criterion, it is indicated that the Pareto positive stable distribution can fit the insur-

ance data well.
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1 Introduction

Insurance company claim is an important factor in its development. Insurance compa-
nies commonly use exponential distribution, lognormal distribution or Pareto distribution to
fit claims data and control risk. In the insurance claim model, making premium to insurance
company and resisting the risk, Pareto distribution model is of guiding significance. It is
suitable for fitting large claims data. From the historical data, insurance claim often shows
high positive bias. On the distribution, it shows fat tail shape. But Pareto distribution has
a heavy-tailed charcteristic. So when simulating these data, Pareto distribution is popular
with the scholars.

The Pareto positive stable (PPS) distribution was firstly proposed by Sarabia and Pri-
eto in their thesis in 2009 [1]. They explained the reason why the Pareto positive stable
distribution is used to model losses in insurance. For instance, the Pareto positive stable
distribution easily fit and have a simple quantile expression. It makes the Monte Carlo
simulation simple. For the risk value, an analytical expression is provided. Ortobelli et al.
[2] proposed some stable Paretian models for optimal portfolio selection and for quantifying
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the risk of a given portfolio. Guillen et al. [3] proposed using the Pareto positive stable
distribution simulation insurance data and studied it.

This paper firstly introduces Pareto positive stable distribution, its the probability den-
sity function and the quantile function. Then we give the Pareto positive stable distribution
moment estimation, regression estimation, and maximum likelihood estimation. Then, for
the randomly generated data using maximum likelihood estimation method, we do estima-
tion for the parameters of the Pareto positive stable distribution, the normal distribution and
the Pareto distribution. And their parameters are compared. By AIC information criterion
[4], we get the Pareto positive stable distribution can better fit the data in insurance claims.
Therefore, the Pareto positive stable distribution can better analyze insurance claims data.

2 The Pareto Positive Stable Distribution

The Pareto positive stable distribution is given by

F (x;λ, ν, σ) = P (X ≤ x)

=

{
1− exp{−λ[log(x/σ)]v}, x ≥ σ,

0, x < σ,

(2.1)

where λ, σ, ν > 0. Note that λ, ν > 0 are shape parameters and σ is a scale parameter.
Derivating to the Pareto positive stable cumulative distribution function, we can obtain

the probability density function (pdf) of it:

f(x;λ, ν, σ) =





λν[log(x/σ)]ν−1

x
exp{−λ[log(x/σ)]v}, x ≥ σ,

0, x < σ.

(2.2)

The Pareto positive stable distribution have a two-fold origin. One is the classical Pareto
distribution [5–6]. Its cumulative distribution function (cdf) is

F (x) = P (X ≤ x)

=





1− (
x

σ
)−α, x ≥ σ > 0,

0, x < σ,

where α > 0 is a shape parameter and σ is a scale parameter, which represents the smallest
value in the sample. Let α = λν, then we can obtain the cumulative distribution function
of the PPS distribution. The other is from a simple transformation of the classical Weibull
distribution [7–8]. Let Z be a classical Weibull distribution with cumulative distribution
function (cdf)

FZ(z) = 1− exp(−zν), z > 0,

where ν > 0. Then, the new random variable

X = σ exp(λ−1/νZ)
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follow the Pareto positive stable distribution, denoted by X ∼ PPS(λ, σ, ν), where σ, λ > 0.
Figure 1, Figure 2, Figure 3 and Figure 4 are the probability density function of the

PPS distribution with different parameters.

Figure 1: The pdf of PPS distribution when
σ = 1, λ = 1 and ν = 0.2, 0.4, 0.6, 0.8, 1

Figure 2: The pdf of PPS distribution when
σ = 1, λ = 1 and ν = 2, 4, 8, 12, 16

Figure 3: The pdf of PPS distribution when
σ = 1, ν = 4 and λ = 2/3, 2, 4, 6, 8

Figure 4: The pdf of PPS distribution when
σ = 1, ν = 7 and λ = 2/3, 2, 4, 6, 8

The quantile function of the Pareto positive stable distribution can be easily obtained.
Let p = F (x), then

p = 1− exp{−λ[log(x/σ)]v},

where x ≥ σ, and then

− 1
λ

log(1− p) = [log(
x

σ
)]ν ,

we can obtain

Q(p) = F−1(p) = σ exp{[− 1
λ

log(1− p)]1/ν}, 0 < p < 1.

3 Parameter Estimation

Let x1, x2, · · · , xn be a sample of size n drawn from a Pareto positive stable distribu-
tion. We assume that parameter σ is the smallest sample value. Then, we introduce three
estimation methods of Pareto positive stable distribution: moments estimates, regression
estimates and maximum likelihood estimates. We define the random variable Z = log(X/σ)
and its observed values is zi = log(xi/σ), i = 1, 2, · · · , n.

3.1 Moments Estimates
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The r-order origin moments of the random variable z is

E(Zr) = E[(log
X

σ
)r] =

∫ ∞

σ

zrf(x)dx

= λ−r/ν

∫ ∞

0

e−λzν · (λzν)
r
ν · d(λzν) = λ−r/νΓ(1 +

r

ν
), r > 0,

where Γ(x) =
∫ ∞

0

e−ttx−1dt, Γ(1 + r
ν
) =

∫ ∞

0

e−tt
r
ν dt.

Note that E(Z) = z̄ = λ−1/νΓ(1 + 1
ν
), E(Z2) = λ−2/νΓ(1 + 2

ν
), and

s2
z = EZ2 − [E(Z)]2 = λ−2/ν [Γ(1 +

2
ν

)− Γ(1 +
1
ν

)2],

thus
(z̄)2

s2
z

=
Γ(1 + 1

ν
)2

Γ(1 + 2
ν
)− Γ(1 + 1

ν
)2

, (3.1)

where z̄ = 1
n

n∑
i=1

zi and s2
z = 1

n

n∑
i=1

(zi − z̄)2 are mean and variance of sample to random

variable Z respectively. We solve the estimator of ν from the formula (3.1), since E(Z) =
z̄ = λ−1/νΓ(1 + 1

ν
), we obtain the estimator of λ:

λ̂ = [
z̄

Γ(1 + 1
ν̂
)
]−ν̂ . (3.2)

3.2 Regression Estimates

From expression (2.1), taking logarithms twice in 1− F (x), we get

log[− log(1− F (x))] = log λ + ν log[log(x/σ)]. (3.3)

If σ is know, it is a linear relation in log[log(x/σ)]. Let a = log λ, X = log[log(x/σ)],
b = ν，and yi = log[− log(1− Fn(xi))], then the residual sum of squares (RSS):

RSS =
n∑

i=1

[yi − a− bXi]2.

Taking partial derivative for RSS we get




na + (
n∑

i=1

Xi)b =
n∑

i=1

yi,

(
n∑

i=1

Xi)a + (
n∑

i=1

X2
i )b =

n∑
i=1

Xiyi.

Because Xi are not all equal, the coefficient determinant
∣∣∣∣∣∣∣∣∣∣

n
n∑

i=1

Xi

n∑
i=1

Xi

n∑
i=1

X2
i

∣∣∣∣∣∣∣∣∣∣

= n

n∑
i=1

X2
i − (

n∑
i=1

Xi)2 = n

n∑
i=1

(Xi −X)2 6= 0,
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hence, equations have a unique solution. The estimators of b, a are

b̂ =

n∑
i=1

(Xi −X)(yi − y)

n∑
i=1

(Xi −X)2
,

â =
1
n

n∑
i=1

yi − b

n

n∑
i=1

Xi = y − b̂X,

where X = 1
n

n∑
i=1

Xi, y = 1
n

n∑
i=1

yi, Xi = log zi, then

ν̂ =

n∑
i=1

(log zi − log z)(yi − y)

n∑
i=1

(log zi − log z)2
, (3.4)

and
λ̂ = exp{y − ν̂log z}. (3.5)

3.2 Maximum Likelihood Estimates

From expression (2.2) of the probability density function (pdf) of the PPS distribution,
the log-likelihood function of PPS distribution is given by

log `(λ, ν) =
n∑

i=1

log f(xi)

= n log λ + n log ν + (ν − 1)
n∑

i=1

log zi − λ

n∑
i=1

zν
i −

n∑
i=1

log xi.

Taking partial derivative with respect to λ and ν we obtain the equations




∂ log `

∂λ
=

n

λ
−

n∑
i=1

zν
i = 0,

∂ log `

∂ν
=

n

ν
+

n∑
i=1

log zi − λ

n∑
i=1

zν
i log zi = 0.

We solve λ in the first equation and put it into the second equation. We obtain the equation
in ν,

1
ν

+
1
n

n∑
i=1

log zi −

n∑
i=1

zν
i log zi

n∑
i=1

zν
i

= 0 (3.6)

and solve the estimator ν̂. Then we put it into the first equation and so obtain the estimator
of λ:

λ̂ = [
1
n

n∑
i=1

zν̂
i ]−1. (3.7)
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4 Application in Insurance Claim

We consider the data on motor insurance claims of a major insurance company. A sample
of 518 randomly generates by MATLAB between the minimum and maximum claims. For
each claim i, we observe X1 (cost of property damage) and X2 (cost of medical expenses).
Unit of data is thousand of yuan. The basic numerical characteristics of X1 and X2 can be
seen in Table 1.

Table 1: The Basic Numerical Characteristics of X1 And X2

Mean Std.Dev Skewness Kurtosis Min Max
X1 201.6638 228.2939 1.2744 3.3027 0.1074 819.5100
X2 20.5363 21.9714 0.9908 2.5048 0.0070 71.2090

In order to test the adequacy of the Pareto positive stable distribution for data, we
estimate the parameters of the PPS distribution by the date X1 and X2 with the maximum
likelihood estimation method. The parameter values see Table 2.

Table 2: The Parameter Estimation of The PPS Distribution

PPS

ν̂ λ̂

X1 6.1579 2.7222× 10−6

X2 6.3388 1.3268× 10−6

Let X(1), X(2), · · · , X(n) and Z(1), Z(2), · · · , Z(n) be the order statistics of X1and X2

respectively. Fn(x(i)) = i
n+1

is the empirical cumulative distribution function of the sample,
then 1− Fn(x(i)) corresponds to the rank of the ith data divided by n + 1. For the two sets
of data, we take logarithm. The horizontal axis represents the natural logarithm of size of
the size of the sample observation value and the vertical axis represents the logarithm of the
samples’ rank. Then fitting, the abscissa is log(x) and the ordinate is log[(n+1)(1−F (x))],
as showing in Figure 5 and Figure 6.
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Figure 5: The fitted plot in log-log scale
for X1 data set
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Figure 6: The fitted plot in log-log scale
for X2 data set

By equation (3.3), then

log[− log(1− Fn(xi))] = log λ + ν log[log(xi/σ)]. (4.1)
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Hence, if x(1), x(2), · · · , x(n) follow the Pareto positive stable distribution, we infer the double
log-log scatter plots demonstrate linear features and slope is positive. For the two sets of
data, we take logarithm twice. The horizontal axis represents log[log( size

σ
)] and the vertical

axis represents log[− log( rank
n+1

)]. Then fitting, the abscissa is log[log(x
σ
)] and the ordinate is

log[− log(1− F (x)], as showing in Figure 7 and Figure 8.
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Figure 7: The fitted plot in double log-log
scale for X1 data set
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Figure 8: The fitted plot in double log-log
scale for X2 data set

Form Figure 5 and Figure 6, we find as long as a deviation appears in the large data
fitting, this is just corresponding to huge claims. Form Figure 7 and Figure 8, we find that
both plots are clearly linear, which supports the assumption of the Pareto positive stable
distribution for both sets of data. Therefore, these two sets of data fit well.

Table 3: The cdf and pdf of Different Distribution

Distribution F (x) f(x)

PPS 1− exp{−λ[log(x/σ)]v}, λν[log(x/σ)]ν−1

x
exp{−λ[log(x/σ)]v},

x ≥ σ > 0 x ≥ σ > 0
normal Φ(x−µ

σ
), x ∈ R 1

σ
√

2π
exp{− 1

2
(x−µ

σ
)2}, x ∈ R

Pareto 1− ( x
σ
)−α, x ≥ σ > 0 ασα

xα+1 , x ≥ σ > 0

In order to illustrate the advantages of the Pareto positive stable distribution for fitting
insurance claims data, we compare the Pareto positive stable distribution with the normal
distribution and the Pareto distribution. Table 3 is the expression of probability density
functions and the cumulative distribution functions of different distributions.

All the parameters of three distributions are got by maximum likelihood estimation.
The parameters’ estimated results are shown in Table 4.

Table 4: The Parameters Estimation of Different Distribution

PPS分布 Pareto normal
ν̂ λ̂ α̂ µ̂ σ̂

X1 6.1579 2.7222× 10−6 0.1340 201.6638 228.2939
X2 6.3388 1.3268× 10−6 0.1270 20.5363 21.9714

We select the preferred model by using Akaike information criterion (AIC). Akaike
information criterion is defined as

AIC = 2(s− log `),
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where s is the number of parameters and log ` is the log-likelihood function. Akaike infor-
mation criterion shows that the preferred model is the one with the lowest AIC value. If
the AIC value of the PPS distribution is smaller than the AIC value of the normal and
Pareto distribution, indicating the PPS distribution can fit date better than the normal
distribution and Pareto distribution. Importing X1 and X2 into MATLAB to calculate, we
can see the AIC (normal)–AIC(PPS) and AIC(Pareto)–AIC(PPS) as a function of the
sample sequence number N to plot. If the difference is positive, which means that the AIC

of the PPS distribution is smaller, it shows the fitting effect of the PPS distribution is
better.
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Figure 9: AIC(Pareto)-AIC(PPS) as a
function of N for X1 data set
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Figure 10: AIC(Pareto)-AIC(PPS) as a
function of N for X2 data set
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Figure 11: AIC(normal)-AIC(PPS) as a
function of N for X1 data set
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Figure 12: AIC(normal)-AIC(PPS) as a
function of N for X2 data set

Looking at Figure 9, Figure 10, Figure 11 and Figure 12, regardless of the data X1 or
X2, the vast majority difference of AIC value is positive, so it shows the PPS distribution
is better than the normal distribution and Pareto distribution for fitting insurance claims
data.

5 Conclusions

In the insurance claims, there exists many small and large claims. Some insurance claims
data are with relatively thick tail, for example motor vehicle insurance. For this insurance
data, using the Pareto positive stable distribution to fit, it will get better fitting effect. The
Pareto positive stable distribution has the simple expression of probability density function
and quantile function. Its parameters estimate can be obtained by moments estimates,
regression estimates and maximum likelihood estimates. On the basis of parameter estimates,
comparing with other distributions, the Pareto positive stable distribution can fit better
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insurance claims data. Therefore, in the insurance industry, using Pareto positive stable
distribution in the analysis of insurance claims data has a better application.
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Pareto严格稳定分布在保险理赔中的应用

玄海燕1,包海明2,史永侠3
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摘要: 本文研究了Pareto严格稳定分布在保险中的应用. 利用极大似然估计的方法得到了Pareto严格

稳定分布, 正态分布和Pareto分布的参数估计. 根据信息准则, 表明Pareto严格稳定分布能够较好地拟合保

险数据.
关键词: Pareto严格稳定分布; 参数估计; 保险理赔; 信息准则
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