U-ABUNDANT SEMIGROUPS WITH LEFT CENTRAL IDEMPOTENTS

SUN Yan, REN Xue-ming, GONG Chun-mei

(School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China)

Abstract: In this paper, we study the semilattice decomposition of U-abundant semigroups with left central idempotents. By using this semilattice decomposition, it is proved that a semigroup S is a U-abundant semigroup with left central idempotents if and only if it is a strong semilattice of a direct product $M_{\alpha} \times \Lambda_{\alpha}$, where M_{α} is a unipotent monoid and Λ_{α} is a right zero band. This result is the basis of the establishing of the structure theorem of U-abundant semigroups with left central idempotents.

Keywords: U-abundant semigroup; left central idempotent; unipotent monoid; \sim -Green's relation

2010 MR Subject Classification: 20M10

Document code: A Article ID: 0255-7797(2015)04-0833-08

1 Introduction

On a semigroup S the relation $\widetilde{\mathcal{L}}$ is defined by the rule that for any elements a,b of S, $a\widetilde{\mathcal{L}}b$ if and only if for all $e \in E$, $ae = a \Leftrightarrow be = b$. The relation $\widetilde{\mathcal{R}}$ is dually defined. The relations $\widetilde{\mathcal{L}}$ and $\widetilde{\mathcal{R}}$ on a semigroup S are generalizations of the familiar *-Green's relations \mathcal{L}^* and \mathcal{R}^* . As usual, the join of $\widetilde{\mathcal{L}}$ and $\widetilde{\mathcal{R}}$ is denoted by $\widetilde{\mathcal{D}}$ and the intersection of them is denoted by $\widetilde{\mathcal{H}}$. Clearly, $\widetilde{\mathcal{L}}$ and $\widetilde{\mathcal{R}}$ are equivalences, but $\widetilde{\mathcal{L}}$ is generally not right compatible and $\widetilde{\mathcal{R}}$ is generally not left compatible. The $\widetilde{\mathcal{L}}$ -class containing the element a of the semigroup S is denoted by $\widetilde{\mathcal{L}}_a$ or by $\widetilde{\mathcal{L}}_a(S)$ in case of ambiguity. One can see that there is at most one idempotent contained in each $\widetilde{\mathcal{H}}$ -class. Furthermore, if a and b are both regular elements of a semigroup S, then $(a,b) \in \widetilde{\mathcal{L}}$ if and only if $(a,b) \in \mathcal{L}$. In particular, if S itself is a regular semigroup, then $\widetilde{\mathcal{L}} = \mathcal{L}$ [1]. Dually, we also have $\widetilde{\mathcal{R}} = \mathcal{R}$ on a regular semigroup S.

A monoid is a semigroup with identity. A monoid is called unipotent if it does not contain any idempotents except identity. A semigroup in which each \mathcal{L}^* -class and each \mathcal{R}^* -class contains at least one idempotent is called abundant [2]. A semigroup S is called U-semiabundant [3] if each $\widetilde{\mathcal{L}}$ -class and each $\widetilde{\mathcal{R}}$ -class of S contains at least one idempotent. All

^{*} Received date: 2013-12-31 Accepted date: 2014-10-13

Foundation item: Supported by National Natural Science Foundation of China (11471255); Scientific Research Program Foundation of Shanxi Provincial Education Department (14JK1412); Fundamental Research Foundation of School (JC1219); Youth Foundation of School (QN1134).

Biography: Sun Yan (1981–), female, born at Pingdu, Shandong, lecturer, major in semigroup algebra.

abundant semigroups and U-semiabundant semigroups form two important classes of generalized regular semigroups. Moreover, we easily see that $\mathcal{L} \subseteq \mathcal{L}^* \subseteq \widetilde{\mathcal{L}}$ and $\mathcal{R} \subseteq \mathcal{R}^* \subseteq \widetilde{\mathcal{R}}$. Thus, abundant semigroups are obviously U-semiabundant semigroups, but U-semiabundant semigroups may not be abundant semigroups. This means that U-semiabundant semigroups are the generalizations of abundant semigroups in the range of generalized regular semigroups.

It is well known that a Clifford semigroup is a strong semilattice of groups [4]. And Fountain proved that an adequate semigroup with idempotents lying in the center is a strong semilattice of cancellative monoids [5]. Later on, the semilattice decomposition on abundant semigroups with left central idempotents has been investigated by Shum and Ren [6].

In this paper, we will extend the above results to the class of U-abundant semigroups in which all idempotents are left central. Thus, the results of Clifford , Fountain and Shum are all amplified. The main techniques that we use in the study are the \sim -Green's relations. For terminologies and notations not given in this paper, the reader is referred to Lawson [3] and Howie [7].

2 Preliminaries

In this section, we first give some basic definitions and results concerning U-abundant semigroups with left central idempotents.

Definition 2.1 An idempotent e of a semigroup S is called a left central idempotent if xey = exy for all $x, y \in S^1$ and $y \neq 1$.

Definition 2.2 A U-semiabundant semigroup S is called a U-abundant semigroup if S satisfies the congruence condition, that is, $\widetilde{\mathcal{L}}$ is a right congruence and $\widetilde{\mathcal{R}}$ is a left congruence on S respectively.

Next, S is always a U-abundant semigroup with left central idempotents, that is, S is a U-abundant semigroup and all idempotents of S are left central.

Lemma 2.3 Each $\widetilde{\mathcal{L}}$ -class of S contains a unique idempotent.

Proof Suppose $(e, f) \in \widetilde{\mathcal{L}}$ for $e, f \in E$. Then, we have $e\mathcal{L}f$. This leads to ef = e and fe = f. Since f is a left central idempotent, we immediately have ef = fef. Thereby

$$e = ef = fef = f$$
.

Remark We now denote a unique idempotent in the $\widetilde{\mathcal{L}}$ -class containing the element a of S by a^* . Then we have the following lemmas.

Lemma 2.4 The relation $\widehat{\mathcal{L}}$ is a congruence on S.

Proof Let $(a,b) \in \widetilde{\mathcal{L}}$ for $a,b \in S$. In order to show that $(ca,cb) \in \widetilde{\mathcal{L}}$ for any $c \in S$, we suppose that cae = ca for any $e \in E$. By Lemma 2.3, then there exists a unique idempotent c^* in $\widetilde{\mathcal{L}}_c$ such that $(c,c^*) \in \widetilde{\mathcal{L}}$. Since $\widetilde{\mathcal{L}}$ is a right congruence on U-abundant semigroups, we have $(ca,c^*a) \in \widetilde{\mathcal{L}}$ for $a \in S$. Thus, by the definition of $\widetilde{\mathcal{L}}$, we get $c^*ae = c^*a$. Thereby $ac^*a^*e = ac^*a^*$, because c^* is a left central idempotent and $a = aa^*$. Furthermore, since $(a,b) \in \widetilde{\mathcal{L}}$ and $\widetilde{\mathcal{L}}$ is a right congruence on a U-abundant semigroup, we also have $(ac^*a^*,bc^*a^*) \in \widetilde{\mathcal{L}}$. Thus, by the definition of $\widetilde{\mathcal{L}}$, we immediately have $bc^*a^*e = bc^*a^*$.

Hence, by the left centrality of c^* , we deduce that $c^*ba^*e = c^*ba^*$. Finally, and again, since $(c, c^*) \in \widetilde{\mathcal{L}}$ and $\widetilde{\mathcal{L}}$ is a right congruence on a U-abundant semigroup, we have $(cba^*, c^*ba^*) \in \widetilde{\mathcal{L}}$. Thus, by the definition of $\widetilde{\mathcal{L}}$, we can obtain that $cba^*e = cba^*$. As a result, we have cbe = cb, since $a^* = b^*$ and $b = bb^*$. Similarly, if cbe = cb for any $e \in E$, then cae = ca. This leads to $(ca, cb) \in \widetilde{\mathcal{L}}$. Hence, $\widetilde{\mathcal{L}}$ is a left congruence on S. It is well known that $\widetilde{\mathcal{L}}$ is a right congruence on a b-abundant semigroup b. This shows that b is a congruence on b.

Lemma 2.5 $(ab)^* = a^*b^*$ for any $a, b \in S$.

Proof It is trivial that $(b,b^*) \in \widetilde{\mathcal{L}}$ for any $b \in S$. Since $\widetilde{\mathcal{L}}$ is a congruence on a U-abundant semigroup with left central idempotents, we have $(ab,ab^*) \in \widetilde{\mathcal{L}}$ for any $a \in S$. Thus, it is obvious that $(ab)^* = (ab^*)^*$ by Lemma 2.3. Similarly, we know that $(ab^*,a^*b^*) \in \widetilde{\mathcal{L}}$. By using Lemma 2.3 again, we get $(ab^*)^* = (a^*b^*)^* = a^*b^*$. Consequently, $(ab)^* = (ab^*)^* = a^*b^*$.

Lemma 2.6 Define a relation σ on S by $a\sigma b$ if and only if $a^*b^*=b^*$ and $b^*a^*=a^*$ for any $a,b\in S$. Then the relation σ is a semilattice congruence on S.

Proof It is easy to see that σ is an equivalent relation on S. Suppose that $a\sigma b$ for $a,b\in S$. Then $a^*b^*=b^*$ and $b^*a^*=a^*$. By applying Lemma 2.5, we get $(ac)^*(bc)^*=a^*c^*b^*c^*=a^*b^*c^*=b^*c^*=(bc)^*$. By using similar arguments, we can also prove that $(bc)^*(ac)^*=(ac)^*$. This shows that $(ac,bc)\in \sigma$. Similarly, $(ca,cb)\in \sigma$. Hence, σ is a congruence on S. Now, by Lemma 2.5 and the left centrality of a^* , we have $(ab)^*(ba)^*=a^*b^*a^*=b^*a^*a^*=(ba)^*$ and $(ba)^*(ab)^*=(ab)^*$. Thus, we know immediately that $(ab,ba)\in \sigma$ by the definition of σ . In addition, it is obvious that $a\sigma a^*$ and $a\sigma a^2$ for any $a\in S$. We prove that σ is indeed a smilattice congruence on S.

Lemma 2.7 On a U-abundant semigroup S with left central idempotents, we have

- (i) $\widetilde{\mathcal{L}} = \widetilde{\mathcal{H}}$ and $\sigma = \widetilde{\mathcal{R}} = \widetilde{\mathcal{D}}$:
- (ii) $\widetilde{\mathcal{H}}, \widetilde{\mathcal{R}}$ and $\widetilde{\mathcal{D}}$ are all congruences on S.

Proof (i) Since S is a U-abundant semigroup, there exists $e \in E$ such that $(a, e) \in \widetilde{\mathcal{R}}$ for any $a \in S$ and so ea = a. Thus, by Lemma 2.5, we have $ea^* = a^*$. On the other hand, since $(a, a^*) \in \widetilde{\mathcal{L}}$ and a^* is a left central idempotent, we deduce that $a = aa^* = aa^*a^* = a^*aa^* = a^*aa^* = a^*a$, that is, $a^*a = a$. Thus, by using $(a, e) \in \widetilde{\mathcal{R}}$ and the definition of $\widetilde{\mathcal{R}}$, we have $a^*e = e$. From this, together with $ea^* = a^*$, we can deduce that $(a^*, e) \in \mathcal{R}$. This leads to $(a^*, e) \in \widetilde{\mathcal{R}}$. Hence, $(a, a^*) \in \widetilde{\mathcal{R}}$. Again since $(a, a^*) \in \widetilde{\mathcal{L}}$, we have $(a, a^*) \in \widetilde{\mathcal{H}}$. Now let $(a, b) \in \widetilde{\mathcal{L}}$ for $a, b \in S$. Then, we have known that $(a, a^*) \in \widetilde{\mathcal{H}}$ and $(b, b^*) \in \widetilde{\mathcal{H}}$. By Lemma 2.3, we have $a^* = b^*$ and so $(a, b) \in \widetilde{\mathcal{H}}$. This shows that $\widetilde{\mathcal{L}} \subseteq \widetilde{\mathcal{H}}$. Clearly, $\widetilde{\mathcal{L}} = \widetilde{\mathcal{H}} \subseteq \widetilde{\mathcal{R}}$.

Let $(a,b) \in \widetilde{\mathcal{R}}$ for $a,b \in S$. Then $(a^*,b^*) \in \widetilde{\mathcal{R}}$, since $\widetilde{\mathcal{L}} \subseteq \widetilde{\mathcal{R}}$. Thus, we have $a^*b^* = b^*$ and $b^*a^* = a^*$. Hence, we have $(a,b) \in \sigma$ by the definition of σ . This leads to $\widetilde{\mathcal{R}} \subseteq \sigma$.

On the other hand, let $(a,b) \in \sigma$ for $a,b \in S$. Then $a^*b^* = b^*$ and $b^*a^* = a^*$. In order to show that $(a,b) \in \widetilde{\mathcal{R}}$, we suppose ea = a for any $e \in E$. By Lemma 2.5, we have $ea^* = a^*$. Thus $ea^*b^* = a^*b^*$. This implies that $eb^* = b^*$. And again, since $(b,b^*) \in \widetilde{\mathcal{L}}$ and $\widetilde{\mathcal{L}} \subseteq \widetilde{\mathcal{R}}$, we immediately have $(b,b^*) \in \widetilde{\mathcal{R}}$. Thus, by using the definition of $\widetilde{\mathcal{R}}$, we know that eb = b. Similarly, if eb = b for any $e \in E$, then ea = a. As a result, we obtain $(a,b) \in \widetilde{\mathcal{R}}$. This leads

to $\sigma \subseteq \widetilde{\mathcal{R}}$ and so $\sigma = \widetilde{\mathcal{R}}$. Now, it is easy to see that

$$\widetilde{\mathcal{D}} = \widetilde{\mathcal{L}} \vee \widetilde{\mathcal{R}} = \widetilde{\mathcal{H}} \vee \widetilde{\mathcal{R}} = \widetilde{\mathcal{R}}.$$

This shows that $\sigma = \widetilde{\mathcal{R}} = \widetilde{\mathcal{D}}$.

(ii) By using Lemma 2.4 and Lemma 2.6, we immediately know that $\widetilde{\mathcal{H}}, \widetilde{\mathcal{R}}$ and $\widetilde{\mathcal{D}}$ are all congruences on S.

3 Main Results

We are now going to give the characterization theorem for U-abundant semigroups with left central idempotents.

Theorem 3.1 Let S be a semigroup. Then the following statements are equivalent:

- (i) S is a U-abundant semigroup with left central idempotents;
- (ii) S is a semilattice of direct products $M_{\alpha} \times \Lambda_{\alpha}$, where M_{α} is a unipotent monoid and Λ_{α} is a right zero band for every $\alpha \in Y$. Moreover, E is a right normal band;
- (iii) S is a strong semilattice of direct products $M_{\alpha} \times \Lambda_{\alpha}$, where M_{α} is a unipotent monoid and Λ_{α} is a right zero band for every $\alpha \in Y$.

Proof (i) \Rightarrow (ii) Clearly, $S = \bigcup_{\alpha \in Y} S_{\alpha}$, where S_{α} is a σ -class of S on a semilattice Y. We know that $S_{\alpha} \cap E \neq \emptyset$, since $\sigma = \widetilde{\mathcal{R}}$ and S is a U-abundant semigroup. Let $M_{\alpha} = S_{\alpha}e_{\alpha}$ for some $e_{\alpha} \in S_{\alpha} \cap E$. To show that M_{α} is a unipotent monoid with an identity element e_{α} . Let $y = xe_{\alpha} \in M_{\alpha}$ for any $x \in S_{\alpha}$. Then $ye_{\alpha} = xe_{\alpha} = y$. On the other hand, by using $\sigma = \widetilde{\mathcal{R}}$, we get $(y, e_{\alpha}) \in \widetilde{\mathcal{R}}$ and so $e_{\alpha}y = y$. Hence, M_{α} is indeed a monoid with an identity element e_{α} . In particular, $M_{\alpha} = \widetilde{\mathcal{L}} = \widetilde{\mathcal{H}}$. This means that M_{α} contains a unique idempotent. Thus, we know that M_{α} also is a unipotent monoid. Now, let Λ_{α} be the set of all idempotents of S_{α} , that is, $\Lambda_{\alpha} = S_{\alpha} \cap E$. Then it is clear that $e\widetilde{\mathcal{R}}f$ for all $e, f \in \Lambda_{\alpha}$. This implies that Λ_{α} is a right zero band. We define a mapping $\varphi : M_{\alpha} \times \Lambda_{\alpha} \to S_{\alpha}$ by $\varphi(x, f) = xf$ for any $(x, f) \in M_{\alpha} \times \Lambda_{\alpha}$. Then, for any $(x, f), (y, k) \in M_{\alpha} \times \Lambda_{\alpha}$, we have

$$\varphi(x, f)\varphi(y, k) = xfyk = xyfk = xyk = \varphi[(x, f)(y, k)].$$

Thus, φ is a morphism. Furthermore, if $\varphi(x,f)=\varphi(y,k)$, that is, xf=yk, then $xfe_{\alpha}=yke_{\alpha}$. Since Λ_{α} is a right zero band and e_{α} is an identity element in M_{α} , we have x=y. In the meantime, we also have xf=xk. By using Lemma 2.5, we obtain that $x^*f=x^*k$. Again since Λ_{α} is a right zero band and $x^*\in\Lambda_{\alpha}$, we immediately have f=k. This shows that φ is a monomorphism as well. In order to show that the mapping φ is onto. Let any $a\in S_{\alpha}$. Then there exists a unique idempotent a^* such that $(a,a^*)\in\widetilde{\mathcal{L}}$. By Lemma 2.7, we know that $\widetilde{L}\subseteq\widetilde{R}$ and $\sigma=\widetilde{R}$. This means that $(a,a^*)\in\sigma$ such that $a^*\in S_{\alpha}$. Hence, $a^*\in\Lambda_{\alpha}=S_{\alpha}\cap E$. Moreover, by using $S_{\alpha}\cap E\neq\varnothing$, it is natural for us to know $ae_{\alpha}\in M_{\alpha}$ for some $e_{\alpha}\in S_{\alpha}\cap E$. In this case, we always have

$$(ae_{\alpha}, a^*)\varphi = ae_{\alpha}a^* = aa^* = a,$$

since Λ_{α} is a right zero band and $(a, a^*) \in \widetilde{\mathcal{L}}$. This shows that the mapping φ is onto. In conclusion, we prove that $S_{\alpha} \cong M_{\alpha} \times \Lambda_{\alpha}$.

Finally, since any $e \in E$ is a left central idempotent, we have ehg = heg for all $e, h, g \in E$. This show that E is a right normal band.

(ii) \Rightarrow (iii) To show that $S = \bigcup_{\alpha \in Y} S_{\alpha}$ is a strong semilattice of direct products $M_{\alpha} \times \Lambda_{\alpha}$, we pick any $\alpha, \beta \in Y$ with $\alpha \geq \beta$. First, let $a \in S_{\alpha}$ and $e_{\beta} \in S_{\beta} \cap E$. Then $e_{\beta}a \in S_{\beta}$. According to this fact, we define a mapping $\theta_{\alpha,\beta} : S_{\alpha} \to S_{\beta}$ by $a\theta_{\alpha,\beta} = e_{\beta}a$ for any $a \in S_{\alpha}$ and some $e_{\beta} \in S_{\beta} \cap E$. Write $e_{\beta}a = (u,i) \in S_{\beta}$. Let $g = (1_{\beta},i) \in S_{\beta} \cap E$ and $e_{\beta} = (1_{\beta},j) \in S_{\beta} \cap E$, where 1_{β} is the identity element of M_{β} . Then

$$e_{\beta}ag = (u, i)(1_{\beta}, i) = (u, i) = e_{\beta}a$$
 (2.1)

and

$$g = (1_{\beta}, i) = (1_{\beta}, j)(1_{\beta}, i) = e_{\beta}g.$$
 (2.2)

Similarly, we let $b = (v, l) \in S_{\alpha}$ and $h = (1_{\alpha}, l) \in S_{\alpha} \cap E$. Then

$$hb = b. (2.3)$$

Furthermore, since E is a right normal band, we also have

$$ge_{\beta}h = e_{\beta}gh. \tag{2.4}$$

By using (2.1), (2.2), (2.3) and (2.4), we can proof that

$$e_{\beta}ae_{\beta}b = e_{\beta}age_{\beta}hb = e_{\beta}ae_{\beta}ghb = e_{\beta}aghb = e_{\beta}ab.$$

Thus, $a\theta_{\alpha,\beta}b\theta_{\alpha,\beta}=(ab)\theta_{\alpha,\beta}$. This shows that $\theta_{\alpha,\beta}$ is a morphism.

On the other hand, it is easy to prove that $\theta_{\alpha,\alpha} = 1_{S_{\alpha}}$ for any $\alpha \in Y$.

Now, we let $a=(w,k)\in S_{\alpha}$ and $p=(1_{\alpha},k)\in S_{\alpha}\cap E$ for $\alpha\in Y$. Then we have pa=a. By the right normality of E, for some $e_{\beta}\in S_{\beta}\cap E$ and $e_{\gamma}\in S_{\gamma}\cap E$ with $\alpha\geq \beta\geq \gamma$, we can deduce that

$$e_{\gamma}e_{\beta}p = e_{\beta}e_{\gamma}p = e_{\beta}e_{\gamma} \cdot e_{\gamma}p = e_{\gamma}p$$

so that

$$a\theta_{\alpha,\beta}\theta_{\beta,\gamma} = e_{\gamma}(e_{\beta}a) = e_{\gamma}e_{\beta}pa = e_{\gamma}pa = e_{\gamma}a = a\theta_{\alpha,\gamma}.$$

Thus, $\theta_{\alpha,\gamma} = \theta_{\alpha,\beta}\theta_{\beta,\gamma}$.

Finally, let $a \in S_{\alpha}$, $b \in S_{\beta}$ for any $\alpha, \beta \in Y$. Then $ab = e_{\alpha\beta}(ab) \in S_{\alpha\beta}$ for some $e_{\alpha\beta} \in S_{\alpha\beta} \cap E$. Since $e_{\alpha\beta}a \in S_{\alpha\beta}$, by using (2.1), we known that there exists $f^2 = f \in S_{\alpha\beta}$ such that $e_{\alpha\beta}af = e_{\alpha\beta}a$ for $e_{\alpha\beta}a \in S_{\alpha\beta}$. Moreover, by using (2.3), we also know that there exists $e^2 = e \in S_{\beta}$ such that eb = b for $b \in S_{\beta}$. Thus, by the right normality of E again, we have

$$e_{\alpha\beta}ae_{\alpha\beta}b = e_{\alpha\beta}afe_{\alpha\beta}eb = e_{\alpha\beta}ae_{\alpha\beta}feb$$

= $e_{\alpha\beta}a(e_{\alpha\beta}f)eb = e_{\alpha\beta}afeb$
= $e_{\alpha\beta}ab = ab$.

This shows that $ab = a\theta_{\alpha,\alpha\beta}b\theta_{\beta,\alpha\beta}$. Hence, $S = \bigcup_{\alpha \in Y} S_{\alpha}$ is indeed a strong semilattice of direct products $S_{\alpha} = M_{\alpha} \times \Lambda_{\alpha}$, and denote it by $S = [Y; S_{\alpha}, \theta_{\alpha,\beta}]$.

(iii) \Rightarrow (i) Let $S = [Y; S_{\alpha}, \theta_{\alpha,\beta}]$ be a strong semilattice of direct products $M_{\alpha} \times \Lambda_{\alpha}$ for $\alpha \in Y$, where M_{α} is a unipotent monoid and Λ_{α} is a right zero band. And let $x, y \in S^1$ with $y \neq 1$ and $e \in E$. Then $x \in S^1_{\alpha}, y \in S^1_{\beta}$ and $e \in S_{\gamma} \cap E$ for some $\alpha, \beta, \gamma \in Y$. Write $\alpha\beta\gamma = \delta$, where $\delta \in Y$. Now, we suppose that

$$x\theta_{\alpha,\delta} = (m,t) \in S_{\delta},$$

$$y\theta_{\beta,\delta} = (v,l) \in S_{\delta},$$

$$e\theta_{\gamma,\delta} = (1_{\delta},q) \in S_{\delta}.$$

Then

$$xey = x\theta_{\alpha,\delta}e\theta_{\gamma,\delta}y\theta_{\beta,\delta} = (m,t)(1_{\delta},q)(v,l) = (mv,l).$$

Similarly, we have exy = (mv, l). Thus, xey = exy. This shows that the element e is a left central idempotent for any $e \in E$. In other words, S is a semigroup with left central idempotents.

It remains to show that each $\widetilde{\mathcal{R}}$ -class of S contains at least one idempotent. Let $a=(u,i)\in S_{\alpha}$ and $f=(1_{\alpha},i)\in S_{\alpha}\cap E$ for any $\alpha\in Y$. In order to proof that $(a,f)\in\widetilde{\mathcal{R}}$, we assume that ea=a for any $e\in E$. Then $e=(1_{\gamma},k)\in S_{\gamma}\cap E$ for some $\gamma\in Y$. Because S is the semilattice of S_{α} , we can immediately see that $\alpha\leq\gamma$ for $\alpha,\gamma\in Y$. Thus,

$$ef = (1_{\gamma}, k)\theta_{\gamma,\alpha} \cdot (1_{\alpha}, i)\theta_{\alpha,\alpha} = (1_{\alpha}, i) = f.$$

Similarly, if ef = f for any $e \in E$, then ea = a. Hence, we know that $(a, f) \in \widetilde{\mathcal{R}}$. This implies that each $\widetilde{\mathcal{R}}$ -class of S contains at least one idempotent.

On the other hand, we need to proof that each $\widetilde{\mathcal{L}}$ -class of S contains at least one idempotent. Let $b = (w, h) \in S_{\alpha}$ and $g = (1_{\alpha}, h) \in S_{\alpha} \cap E$ for any $\alpha \in Y$. In order to proof that $(b, g) \in \widetilde{\mathcal{L}}$. We assume that be = b for any $e \in E$. Then $e = (1_{\gamma}, k) \in S_{\gamma} \cap E$ for some $\gamma \in Y$ and $\gamma \geq \alpha$. Again, since be = b, we have

$$(w,h)(1_{\gamma},k) = (w,h)\theta_{\alpha,\alpha} \cdot (1_{\gamma},k)\theta_{\gamma,\alpha} = (w,k\theta_{\gamma,\alpha}) = (w,h).$$

This implies that $k\theta_{\gamma,\alpha} = h$. Hence, we have

$$ge = (1_{\alpha}, h)(1_{\gamma}, k) = (1_{\alpha}, h)\theta_{\alpha,\alpha} \cdot (1_{\gamma}, k)\theta_{\gamma,\alpha} = (1_{\alpha}, k\theta_{\gamma,\alpha}) = (1_{\alpha}, h) = g.$$

Similarly, if ge = g for any $e \in E$, then be = b. Thereby, we obtain that $(b, g) \in \widetilde{\mathcal{L}}$. This implies that each $\widetilde{\mathcal{L}}$ -class of S contains at least one idempotent. Thus, S is a U-semiabundant semigroup.

Finally, we shall show that $\widetilde{\mathcal{L}}$ is a right congruence. We first let $(a,b) \in \widetilde{\mathcal{L}}$ for $a,b \in S$. Then a and b are the element of the same S_{α} for $\alpha \in Y$. Clearly, if $(a,b) \in \widetilde{\mathcal{L}}$ but

 $a \in S_{\alpha}, b \in S_{\beta}$, since S is a U-semiabundant semigroup, there exist $f^2 = f \in S_{\alpha} \cap E$ and $g^2 = g \in S_{\beta} \cap E$ such that $(a, f) \in \widetilde{\mathcal{L}}$ and $(b, g) \in \widetilde{\mathcal{L}}$. This implies that $(f, g) \in \widetilde{\mathcal{L}}$. Thus, fg = f and gf = g, where the elements $fg, gf \in S_{\alpha\beta}, f \in S_{\alpha}$ and $g \in S_{\beta}$. Hence, $\alpha = \beta$. According to this fact, we let $(a, b) \in \widetilde{\mathcal{L}}$ for $a = (u, i) \in S_{\alpha}, b = (w, h) \in S_{\alpha}$. To show that $(ac, bc) \in \widetilde{\mathcal{L}}$ for any $c \in S$, we assume that ace = ac for any $e \in E$. Then $c = (v, j) \in S_{\beta}$ and $e = (1_{\gamma}, k) \in S_{\gamma}$ for some $\beta, \gamma \in Y$. In the meantime, we have $\alpha, \beta \leq \gamma$ for $\alpha, \beta, \gamma \in Y$, since S is a strong semilattice of S_{α} . Furthermore, we obtain that

$$(u,i)(v,j)(1_{\gamma},k) = (u,i)\theta_{\alpha,\alpha\beta} \cdot (v,j)\theta_{\beta,\alpha\beta}(1_{\gamma},k)\theta_{\gamma,\alpha\beta}$$
$$= (u\theta_{\alpha,\alpha\beta} \cdot v\theta_{\beta,\alpha\beta}, k\theta_{\gamma,\alpha\beta})$$
$$= (u\theta_{\alpha,\alpha\beta} \cdot v\theta_{\beta,\alpha\beta}, j\theta_{\beta,\alpha\beta}).$$

This implies that $k\theta_{\gamma,\alpha\beta} = j\theta_{\beta,\alpha\beta}$. Hence, we immediately have that

$$bce = (w, h)(v, j)(1_{\gamma}, k) = (w, h)\theta_{\alpha, \alpha\beta} \cdot (v, j)\theta_{\beta, \alpha\beta}(1_{\gamma}, k)\theta_{\gamma, \alpha\beta}$$
$$= (w\theta_{\alpha, \alpha\beta} \cdot v\theta_{\beta, \alpha\beta}, k\theta_{\gamma, \alpha\beta}) = (w\theta_{\alpha, \alpha\beta} \cdot v\theta_{\beta, \alpha\beta}, j\theta_{\beta, \alpha\beta}) = bc.$$

By using similar arguments, if bce = bc for any $e \in E$, then ace = ac. Thereby, $(ac, bc) \in \widetilde{\mathcal{L}}$. This show that $\widetilde{\mathcal{L}}$ is a right congruence. Similarly, $\widetilde{\mathcal{R}}$ is also a left congruence. In other words, S is a U-abundant semigroup. Now summing up the above facts, we show that the semigroup S is indeed a U-abundant semigroup with left central idempotents. The proof is completed.

Remark We notice here that the above theorem extends a known result of Shum and Ren (see [6], Theorem 3.1).

The following theorem can be proved by using the similar method as Theorem 3.1.

Theorem 3.2 Let S be a semigroup. Then the following statements are equivalent:

- (i) S is a regular semigroup with left central idempotents;
- (ii) S is a strong semilattice of right groups;
- (iii) S is a right Clifford semigroup and E is a right normal band.

Proof We first note that $\widetilde{\mathcal{L}} = \mathcal{L}$ and $\widetilde{\mathcal{R}} = \mathcal{R}$ on regular semigroups. If S is a regular semigroup with left central idempotents, then by the results of Lemma 2.7, we know immediately that $\mathcal{L} = \mathcal{H} \subseteq \mathcal{R} = \mathcal{D}$ and $\mathcal{H}, \mathcal{L}, \mathcal{R}, \mathcal{D}$ are all congruences on S. Moreover, S is a completely regular semigroup. In particular, for any $a \in S$, a^* is a unique idempotent of the \mathcal{H} -class containing a. It following that each σ -class of S is a direct product of a group and a right zero band, which is called a right group. Hence, by using the same arguments as Theorem 3.1, we can prove that (i) \Rightarrow (ii). The details are omitted. For (ii) \Rightarrow (iii) and (iii) \Rightarrow (i), it is the dual of Theorem 4.1 in [8].

Remark We notice here that the above theorem extends a known result of Clifford (see [7], Theorem 2.1).

References

- [1] Guo Yuqi, Shum K P, Gong Chunmei. On $(*, \sim)$ -Green's relations and ortho-lc-monoids[J]. Comm. Algebra, 2011, 39: 5–31.
- [2] Fountain J B. Abundant semigroups[J]. Proc. Lond. Math. Soc, 1982, 44(3): 103-129.
- [3] Lawson M V. Rees matrix semigroups[J]. Proc. Edinburgh Math. Soc., 1990, 33: 23-37.
- [4] Clifford A H. Semigroups admitting relatives inverse[J]. Ann. Math, 1941, 42: 1037–1049.
- [5] Fountain J B. Adequate semigroups [J]. Proc. Edinburgh Math.Soc., 1979, 22: 113–125.
- [6] Shum K P, Ren Xueming. Abundant semigroups with left central idempotents[J]. Pure Math. Appl., 1999, 10(1): 109–113.
- [7] Howie J M. An introduction to semigroup theory[M]. London: Academic Press, 1976.
- [8] Zhu Pinyu, Guo Yuqi, Shum K P. Structure and characterizations of left C-semigroups[J]. Sci. China, Series A, 1992, 6: 791–805.

具有左中心幂等元的U-富足半群

孙 燕,任学明,宫春梅

(西安建筑科技大学理学院,陕西西安 710055)

摘要: 本文研究了具有左中心幂等元的U-富足半群的半格分解. 利用半格分解, 证明了半群S为具有左中心幂等元的U-富足半群, 当且仅当S为直积 $M_{\alpha} \times \Lambda_{\alpha}$ 的强半格, 其中 M_{α} 是幂幺半群, Λ_{α} 是右零带. 这一结果为具有左中心幂等元的U-富足半群结构的建立奠定了基础.

关键词: *U*-富足半群; 左中心幂等元; 幂幺半群; ~-格林关系

MR(2010)主题分类号: 20M10 中图分类号: O152.7