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Abstract: In this paper, we investigate the paths and cycles embedding on the enhanced

hypercube with faulty vertices. Using an induction-proving scheme, we obtain paths and cycles

in faulty enhanced hypercube, which generalize the conclusion of hypercube about the paths and

cycles embedding.
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1 Introduction

Hypercube is one of the most popular interconnection networks discovered for parallel
computation. The hypercube which is denoted by Qn is an undirected graph with 2n ver-
tices (nodes) each labeled with a distinct binary string. Two vertices are connected by an
edge if and only if their labels differ in one bit. The hypercube possesses many beautiful
properties, such as regular structure, small diameter, and good connection (see [1–3]), all of
which are very important for designing parallel systems. As the importance of hypercubes,
many variants of Qn have been proposed, among which, for instance, are crossed hypercube,
argument hypercube, folded hypercube and enhanced hypercube.

As an enhancement on the hypercube Qn, the enhanced hypercube Qn,k proposed by
Tzeng and Wei (see [4]), not only retains some of the favorable properties of Qn, but also
improves the efficiency of the hypercube structure, since it possesses many properties superior
to hypercube (see [5–7]). For example, the diameter of the enhanced hypercube is almost
half of the hypercube. The hypercube is n-regular and n-connected, whereas the enhanced
hypercube is (n + 1)-regular and (n + 1)-connected. The complete binary trees can not be
embedded in the hypercube, while complete binary trees can be embedded in the enhanced
hypercubes under some restricted condition (see [6]). Its special case of k = 1 is the well-
known folded hypercube (denoted by FQn) which has received substantial researches (see
[6, 8–10]).
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The graph embedding problem is a central issue in evaluating a network. The embedding
of one guest graph G into another host graph H can be defined as a one-to-one mapping f

from the vertex set of G to the vertex set of H [11]. An edge of G corresponds to a path of
H under the mapping f . Cycles and paths, which are a kind of fundamental topology for
parallel and distributed computing, are suitable for local area networks and for the designing
simple algorithms with low communication cost. Because these architectures are extensively
applied in parallel systems, it is crucial to consider the embedding of efficient paths and
cycles in networks.

Because edges (links) or vertices (nodes) in a network may fail accidentally, it is practi-
cally meaningful to consider faulty networks. Hence, a number of fault-tolerant embedding
options for specific topologies were discussed in researches (see [12–29]). Among them, fault-
tolerant cycles and paths embedding in hypercubes have received a great deal of attention
in recent years. For example, let Fv be the set of faulty vertices of Qn. Yang et al. [13]
showed that a fault-free cycle of length of at least 2n − 2fv can be embedded in Qn with
1 ≤ fv ≤ n − 2. Fu [14] showed that a fault-free cycle of length of at least 2n − 2fv can be
embedded in Qn with fv ≤ 2n− 4. Du and Xu [15] extended the result of Fu, proving that
Qn contains a fault-free even cycle of length 2n − 2fv if fv = 2n− 3 and n ≥ 5. Fu [16] also
proved that a fault-free path of length at least 2n − 2f − 1 (or 2n − 2f − 2) can be embed-
ded in Qn(n ≥ 3) between two arbitrary nodes of odd (or even) distance with fv ≤ n − 2.
Furthermore, Kueng et al. [17] refer the conditional fault model, which assumes that each
nodes is incident to at least two fault-free nodes, showed that in any hypercube Qn(n ≥ 3),
there exists a path of length at least 2n − 2f − 1 (respectively, 2n − 2f − 2) between any
two nodes of odd (respectively, even) distance if it has up to (2n − 6) faulty vertices. All
the above research is the issue on cycles or paths embedding on faulty Qn, the objective of
this paper is to further extend the research of these unknown features, particularly those
important features already known to Qn, but unknown to Qn,k.

The rest of this paper is organized as follows. In Section 2, some basic definitions and
lemmas used in our discussion are proposed. In Section 3, our main results are proved.
We mainly discuss the embedding of paths and cycles. When |Fv| = fv ≤ n − 1, using
an mathematical inductive method, we showed that Qn,k − Fv contains a fault-free path of
length of at least 2n − 2fv − 1 between any two nodes of odd distance. Furthermore, when
1 ≤ |Fv| = fv ≤ 2n − 3, if n and k have the same parity, there exits a fault-free cycle of
even length at least 2n − 2fv, where n ≥ 4. If n and k have different parity, there exists a
fault-free cycle, which is of even length of at least 2n − 2fv in Qn,k − Fv, where n ≥ 4; and
simultaneously, there exists a fault-free cycle, which is of odd length of at least 2n − 2fv + 1
in Qn,k − Fv, where n ≥ 3. Finally, some concluding remarks are given in Section 4.

2 Preliminaries

For the graph theoretical definitions and notations we follow [3]. A network is usually
modeled by a connected graph G = (V, E), where V (G) and E(G) represent the vertex and



No. 4 Paths and cycles in faulty enhanced hypercube 857

edge sets of G = (V, E) respectively. Two nodes x and y of G are adjacent if (u, v) ∈ E(G).
For a node u of G, its neighborhood NG(u) is defined by NG(u) = {v ∈ V (G)|(u, v) ∈ E(G)}.
G is bipartite if V can be partitioned into two subsets V1 and V2, such that every edge in
G joins a vertex of V1 with a vertex in V2. Then the bipartite graph can be denoted as
G = (V1 ∪ V2, E), where {V1 ∩ V2} = φ, and E ⊆ {(x, y), x ∈ V1, y ∈ V2}. We say that V1

and V2 are bipartite sets of G, and V1 ∪ V2 is a bipartite. A bipartite graph is bipancyclic if
it contains a cycle of every even length from 4 to |V (G)|. A graph is said to be pancyclic if
it contains a cycle of every length from 3 to |V (G)|. Two graphs G1 and G2 are isomorphic,
denoted as G1

∼= G2, if there is a one to one mapping f from V (G1) to V (G2) such that
(u, v) ∈ E(G1) if and only if (f(u), f(v)) ∈ E(G2).

A path P of length m from a node x to a node y in a graph G is a sequence of
adjacent vertices (v0, v1, v2, . . . , vm), with the original vertex x = v0 and end vertex y = vm.
For convenience,we write P (x, y) as P (v0, vm) = (v0, v1, v2, . . . , vm) where all the vertices
v0, v1, v2, . . . , vm are distinct except that possibly the path is a cycle when v0 = vm. Two
paths are vertex-disjoint if and only if they do not have any vertices in common. A cycle is
called a Hamiltonian cycle if it traverses every vertex of G exactly once. A cycle of length k

is called a k-cycle; a k-cycle is odd or even depending on whether k is odd or even. A cycle
is fault-free if it contains neither a faulty vertex nor a faulty edge.

An n-dimensional hypercube Qn is an undirected graph with 2n vertices(nodes), and
the hypercube Qn has vertex set V (Qn) = {x1x2 · · ·xn : xi = 0 or 1, 1 ≤ i ≤ n}, with two
vertices x1x2 · · ·xn and y1y2 · · · yn being adjacent if and only if they differ in exactly one bit.
Let x and y be two vertices of hypercube Qn, dQn

(x, y) denote the length of the shortest
path between x and y in hypercube Qn. The Hamming distance between x and y, denoted
by h(x, y), is the number of different bits between the corresponding strings of x and y, that
is, the length of the distance of the shortest path between the x and y in Qn . Obviously,
by the definition of Hamming distance, we know that h(x, y) = dQn

(x, y), where dQn
(x, y)

is the shortest path between x and y in Qn. The Hamming weight of a vertex x is defined

as hw(x) =
n∑

i=1

xi, so whether a vertex is even or odd, based on the hamming weight of

the vertex is even or odd. It is well known Qn that is a bipartite graph with partite sets
V0(Qn) = {x ∈ V (Qn)|hw(x) is even} and V1(Qn) = {y ∈ V (Qn)|hw(y) is odd}. It is also
known that Qn is vertex-transitive and edge-transitive.

By the definition, for a given 1 ≤ i ≤ n, we can partition Qn into two (n − 1)-cubes
Qi0

n−1 and Qi1
n−1 along some i such that Qn = Qi0

n−1 ∪Qi1
n−1. A vertex x1x2 · · ·xn ∈ V (Qi0

n−1)
if and only the ith position xi = 0; Similarly x1x2 · · ·xn ∈ V (Qi1

n−1) if and only the ith
position xi = 1. Obviously, Qi0

n−1 and Qi1
n−1 are isomorphic to Qn−1.

An n-dimensional enhanced hypercube Qn,k is obtained by adding some complementary
edges from hypercube Qn, and it can be defined as follows:

Definition 1 Enhanced hypercube Qn,k = (V, E)(1 ≤ k ≤ n− 1) is an undirected
simple graph. It has the same vertices of Qn, i.e, V = {x1x2 · · ·xn : xi = 0 or 1, 1 ≤ i ≤ n}.
Two vertices x = x1x2 · · ·xn and y are adjacent if y satisfies one of the following two



858 Journal of Mathematics Vol. 35

conditions:
(1) y = x1x2 · · ·xi−1x̄ixi+1 · · ·xn, 1 ≤ i ≤ n, or
(2) y = x1x2 · · ·xk−1x̄kx̄k+1 · · · x̄n.
According to the above definition, it can be easily shown that Qn,k contains Qn as

its subgraph. We can also get that n-dimensional enhanced hypercube Qn,k has 2n−1 more
edges than n-dimensional hypercube Qn. It has been showed that the enhanced hypercube is
(n+1)-regular and has 2n vertices and (n+1)2n−1 edges. We call the edges of hypercube are
hypercube edges and use Eh to denote them, the other 2n−1 edges are complementary edges
and use Ec to denote them. For convenience, we can use x̄ to denote the vertex x̄1x̄2 · · · x̄n.
Obviously, xx̄ is an complementary edge. Since Qn,k contains Qn as its subgraph, then
Qn,k − Ec

∼= Qn.
Lemma 1 (see [5]) Qn,k can be partitioned into two subgraphs along some components

i(1 ≤ i ≤ n). We use Qi0
n−1,k and Qi1

n−1,k to denote the two parts respectively. A vertex
x = x1x2 · · ·xn belong to Qi0

n−1,k if and only if the ith position xi = 0; Similarly, x ∈ Qi1
n−1,k

if and only if the ith position xi = 1. When i < k, Qi0
n−1,k and Qi1

n−1,k are two (n − 1)-
dimensional enhanced hypercube; When i ≥ k, Qi0

n−1,k and Qi1
n−1,k are two (n−1)-dimensional

hypercube.
Lemma 2 (see [26]) Let x and y be two distinct vertices in an n-cube and h(x, y) = d,

where n ≥ 1. There are paths P (u, v) in the n-cube whose length are d, d + 2, d + 4, · · · , c,

where c = 2n − 1 if d is odd, and c = 2n − 2 if d is even.
Lemma 3 (see [18]) Let x and y be two distinct vertices of an n-dimensional cube.

Then, there exists a partition which can partite the n-cube into two (n − 1)-dimensional
subcubes such that x ∈ V (Q0

n−1) and y ∈ V (Q1
n−1).

Lemma 4 (see [14]) There exist a fault-free cycle of length of at least 2n − 2fv in Qn

with f faulty vertices, where 1 ≤ fv ≤ 2n− 4 and n ≥ 4.
Lemma 5 (see [15]) In Qn, if n ≥ 5, fv = 2n − 3, then there exists a fault-free even

cycle of length at least 2n − 2fv.
Lemma 6 (see [14]) Let e1 and e2 be two distinct edges in Qn with fv ≤ 1 fault

vertices, where n ≥ 3. Suppose e1 connects vertices x and y. There exists a fault-free path
P (x, y) of length of at least 2n − 2fv − 1 in Qn that contains edge e2.

Lemma 7 (see [16]) Let x and y be two distinct vertices in Qn with fv ≤ n− 2 fault
vertices, where n ≥ 3. If h(x, y) is even, then there exists a fault-free path P (x, y) of length
at least 2n − 2fv − 2.

3 Main Results

In this section, for a faulty set F = Fv ∪ Fe, let fv = |Fv| and fe = |Fe|, where Fv ⊂
V (Qn) and Fe ⊂ V (Qn). For any i ∈ {1, 2, · · · , n}, we always express Qn = Qi0

n−1 ∪ Qi1
n−1,

let F0 = Fv ∩Qi0
n−1 and F1 = Fv ∩Qi1

n−1. Let f0 = |F0| and f1 = |F1|.
Lemma 8 Let Qn have exactly one faulty vertex f ∈ X. For any two fault-free

adjacent vertices u and v of Qn, where n ≥ 3, there exist fault-free paths connecting u and
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Fig.1: An illustration of Case 1and Case 2 in the proof of Lemma 8

v in Qn whose length are from 1 to 2n − 3.

Proof We prove this lemma by induction on n ≥ 3. For n = 3. we need to construct
a path of every odd length from 1 to 5 between any two distinct adjacent vertices u and v

in Q3 − f . Since Q3 is vertex-symmetric, without loss of generality, we may assume that
the fault vertices is f = 000 and the two adjacent vertices are u = 001 and v = 101, then a
fault-free path of 1, 3 and 5 are constructed as follows: (001, 101), (001, 011, 111, 101) and
(001, 011, 010, 110, 111, 101). In the following, we consider the situation n ≥ 4. Since u

and v are two adjacent vertices, Qn can be partitioned into two (n−1)-dimensional subcube
Qi0

n−1 and Qi1
n−1 along some dimension i (1 ≤ i ≤ n) such that u and v be in the same

subgraph. Without loss of generality, we assume f ∈ Qi0
n−1. Then we have the following

cases:

Case 1 u, v ∈ V (Qi0
n−1). In Qi0

n−1, by the induction hypothesis, there exist paths
connecting u and v, whose length are from 1 to 2n−1 − 3. In the following, we construct
a path of every odd length from 2n−1 − 1 to 2n − 3 between u and v. Since the longest
path P0(u, v) is of length 2n−1 − 3, we can select two adjacent nodes x and y from the
longest path P0(u, v), such that P0(u, v) = P0(u, x) ∪ (x, y) ∪ P0(y, u), {x, y} ∩ {f} = ∅ and
{xi, yi} ∈ V (Qi1

n−1). Obviously, since h(xi, yi) = 1, by lemma 2, then in Qi0
n−1, there exists a

fault-free path P1(xi, yi) connecting the nodes xi and yi, whose length is from 1 to 2n−1− 1.
The desired path P (u, v) can be constructed as P0(u, x)∪(x, xi)∪P1(xi, yi)∪(yi, y)∪P0(yi, v),
whose length is from from 2n−1 − 1 to 2n − 3 (refer to Fig. 1. (a)) (in this paper, all of the
symbols ∪ are represent the path-conjunction operations, which are used to connecting the
paths or edges).

Case 2 u, v ∈ V (Qi1
n−1). In Qi1

n−1, h(u, v) = 1, by Lemma 2, Qi1
n−1 contain paths of

every odd length from 1 to 2n−1−1 between u and v. We next construct paths connecting u

and v of every odd length from 2n−1 + 1 to 2n − 3. Let P1(u, v) be the longest path P0(u, v)
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Fig.2: An illustration of Case 1.1, Case 1.2 and Case 2 in the proof of Lemma 9

of length 2n−1 − 1 in Qi1
n−1, we select an edge (xi, yi) in the longest path P1(u, v), such that

P1(u, v) = P1(u, xi) ∪ (xi, yi) ∪ P1(yi, v), {x, y} ∈ V (Qi0
n−1) and {x, y} ∩ {f} = ∅.(If such

vertex x and y do not exist, we have |Fv| ≥ 2, which is a contradiction.) In Qi0
n−1, since

h(x, y) = 1, f ∈ V (Qi0
n−1), by induction hypothesis, there exists a fault-free path P0(x, y)

with length 1, 3, 5, · · · , 2n−1 − 3 inclusive. The desired path P (u, v) can be constructed as
P1(u, xi) ∪ (xi, x) ∪ P0(x, y) ∪ (y, yi) ∪ P1(yi, v), whose length is 2n−1 + 1 to 2n − 3 (refer to
Fig. 1 (b)).

By analyzing the above cases, the proof of the lemma is completed.

Lemma 9 Suppose that Qn have two faulty vertex f1 and f2, where n ≥ 3. For any
two fault-free distinct adjacent vertices u and v, there exists a fault-free path of every odd
length from 1 to 2n − 5.

Proof We show this lemma by induction on n ≥ 3. For n = 3, we can construct a
path which satisfies our theorem. Since Q3 is vertex-symmetric, we may assume that the
two adjacent vertices are u = 000 and v = 010. When the two faulty vertex are adjacent,
because of the symmetric of Q3, let f1 = 101 and f2 = 111, then a fault-free path of 1 and 3
are constructed as follows: (000, 010) and (000, 001, 011, 010). When the two faulty vertex
are not adjacent, because of the symmetric of Q3, let f1 = 101 and f2 = 011, then a fault-
free path of 1 and 3 are constructed as follows: (000, 010) and (000, 100, 110, 010). In the
following, we consider the situation n ≥ 4. Since u and v are two adjacent vertices, we can
partite Qn into two (n − 1)-dimensional hypercube Qi0

n−1 and Qi1
n−1 along some dimension

i(1 ≤ i ≤ n) such that u and v be in the same subgraph Qi0
n−1. We will consider the following

cases:

Case 1 f1 and f2 be in the same subgraph.

Case 1.1 f1,f2 ∈ V (Qi0
n−1). In Qi0

n−1 − Fv, by the induction hypothesis, there exist
fault-free paths of every odd length from 1 to 2n−1−5 between u and v. In the following, we
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construct a path of every odd length from 2n−1 − 3 to 2n − 5 between u and v. Let P0(u, v)
be a path of length 2n−1 − 5 joining u and v in Qi0

n−1 − Fv, we select an edge (s, r) on path
P0(u, v) such that {si, ri} ∈ V (Qi1

n−1), it is easy to know h(si, ri) = 1, by Lemma 2, there
exists a path P1(si, ri) of every odd length from 1 to 2n−1 − 1 between si and ri. Then the
desired path P (u, v) can be constructed as P0(u, s) ∪ (s, si) ∪ P1(si, ri) ∪ (ri, r) ∪ P0(r, v),
whose length is from 2n−1 − 3 to 2n − 5 (refer to Fig. 2 (a)).

Case 1.2 f1,f2 ∈ V (Qi1
n−1). In Qi0

n−1, h(u, v) = 1, by Lemma 2, there exist paths every
odd length from 1 to 2n−1−1 between u and v. We next construct a path of every odd length
from 2n−1 + 1 to 2n − 5 between u and v. Let P0(u, v) be a path of length 2n−1 − 1 joining
u and v in Qi0

n−1, we select an edge (s, r) on path P0(u, v) such that {si,ri} ∈ V (Qi1
n−1) and

{si, ri} ∩ {f1, f2} = φ. In Qi1
n−1 − Fv, by the induction hypothesis, there exists a fault-free

path of every odd length from 1 to 2n−1−5 between si and ri. Then the desired path P (u, v)
can be constructed as P0(u, s) ∪ (s, si) ∪ P1(si, ri) ∪ (ri, r) ∪ P0(r, v), whose length is from
2n−1 + 1 to 2n − 5 (refer to Fig. 2 (b)).

Case 2 f1 and f2 be in the different subgraph. Without loss of generality, let f1 ∈
V (Qi0

n−1), f2 ∈ V (Qi1
n−1) (the discussion of f1 ∈ V (Qi1

n−1), f2 ∈ V (Qi0
n−1) is similar to this

case.) In Qi0
n−1−f1, h(u, v) = 1, by Lemma 8, there exists a fault-free path of every odd length

from 1 to 2n−1−3 between u and v. In the following, we construct a path of every odd length
from 2n−1− 1 to 2n− 5 between u and v. Let P0(u, v) be a path of length 2n−1− 3 joining u

and v in Qi0
n−1−f1, we select an edge (s, r) on path P0(u, v) such that {si,ri} ∈ V (Qi1

n−1) and
{si, ri} ∩ f2 = φ, it is easy to know h(si, ri) = 1. In Qi1

n−1 − f2, h(si, ri) = 1, by Lemma 8,
there exists a fault-free path of every odd length from 1 to 2n−1−3 between si and ri. Then
the desired path P (u, v) can be constructed as P0(u, s)∪ (s, si)∪P1(si, ri)∪ (ri, r)∪P0(r, v),
whose length is from 2n−1 − 1 to 2n − 5 (refer to Fig. 2 (c)).

3.1 Fault-Tolerant Paths Embedding on Qn,k

Theorem 1 Let x and y be two arbitrary fault-free vertices of enhanced hypercube
Qn,k(n ≥ 3, 1 ≤ k ≤ n− 1) with |Fv| = fv ≤ n− 1 . There exists a fault-free path P (x, y) of
length of at least 2n − 2fv − 1 in Qn,k − Fv when h(x, y) is odd.

Proof We show this lemma by induction on n ≥ 3. For n = 3, |Fv| = 2, now we consider
Q3,1 and Q3,2. Since h(x, y) is odd, it is easy to know that h(x, y) = 1 or h(x, y) = 3 in
Q3,1 and Q3,2. Since Q3 is vertex-symmetric, we may assume that x = 010 and y = 110
or x = 010 and y = 101. In Q3,1, we consider two subcases. If the two faulty vertex are
adjacent, because of the symmetric of Q3, let f1 = 000 and f2 = 001, then a fault-free path
of 3 are constructed as follows: (010, 011, 111, 110) and (010, 110, 111, 101). If the two
faulty vertex are not adjacent, because of the symmetric of Q3, let f1 = 000 and f2 = 011,
then a fault-free path of 3 are constructed as follows: (010, 101, 111, 110 ) and (010, 110,
111, 101). In the following, we will consider n ≥ 4.

Let w and z are two distinct faulty vertices. Applying Lemma 1 and Lemma 3, Qn,k can
be partitioned into two (n − 1)-dimensional enhanced hypercube Qi0

n−1,k and Qi1
n−1,k along
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some component i(1 ≤ i ≤ k) such that one contains the vertex w and the other contains
the vertex z. In the following, for a faulty vertex set Fv, let fv = |Fv|, F0 = Fv ∩V (Qi0

n−1,k),
F1 = Fv ∩ V (Qi1

n−1,k), f0 = |F0| and f1 = |F1|. Since fv = f0 + f1, consequently, f0 ≤ n− 2
and f1 ≤ n− 2.

Case 1 x and y are in the same subgraph. Without loss of generality, let x, y ∈ Qi0
n−1,k.

In Qi0
n−1,k, f0 ≤ n−2, by induction hypothesis, there exists a fault-free path P0(x, y) of length

of at least 2n−1− 2f0− 1 in Qi0
n−1,k−F0. We select an edge (u, v) on path P0(x, y) such that

h(u, v) = 1, {ui, vi} ∈ V (Qi1
n,k) and {ui, vi} ∩ f1 = φ. (If such an edge does not exit, then

f1 ≥ b2
n−1 − 2f0 − 1

2
c ≥ b2n−2 − f0 − 1

2
c = 2n−2 − f0 − 1.

Thus fv = f0 +f1 ≥ 2n−2−1 > n−2, for n ≥ 4, which is a contradiction.) In Qi1
n−1,k, it is to

know h(ui, vi) = 1, and f1 ≤ n− 2, from induction hypothesis, there exists a fault-free path
P1(ui, vi) of length of at least 2n−1−2f1−1 in Qi1

n−1,k−F1. Then a fault-free path connecting
x and y of Qn,k can be constructed as P (x, y) = P0(x, u)∪(u, ui)∪P1(ui, vi)∪(vi, v)∪P0(v, y).
The length of path P (x, y) is at least

(2n−1 − 2f0 − 1)− 1 + (2n−1 − 2f1 − 1) + 2 = 2n − 2fv − 1

(refer to Fig. 3 (a)).
Case 2 x and y are in the different subgraph. Without loss of generality, let x ∈ Qi0

n−1,k,
y ∈ Qi1

n−1,k. In Qi0
n−1,k − F0, select u be a neighbor of x such that u 6= x, u be not adjacent

to y, ui ∈ V (Qi1
n−1,k) and ui ∩ f1 = φ (if such an vertex does not exit, then

fv ≥ 2n−1

2
= 2n−2 > n− 2,

for n ≥ 4,which is a contradiction). In Qi0
n−1,k − F0, since f0 ≤ n − 2 and h(x, u) = 1,

by induction hypothesis, there exists a fault-free path P0(x, u) whose length is at least
2n−1 − 2f0 − 1. Since h(x, u) = 1, h(u, ui) = 1 and h(x, y) is odd, it is easy to know that
h(ui, y) is odd. In Qi1

n−1,k−F1, since f0 ≤ n−2 and h(ui, y) is odd, by induction hypothesis,
there exists a fault-free path P1(ui, y) of length of at least 2n−1 − 2f1 − 1. Then a fault-free
path connecting x and y of Qn,k can be constructed as P (x, y) = P0(x, u)∪(u, ui)∪P1(ui, y).
The length of path P (x, y) is at least

(2n−1 − 2f0 − 1) + 1 + (2n−1 − 2f1 − 1) = 2n − 2fv − 1

(refer to Fig. 3 (b)).
By analyzing the above cases, the proof of the theorem is completed.
Theorem 2 Let Fv be a set of | Fv |= fv = n faulty vertices in Qn,k(n ≥ 3, 1 ≤ k ≤

n − 1) such that every vertex of Qn,k has at least two fault-free neighbors. Suppose that
x and y are two vertices of with h(x, y) = 1. Then there exists a fault-free path P (x, y) of
length of at least 2n − 2n− 1 in Qn,k − Fv.
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Fig. 3: An illustration of Case 1 and Case 2 in the proof of Theorem 1

Proof When n = 3, | Fv |= fv = 3, it is not difficult to check the result for Q3,1

and Q3,2 holds. We show the theorem by induction on n ≥ 3. According to Lemma 1
and Lemma 3, we can execute an i(i < k)-partition on Qn,k to obtain two n-dimensional
enhanced hypercubes Qi0

n−1,k and Qi1
n−1,k such that each contains at least one faulty vertex.

Since x and y be two adjacent vertices, without loss of generality, let x and y are in the same
subgraph Qi0

n−1,k. We will consider the following cases:
Case 1 | F0 |= f0 = n− 1,| F1 |= f1 = 1.
In Qi0

n−1,k, f0 = n− 1, by induction hypothesis, there exists a fault-free path P0(x, y) of
length of at least 2n−1 − 2f0 − 1 in Qi0

n−1,k − F0. We select an edge (u, v) on path P0(x, y)
such that {ui, vi} ∈ V (Qi1

n,k) and {ui, vi} ∩F = φ. In Qi1
n−1,k, since h(ui, vi) = 1 and f1 = 1,

by theorem 1, there exists a fault-free path P1(ui, vi) of length of at least 2n−1 − 2f1 − 1 in
Qi1

n−1,k − F1. Then a fault-free path P (x, y) of Qn,k can be constructed as

P (x, y) = P0(x, u) ∪ (u, ui) ∪ P1(ui, vi) ∪ (vi, v) ∪ P0(v, y).

The length of path P (x, y) is at least (2n−1−2f0−1)−1+2+(2n−1−2f1−1) = 2n−2n−1.
Case 2 2 ≤| F0 |= f0 ≤ n− 2, then 2 ≤| F1 |= f1 ≤ n− 2
In Qi0

n−1,k, f0 ≤ n − 2, by Theorem 1, then there exists a fault-free path P0(x, y) of
length of at least 2n−1 − 2f0 − 1 in Qi0

n−1,k − F0 . We select an edge (u, v) on path P0(x, y)
such that {ui, vi} ∈ V (Qi1

n,k) and {ui, vi} ∩ F = φ. In Qi1
n−1,k, since 2 ≤ f1 ≤ n − 2, by

Theorem 1, there exists a fault-free path P1(ui, vi) of length of at least 2n−1 − 2f1 − 1 in
Qi1

n−1,k − F1. Then a fault-free path P (x, y) of Qn,k can be constructed as

P (x, y) = P0(x, u) ∪ (u, ui) ∪ P1(ui, vi) ∪ (vi, v) ∪ P0(v, y).

The length of path P (x, y) is at least (2n−1−2f0−1)−1+2+(2n−1−2f1−1) = 2n−2n−1.
Case 3 | F0 |= f0 = 1, | F1 |= f1 = n− 1.
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In Qi1
n−1,k − F1, we can select an edge (ui, vi) ∈ E(Qi1

n,k) such that h(ui, vi) = 1, both
ui and vi have at least two non-fault neighbor, {u, v} ∈ V (Qi0

n,k) and {u, v} ∩ f = φ. By
induction hypothesis, there exists a fault-free path P1(ui, vi) of length of at least 2n−1−2f1−1
in Qi1

n−1,k−F1. Since Qn,k contains Qn as its subgraph, then Qn,k−Ec
∼= Qn. In Qi0

n−1,k, by
Lemma 6, there exists a fault-free path P0(x, y) that contains edge (u, v) in Qi0

n−1,k−Ec−F1

which is also in Qi0
n−1,k − F1. Then a fault-free path P (x, y) of Qn,k can be constructed as

P (x, y) = P0(x, u) ∪ (u, ui) ∪ P1(ui, vi) ∪ (vi, v) ∪ P0(v, y).

The length of path P (x, y) is at least (2n−1−2f0−1)−1+2+(2n−1−2f1−1) = 2n−2n−1.

3.2 Fault-Tolerant Cycles Embedding on Qn,k

In this subsection, we demonstrate there exist the vertex-fault-tolerant cycles embedding
on enhanced hypercube when 1 ≤ |Fv| = fv ≤ 2n− 3.

Theorem 3 Let Fv be the faulty vertex set of Qn,k such that every vertex of Qn,k has
at least two fault-free neighbors, where n ≥ 4 and 1 ≤ |Fv| = fv ≤ 2n− 3, then there exists
a fault-free cycle, which is of even length of at least 2n − 2fv in Qn,k − Fv, if n and k have
same parity.

Proof When n = 4, 1 ≤ |Fv| ≤ 2n − 3 = 5, we consider Q4,k. By Lemma 4, it is
obviously hold for Q4,k when 1 ≤ |Fv| ≤ 2n− 4 = 4. Consequently, we only need to consider
|Fv| = 5 in Q4,k. Applying lemma 1, Qn,k can be partitioned into two (n − 1)-dimensional
hypercube Qi0

n−1 and Qi1
n−1 along some component i(i ≥ k) such that one contains a fault

vertex. In the following, For a faulty vertex set Fv, let fv = |Fv|, where Fv ⊂ V (Qn). Let
F0 = Fv ∩ V (Qi0

n−1) and F1 = Fv ∩ V (Qi1
n−1). Let f0 = |F0| and f1 = |F1|.

Case 1 |F0| = f0 = 4, |F1| = f1 = 1.
Select a vertex x ∈ V (Qi0

3 ) such that x ∩ {F0} = ∅ , x̄ ∈ V (Qi1
3 ), xi ∈ V (Qi1

3 ) and
{x̄, xi} ∩F1 = ∅. Since h(x, x̄) = n− k + 1 and h(x, xi) = 1, we have h(x̄, xi) = n− k. Since
n and k have same parity, then h(x̄, xi) is even. In Qi1

3 , by Lemma 7, there exists a fault-free
path P1(x̄, xi) of even length 23−2×1−2 = 4 connecting x̄ and xi in Qi1

3 −F1. The desired
even cycles can be constructed as (x, x̄) ∪ P1(x̄, xi) ∪ (xi, x), whose length is 6 (refer to Fig.
4 (a)).

Case 2 |F0| = f0 = 3, |F1| = f1 = 2.
In Qi0

3 , select an edge (x, y) ∈ E(Qi0
3 ) such that h(x, y) = 1 and {xi, yi}∩F1 = ∅. In Qi1

3 ,
by Lemma 9, there exists a fault-free path P1(xi, yi) of length of at least 23−5 = 3 in Qi1

3 −F1.
Then the desired even cycles can be constructed as (x, y)∪ (y, yi)∪P1(yi, xi)∪ (xi, x), whose
length is 6 (refer to Fig. 4 (b)).

When n ≥ 5, 1 ≤ |Fv| = fv ≤ 2n− 3. In Qn,k −Ec, since Qn,k −Ec
∼= Qn, by Lemma 4

and Lemma 5, there exist fault-free cycles of even length at least 2n − 2f in Qn,k −Ec − Fv

which is also in Qi0
n−1,k − F1.

The proof of the theorem is completed.
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Figs. 4: An illustration of Case 1 and Case 2 in the proof of Theorem 3

Theorem 4 Let Fv be the faulty vertex set of 1 ≤ |Fv| = fv ≤ 2n − 3 in Qn,k such
that every vertex of Qn,k has at least two fault-free neighbors, n and k have different parity.
Then there exists a fault-free cycle, which is of even length of at least 2n− 2fv in Qn,k −Fv,
if n ≥ 4; and simultaneously, there exists a fault-free cycle, which is of odd length of at least
2n − 2fv + 1 in Qn,k − Fv, if n ≥ 3.

Proof We proceed by induction on n. Let w and z are two distinct faulty vertices.
Applying Lemma 1 and Lemma 3, Qn,k can be partitioned into two (n − 1)-dimensional
enhanced hypercube Qi0

n−1,k and Qi1
n−1,k along some component i(i < k) such that one

contains the vertex w and the other contains the vertex z. In the following, For a faulty
set F = Fv ∪ Fe, let fv = |Fv| and fe = |Fe|, where Fv ⊂ V (Qn,k) and Fe ⊂ E(Qn,k). Let
F0 = Fv ∩ V (Qi0

n−1,k) and F1 = Fv ∩ V (Qi1
n−1,k). Let f0 = |F0| and f1 = |F1|.

Case 1 We first proof Qn,k − Fv contains a fault-free cycle of even length of at least
2n − 2fv if n ≥ 4.

When n = 4, 1 ≤ |Fv| ≤ 2n − 3 = 5, we consider Q4,k. By Lemma 4, it is obviously
hold for Q4,k when 1 ≤ |Fv| ≤ 2n − 4 = 4, consequently, in the following, we only need to
consider |Fv| = 5 in Q4,k.

Case 1.1 |F0| = f0 = 4, |F1| = f1 = 1.

Select an edge (x, y) ∈ E(Qi0
3,k) such that h(x, y) = 1 and {xi, yi} ∩ F1 = ∅. In Qi1

3,k,
since f1 = 1, by theorem 1, there exists a fault-free path P1(xi, yi) of length of at least
23 − 2 × 2 − 1 = 3 in Qi1

3,k − F1. Then the desired even cycles can be constructed as
(x, y) ∪ (y, yi) ∪ P1(yi, xi) ∪ (xi, x), whose length is 6.

Case 1.2 |F0| = f0 = 3, |F1| = f1 = 2.

In Qi0
3,k, select an edge (x, y) ∈ E(Qi0

3,k) such that h(x, y) = 1 and {xi, yi} ∩ F1 = ∅.
In Qi1

3,k, since f1 = 2, by Theorem 1, there exists a fault-free path P1(xi, yi) of length of at
least 23 − 2 × 2 − 1 = 3 in Qi1

3,k − F1. Then the desired even cycles can be constructed as
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(x, y) ∪ (y, yi) ∪ P1(yi, xi) ∪ (xi, x), whose length is 6.
When n ≥ 5, 1 ≤ |Fv| = fv ≤ 2n− 3. In Qn,k −Ec, since Qn,k −Ec

∼= Qn, by Lemma 4
and Lemma 5, there exist fault-free cycles of even length at least 2n − 2f in Qn,k −Ec − Fv

which is also in Qi0
n−1,k − F1.

Case 2 In the following, we proof Qn,k −Fv contains a fault-free cycle of odd length of
at least 2n − 2fv + 1 if n ≥ 3.

For n = 3, 1 ≤ |Fv| ≤ 2n − 4 = 3, since n and k have different parity, we only need to
consider Q3,2. When fv = 1, without loss of generality, we can select an arbitrary vertex
u = 000 as a faulty vertex, then we can easily construct a odd length fault-free cycle as
C = (100, 111, 101, 001, 011, 010, 110, 110) in Q3,2 − u, whose length is 7. When fv = 2,
if the two faulty vertex are adjacent, since Q3,2 is vertex-symmetric, we may assume that
x = 000 and y = 001. then a fault-free path of odd length 5 is constructed as follows:
(100,110,010,011,111,100). If the two faulty vertex are not adjacent, because of the symmet-
ric of Q3,2, let f1 = 000 and f2 = 111, then a fault-free path of odd length 5 is constructed
as follows: (010,001,101,100,110,010). When fv = 3, by the structure of Q3,2, we can easily
construct a fault-free cycle of odd length 3. In the following, we want to construct a fault-free
cycle, which is of odd length of at least 2n − 2fv + 1 in Qn,k − Fv.

Case 2.1 1 ≤ |Fv| = fv ≤ n− 1. Since fv = f0 + f1, consequently, 1 ≤ f0 ≤ n− 2 and
1 ≤ f1 ≤ n− 2.

Select an edge (x, y) in E(Qi0
n−1,k) such that {x, y} ∩ F0 = ∅, {x̄, yi} ∈ V (Qi1

n−1) and
{x̄, yi} ∩ F1 = ∅. In Qi0

n−1,k − F0, since h(x, y) = 1 and f0 ≤ n − 2, by Theorem 1, there
exists a fault-free path P0(x, y) of length of at least 2n−1 − 2f0 − 1 in Qi0

n−1,k − F0. In
Qi1

n−1,k − F1, Select u be a neighbor of x̄ such that u 6= yi. (If such an vertex does not exit,
then f1 ≥ 2n−1

2
= 2n−2 > n− 2, for n ≥ 3, which is a contradiction.) Since h(x, x̄) = n and

n is even, then h(x, x̄) is even. And h(y, yi) = 1, h(x̄, u) = 1, consequently, h(u, yi) is odd,
and f1 ≤ n − 2, by Theorem 1, there exists a fault-free path P1(u, yi) of length of at least
2n−1 − 2f1 − 1 in Qi1

n−1,k − F1. Then the desired odd cycles can be constructed as

(x, x̄) ∪ (x̄, u) ∪ P1(u, yi) ∪ (yi, y) ∪ P0(y, x)

of length of at least

(2n−1 − 2f0 − 1) + 2 + 1 + (2n−1 − 2f1 − 1) = 2n − 2fv + 1

(refer to Fig. 5).
Case 2.2 n ≤ |Fv| = fv ≤ 2n− 3.
Case 2.2.1 |F0| = f0 = 2n− 4, |F1| = f1 = 1.
Let w be a fault vertex in Qi0

n−1,k. Imagining w not faulty, consequently, |F0| = f0 ≤
2n − 5, by induction hypothesis, there exists a fault-free cycle C0 of length of at least
2n−1 − 2(f0 − 1) + 1 in Qi0

n−1,k − F0.
Case 2.2.1.1 w ∈ C0, select x, y ∈ C be adjacent to w such that h(x, y) = 2 and

{xi, yi} ∈ V (Qi0
n−1,k).
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When {xi, yi} ∩ F = φ. In Qi1
n−1,k, h(xi, yi) is even, by Lemma 7, there exists a fault-

free path P1(xi, yi) of length of at least 2n−1 − 2f1 − 2 in Qi1
n,k − F1 −Ec which is also in in

Qi1
n,k −F1. Then a fault-free cycle C of Qn,k can be constructed as C = (C0− xy)∪ (y, yi)∪

P1(yi, xi) ∪ (xi, x). The length of cycle C is at least

(2n−1 − 2(f0 − 1) + 1)− 2 + 2 + (2n−1 − 2f1 − 2) = 2n − 2fv + 1

(refer to Fig. 6 (a)).
When {xi, yi} ∩ F 6= φ. Without loss of generality, let xi is faulty. Select u ∈ C be

adjacent to x such that h(u, y) = 3, then ui is not fault. In Qi1
n,k, by Theorem 1, there exists

a fault-free path P (ui, yi) of length of at least 2n−1−2f1−1 in Qi1
n−1,k−F1. Then a fault-free

cycle of Qn,k can be constructed as C = C0 − uy ∪ (u, ui) ∪ P1(ui, yi) ∪ (yi, y). The length
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of cycle is at least (2n−1 − 2(f0 − 1) + 1) − 3 + 2 + (2n − 2f1 − 1) = 2n − 2fv + 1 (refer to
Fig. 6 (b)).

Case 2.2.1.2 w /∈ C0,We select an edge (x, y) in C0 Qi0
n−1,k such that h(x, y) = 2 and

{xi, yi} ∩ F = φ. In Qi1
n−1,k, h(xi, yi) is even, by Lemma 7, there exists a fault-free path

P1(xi, yi) of length of at least 2n−1−2f1−2 in Qi1
n−1,k−F1−Ec which is also in in Qi1

n,k−F1.
Then a fault-free cycle of Qn,k can be constructed as C = (C0−xy)∪(y, yi)∪P1(yi, xi)∪(xi, x).
The length of cycle is at least (2n−1−2(f0−1)+1)−2+2+(2n−1−2f1−2) = 2n−2fv +1.

Case 2.2.2 n− 1 ≤ |F0| = f0 ≤ 2n− 5, 1 ≤ |F1| = f1 = n− 2.
In Qi0

n−1,k, by induction hypothesis, there exists a fault-free cycle C0 of length of at
least 2n−1 − 2f0 + 1 in Qi0

n−1,k − F0. We select an edge (x, y) in cycle C0 of Qi0
n,k such that

h(x, y) = 1 and {xi, yi} ∩ F = φ. (If such an edge does not exit, then f1 ≥ b 2n−2f0−1
2

c ≥
b2n−1 − f0 − 1

2
c = 2n−1 − f0 − 1. Thus f1 ≥ 2n−1 − (2n − 5)− 1 > n − 2, for n ≥ 3, which

is a contradiction.) In Qi1
n−1,k, h(xi, yi) = 1, by theorem 1, there exists a fault-free path

P1(xi, yi) of length of at least 2n−1 − 2f1 − 1 in Qi1
n−1,k − F1. Then a fault-free cycle of Qn,k

can be constructed as C = (C0 − xy) ∪ (y, yi) ∪ P1(yi, xi) ∪ (xi, x). The length of cycle is at
least (2n − 2f0 + 1)− 1 + 2 + (2n−1 − 2f1 − 1) = 2n − 2fv + 1.

Case 2.2.3 |F0| = f0 = n− 2, 1 ≤ |F1| = f1 ≤ n− 1.
When f1 ≤ n − 2. The discussion is similar to case 2.2.2. So we next only need to

discuss the case of |F1| = f1 = n − 1. In Qi0
n−1,k, by induction hypothesis, there exists a

fault-free cycle C0 of length of at least 2n−1 − 2f0 + 1 in Qi0
n−1,k. We select an edge (x, y)

in cycle C0 such that h(x, y) = 1 and {xi, yi} ∩ F = φ (if such an edge does not exit, then
f1 ≥ b 2n−2f0−1

2
c ≥ b2n−1 − f0 − 1

2
c = 2n−1 − f0 − 1. Thus f1 ≥ 2n−1 − (n− 2)− 1 > n− 1,

for n ≥ 3, which is a contradiction). In Qi1
n−1,k, by Theorem 2, there exists a path P1

of length at least 2n−1 − 2f1 − 1 in Qi1
n−1,k − F1. Then a fault-free cycle of Qn,k can be

constructed as C = (C0 − xy) ∪ (y, yi) ∪ P1(yi, xi) ∪ (xi, x). The length of cycle is at least
(2n−1 − 2f0 + 1)− 1 + 2 + (2n−1 − 2f1 − 1) = 2n − 2fv + 1.

Therefore the proof is completed.

4 Conclusion

Since every component in the muti-process computer systems may have different re-
liability, it is important to consider properties of a network with some conditional faults.
Consequently, choosing network topology is an important issue in the design of computer
networks. Among many different choices, the enhanced hypercube is an important network
topology for parallel processing computer systems. In this paper, we consider fault-tolerant
path and cycle embedding in Qn,k. First, for Qn,k with |Fv| = fv ≤ n − 1 faulty vertices,
there exists a fault-free path with length 2n − 2fv − 1 between two arbitrary vertices of odd
distance, where n ≥ 3. Furthermore, for Qn,k with 1 ≤ |Fv| = fv ≤ 2n− 3 and every vertex
of Qn,k has at least two fault-free neighbors, there exists a fault-free cycle of even length of
at least 2n − 2fv, if n ≥ 4; and simultaneously, when n and k have different parity, there
exists a fault-free cycle of odd length of at least 2n−2fv +1 in Qn,k−Fv, if n ≥ 3. The result
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that an odd cycle can be embedded into Qn,k when n and k have different parity shows that
is superior to Qn in view of the cycle embedding capability. These good properties imply
that the reliability and fault tolerance of Qn,k are better than the hypercube, which shows
that the Qn,k is an excellent choice of network topology for parallel processing computer sys-
tems. It is then concluded that interconnection networks modeled by enhanced hypercube
are extremely efficient and robust.

As compared to [14], this paper significantly improves the number of faulty nodes tol-
erable. Since the enhanced hypercube is bipartite when n and k have same parity (see [28])
and the connectivity of an enhanced hypercube is n + 1, whereas the connectivity of hy-
percube is n. Hence, our result is optimal. This paper reveals that a enhanced hypercube
may tolerate faulty vertices more than its connectivity. To embed fault-free cycles in the
enhanced hypercube with more faulty vertices or edges is one of our further projects.
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故障加强超立方体中的路和圈

张艳娟,刘红美

(三峡大学理学院,湖北宜昌 443002)

摘要: 本论文研究了含故障点的加强超立方体中路和圈的嵌入问题. 利用数学归纳法, 获得了故障加

强超立方体中的路和圈, 推广了超立方体中点容错路和圈嵌入的结果.
关键词: 加强超立方体; 容错性; 圈嵌入; 路嵌入
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