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Abstract: We consider the problem of the efficient reconstruction from partial Fourier data in

Magnetic Resonance (MR) images. Based on Dykstra-like proximal method and Bregman method,

we propose an accelerated Dykstra-like proximal algorithm (ADPA-BI) for SENSE model signal

reconstruction, and obtain the proof of its convergence property. Our numerical simulations on

recovering MR images indicate that the proposed method is more efficient than the classic Split

Bregman Iteration (SBI) method.
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1 Introduction

Magnetic Resonance Imaging (MRI) plays a very important role today in medical di-
agnosis because of its non-invasive manner and excellent depiction of soft tissue changes.
Its use of nonionizing radio frequency emission for image acquisition is considered safe for
repeated use in a clinical setting. Both fast acquisition and efficient reconstruction in MR
image are very crucial to apply in clinical settings of practical MR image.

Compressed sensing theory shows that it is possible to accurately reconstruct the Mag-
netic Resonance images from highly undersampled k−space data and therefore significantly
reduce the scanning duration. Lustig et al. [1] proposed their pioneering work for the MR
images reconstruction. Their method can effectively reconstruct MR images with only 20%
sampling. In order to improve the construction result, it considers the SENSE model that
the constrained objective involves both a discrete gradient and a wavelet transform, which
is formulated as follows:

min
u

α

∫

Ω

|∇u|dx + β

∫

Ω

|Ψu|dx such that ‖RFu− f‖2
2 < σ2, (1.1)
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where α, β > 0, Ψ is a wavelet transform, F represents the Fourier transform matrix, f

represents the observed“k-space”data, and σ represents the variance of the signal noise.
The matrix R represents a“row selector”matrix, which comprises a subset of the rows of
an identity matrix. The related unconstrained problem is

min
u
{J(u) +

1
2

∫

Ω

(Au− f)2dx}, (1.2)

where J(u) = α‖∇u‖1 + β‖Ψu‖1 and A = RF . It is based on the fact that the piecewise
smooth MR images of organs can be sparsely represented by the wavelet basis and framelet
and should have small total variations. Since MR images commonly possess a blocky struc-
ture, the use of TV norm in regularization exploits image sparsity and preserves edges. In [8],
a kernel-based online quantile regression algorithm associated with a sequence of insensitive
pinball loss functions is considered. A fast reconstruction algorithm can make CS-MRI more
clinically applicable.

However, the computational challenge for solving the TVL1-L2 Model (1.2) comes from
the combination of two issues: one is the nondifferentiability of the TV and l1 terms, and
the other one is the large size and severe ill-conditioning of the matrix A. The conjugate
gradient (CG) and PDE methods were used to attack it [1]. However, they are very slow
and impractical for real MR images. The computation became the bottleneck that prevented
this model (1.2) from being used in practical MR image reconstruction. Therefore, the key
problem in compressed MR image reconstruction is thus to develop efficient algorithms to
solve problem (1.2) with nearly optimal reconstruction accuracy. The main purpose of the
paper is to develop a fast numerical algorithm for solving the model (1.2).

On the other hand, recently the Bregman iteration has been successfully used to solve
a wide variety of constrained l1-regularized optimization problems in compressed sensing,
image processing and computer vision [2]. The basic idea is to transform a constrained
optimization problem to a series of unconstrained problems. In each unconstrained problem,
the object function is defined by Bregman distance of a convex functional.

The Bregman distance of a convex functional J(u) is defined as the following nonnegative
quantity

Dp
J(u, v) ≡ J(u)− J(v)− < p, u− v >, (1.3)

where p ∈ ∂J(v).
Instead of solving (1.2) once, the Bregman iterative regularization procedure of Osher

et al. [2] solves a sequence of convex problems

uk+1 ← min
u

Dpk

J (u, uk) +
1
2
‖Au− f‖2 (1.4)

for k = 0, 1, · · · starting with u0 = 0 and p0 = 0 (hence, for k = 0, one solves the original
problem (1.2)). Since J(u) is not differentiable everywhere, the subdifferential of J(u) may
contain more than one element. However, from the optimality of uk+1 in (1.4), it follows
that 0 ∈ ∂J(uk+1) − pk + Auk+1 − f . The difference between (1.2) and (1.4) is in the use
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of regularization. While (1.2) regularizes u by directly minimizing the energy J(u), (1.4)
regularizes u by minimizing the Bregman distance of u to a previous solution uk based on
the energy J(u). In [2], it was proved that the problem (1.4) was equivalent to the solution
of unconstrained problems of the form

uk+1 = arg min
u

J(u) +
1
2
‖Au− fk‖2, (1.5)

fk+1 = fk + f −Auk+1 (1.6)

for k = 0, 1, · · · starting with u0 = 0, f0 = f.

We denote proxρ(g)(x) as the proximal map of function g at the point x ∈ RN .
Definition 1 The proximal map: given a continuous convex function g(x) and any

scalar ρ > 0, the proximal map associated with function g is defined as follows

proxρ(g)(x) := arg min
u
{g(u) +

1
2ρ
‖u− x‖2}. (1.7)

Combined the efficient acceleration scheme in FASTA method [5] and Dykstra-like prox-
imal algorithm method [4], Xu [7] proposed an Accelerated Dykstra-like Proximal Algorithm
(ADPA) for the image reconstruction subproblem (1.5). The algorithm ADPA can write as
follows:

Algorithm 1 [7] ADPA(Accelerated Dykstra-like Proximal Algorithm)
1. Initial: ρ = 1/L, α, β > 0,γ1, γ2 > 0, t1 = 1,z1

1 = z1
2 = F−1f .

2. While it holds stop criterion;
3. x1 = proxρ(2α‖x‖TV )(zk

1 );
4. x2 = proxρ(2β‖Ψx‖1)(zk

2 );
5. xk = ‖x2‖T V

‖Ψx1‖1 x1 + (1− ‖x2‖T V

‖Ψx1‖1 )x2;
6. xk = project(xk, [l, u]);
7. tk+1 = (1 +

√
1 + 4(tk)2)/2;

8. rk+1 = xk + tk−1
tk+1 (xk − xk−1);

9. xk+1 = rk+1 − ρAT (Ark+1 − f);
10. zk+1

2 = γ1(zk
1 − x1) + xk+1;

11. zk+1
1 = γ2(zk

2 − x2) + xk+1;
12. end while.
In the step xk = project(xk, [l, u]), the function y = project(x, [l, u]) is defined as

y = project(x, [l, u]) =





l, if x < l,

x, if l ≤ x ≤ u,

u, if x > u,

where [l, u] is the range of x. Balance parameter τ depends on the original image and its noise.
We investigate specially the adaptive weight for τ , then at the s-th iteration τ(s) = ‖∇v(s)‖1

‖Ψu(s)‖1 ,

where ‖∇v(s)‖1 is the total variation semi-norm of the s-th iteration v(s) and ‖Ψu(s)‖1 is the
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l1-norm of the wavelet transform for the s-th iteration u(s). γ1 and γ2 can be chosen as two
monotone sequences as limited to 0 (e.g. γ1 = γ2 = 1/k, e−

2√
k or e−

4√
k (k is the iteration

counter)). The total cost of each iteration in the algorithm is O(N log(N)). The algorithm
ADPA has the convergence property as follows:

Theorem 1 [7] When 0 < ρ < 1
‖ATA‖ , both sequences (zn

1 )n∈N and (zn
2 )n∈N generated

by Algorithm 1 converge to the solution to problem (1.2).
In this paper, we apply the Bregman iteration to the algorithm ADPA, and accelerate

further to reconstruct magnetic resonance images from the model (1.2).

2 Main Results

For total variation regularity J(u) = µ‖∇u‖1 and wavelet regularity J(u) = µ‖Ψu‖1,
the FISTA can very efficiently solve the subproblems (1.5). But it cannot efficiently solve
the composite L1 and TV regularization problem J(u) = α‖∇u‖1 + β‖Ψu‖1 in the SENSE
model (1.2), since no efficient algorithm exists to solve the step

uk = proxρ(α‖u‖TV + β‖Ψu‖1)(ug). (2.1)

However, the algorithm ADPA can efficiently deal the problem (2.1) by the Dykstra-like
proximal algorithm and the FISTA technique [7]. By the Bregman iteration, problem (1.1)
could be reduced to a sequence of unconstrained problems of the form

uk+1 = arg min
u

J(u) +
1
2
‖RFu− fk‖2, (2.2)

fk+1 = fk + f −RFuk+1. (2.3)

Because both total variation and l1−norm regularization terms are nonsmooth, subproblem
(2.2) becomes the bottleneck that prevent from being used in practical MR image reconstruc-
tion. Using the algorithm ADPA (1) to solve the subproblem (2.2), we obtain Algorithm 2
to solve the original problem (1.1). Our algorithm can write as follows:

Algorithm 2 ADPA-BI (ADPA via Bregman Iteration for Compressed Sensing)
1. Initial: f1 = f ,σ,T ,ρ = 1/L, α, β > 0, γ1, γ2 > 0, t1 = 1.
2. While ‖RFzk

1 − f‖2
2 > σ2;

3. zk
1 = zk

2 = F−1fk;
4. using the algorithm ADPA for F−1fk;
5. fk+1 = fk + f −RFzk+1

1 ;
6. end While.
Because the Step 3 and 5 only involve adding vectors or scalars, the costs are only

O(log(N)) or O(1). In the step 4 the cost of Algorithm 1 is O(N log(N)). Thus, the total
cost of each iteration in Algorithm 2 is O(N log(N)). When parameter values are properly
chosen, it has been found that the outer“while”loop of this algorithm only needs to be
executed a small number of times. As a result, for imaging applications this algorithm is
very fast when properly chosen parameter values are used.



No. 4 An efficient Dykstra-like proximal algorithm for SENSE model signal reconstruction 885

We consider the optimal solution of problem (1.2) with α, β > 0. Note that the objective
function for problem (1.2) is proper, lower semicontinuous and level-bounded [6]. Therefore,
by Theorem 1.9 in [6], the set of minimizers is nonempty and compact. In addition, the
objective function for (1.2) with α, β > 0 is strictly convex. Hence the optimal solution for
problem (1.2) with α, β > 0 is unique. So the following Lemma 1 holds.

Lemma 1 There exists an optimal solution for problem (1.2). In addition, the optimal
solution of problem (1.2) with α, β > 0 is unique.

Now, we consider the convergence property of our proposed Algorithm 2. and give a
concise proof.

Theorem 2 Let the sequence (zk
1 , zk

2 , fk)k∈N be generated by Algorithm 2. If 0 < ρ <
1

‖ATA‖ , then both sequences (zk
1 )k∈N and (zk

2 )k∈N converge to the unique solution to problem
(1.2).

Proof We consider a Lagrangian formulation of the original constrained problem (1.2)

L(u, p) = J(u)− < Au− f, p− f > and Au = f, (2.4)

where a change of variable p− f instead of p as Lagrangian multiplier.
We let u∗ be an optimal solution of problem (1.2) and p∗ be a Lagrangian multiplier,

respectively. We denote s∗ = −AT (f − p∗), then we can see that s∗ is a subgradient of J at
u∗ by the Lagrangian function. Therefore, the overall optimality conditions are as follows:

s∗ +AT (f − p∗) = 0, (2.5)

Au∗ − f = 0. (2.6)

We let (zk
1 , zk

2 , fk) be the sequence generated by Algorithm , then fk+1 = fk+f−Azk+1
1 .

Because the convergence of Algorithm 1 for subproblem (2.2), it holds that Azk+1
1 → f and

Azk+1
2 → f as k →∞. Then

lim
k→∞

‖Azk+1
1 − f‖ = lim

k→∞
‖Azk+1

2 − f‖ = lim
k→∞

‖fk+1 − fk‖ = 0.

So Azk+1
1 → f = Au∗ and Azk+1

2 → f = Au∗ as k →∞. By the nonnegative property
of the Bregman distance, it holds that

lim
k→∞

Ds∗
J (zk+1

1 , u∗) = lim
k→∞

(J(zk+1
1 )− J(u∗)− < s∗, zk+1

1 − u∗ >) = 0,

lim
k→∞

Ds∗
J (zk+1

2 , u∗) = lim
k→∞

(J(zk+1
2 )− J(u∗)− < s∗, zk+1

2 − u∗ >) = 0.

Using s∗ = −AT (f − p∗) , Azk+1
1 → f = Au∗ and Azk+1

2 → f = Au∗ as k →∞, We have

0 = lim
k→∞

(J(zk+1
1 )− J(u∗)+ < f − p∗,A(zk+1

1 − u∗) >) = lim
k→∞

(J(zk+1
1 )− J(u∗)),

0 = lim
k→∞

(J(zk+1
2 )− J(u∗)+ < f − p∗,A(zk+1

2 − u∗) >) = lim
k→∞

(J(zk+1
2 )− J(u∗)).

It means that J(zk+1
1 ) → J(u∗) and J(zk+1

2 ) → J(u∗) as k → ∞. So Algorithm 2 is
convergent.
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So we apply the ADPA method for subproblem (2.2) and propose the algorithm ADPA-
BI that can efficiently solve the original problem (1.2). It is one of the most contributions
in this paper.

3 Numerical Experiments

Suppose a Magnetic Resonance image x has n pixels, the partial Fourier transform in
problem (1.2) consists of m rows of a n × n matrix corresponding to the full 2D discrete
Fourier transform. The m selected rows correspond to the acquired b (the observation
measurement). The sampling ratio is defined as m/n. The scanning duration is shorter if
the sampling ratio is smaller. In MR imaging, we have certain freedom to select rows, which
correspond to certain frequencies. In the following experiments, we select the corresponding
frequencies according to the following manner. In the k−space, we randomly obtain more
samples in lower frequencies and less samples in higher frequencies. This sampling scheme
has been widely used for compressed MR image reconstruction [1]. Practically, the sampling
scheme and speed in MR imaging also depend on the physical and physiological limitations
[1].

We implement our ADPA-BI algorithm for problem (1.2) and apply them on 2D real
MR images. All experiments are conducted on a 1.8 GHz PC in Matlab environment.
We compare the ADPA-BI algorithm with the classic Splitting Bregman Iteration (SBI)
algorithm [2] for the reconstruction results and computation complexity of MR images. For
example, the observation measurement b is synthesized as b = Rx + n, where n is the
Gaussian white noise with standard deviation σ = 0.001. The regularization parameters α

and β are set as 0.001 and 0.035. The parameters γ1 and γ2 are both set as e−
4√

k, where k

is the inner iteration counter. R and b are given as inputs, and x is the unknown target.
Let xtrue be the original true image and x a reconstruction image. For quantitative

evaluation, the Signal-to-Noise Ratio (SNR) is computed for each reconstruction result. The
signal-to-noise ratio (SNR) defined by

SNR = 10 log10

‖xtrue‖2
2

‖x− xtrue‖2
2

. (3.1)

The relative dynamic error between two consecutive iterations:

‖zk
1 − zk−1

1 ‖2

‖zk
1‖2

< ε, (3.2)

and ‖Azk
1 − b‖2

2 > δ2 for the prescribed tolerances δ, ε as the stopping rules.
We apply our proposed ADPA-BI method and Split Bregman Iteration (SBI) method

from 21% K-space data of six 2D MR images: phantom, brain1, brain2, brain3, brain4 and
brain5 respectively. Fig. 1 shows these images for simulations.

Table 1 shows that the SNR of the results of reconstruction by different methods. From
the results of reconstruction, the proposed algorithm ADPA-BI is superior to the algorithm
SBI.
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(a)Phantom (b)Brain1 (c)Brain2

(d)Brain3 (d)Brain4 (d)Brain5

Figure 1: MR images: (a)Phantom; (b)Brain1; (c)Brain2; (d)Brain3; (e)Brain4 and (f)Brain5

Table 1: The SNR (db) of results of reconstruction from 21% K-space data

by SBI and ADPA-BI.
Phantom Brain1 Brain2 Brain3 Brain4 Brain5

SBI 21.72 17.33 14.94 20.73 10.58 20.73
ADPA-BI 35.53 18.64 18.55 27.76 16.65 35.07

4 Conclusion

We have proposed an efficient and fast algorithm for the compressed MR image re-
construction from partial Fourier data. Our work has the following contributions. First,
the proposed algorithm ADPA-BI can efficiently solve a composite regularization problem
including both TV term and L1 norm term, which can be easily extended to other medical
image applications. Second, the computation complexity of the ADPA-BI algorithm is anal-
ysed. Third, the convergence properties of the proposed algorithm ADPA-BI are analysed.
These properties make the real compressed MR image reconstruction much more feasible
than before. Finally, we conduct numerical simulations on recovering magnetic resonance
images form partial Fourier data. Numerical simulations show that the proposed algorithm
is very efficient.
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一种SENSE模型下信号重建的类-Dykstra近点有效算法

许伟志1,殷 弘2,蒋凌云1

(1.湖北经济学院统计学院, 湖北武汉 430205)

(2.中国人民大学信息学院, 北京 100872)

摘要: 本文研究了SENSE模型下从部分傅里叶数据中信号的重建问题. 利用类Dykstra近点方法

和Bregman迭代方法, 我们获得了一种SENSE模型下信号重建的加速类-Dykstra近点有效算法, 并证明了该

算法的收敛性. 实验仿真显示, 该方法比经典的分裂Bregman方法有效.
关键词: 核磁共振图像重建; 压缩感知; Bregman方法; 类Dykstra近点算法; SENSE模型
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