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Abstract: In this paper, we study the vector equilibrium problem. By using the new Eke-

land’s principle that we introduce in cone metric space, we derive an existence theorem of solution

for vector equilibrium problem. The results obtained in this paper are new and improve the recent

ones announced by many others.
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1 Introduction

Throughout this paper, let X be a nonempty set and R be the set of real numbers. The
bi-function ρ : X × X → R is the metric function on X and denote by (X, ρ) the metric
space. Let Y be a n-dimensional Euclidean space with norm ‖ · ‖ and C be a cone in Y .

In 2007, Bianchi, Kassay and Pini (see [1]) introduced the vector equilibrium problem
(VEP) which is to find x̄ ∈ (X, ρ) such that

f(x̄, y) /∈ int(C), ∀y ∈ (X, ρ), (1.1)

where f : (X, ρ) × (X, ρ) → Y and int(C) denotes the interior of C. They proved some
existence results for VEP (1.1) by applying a vector version of Ekeland’s principle in metric
space (X, ρ). Their work improved some results of equilibrium problem (EP), which was
initially introduced by Blum and Oettli (see [2]). For more details about EP, please see, for
instance, [1–10].

Recently, Huang and Zhang (see [3]) introduced the concept of cone metric space, which
extends the notion of metric space.

In this paper, inspired by Huang and Zhang (see [3]), Schaible, Bianchi and Kassay
(see [1]), we introduce another vector version of Ekeland’s principle in cone metric space.
Furthermore, applying this new Ekeland’s principle, we consider a new VEP in cone metric
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space and prove an existence theorem of solution for this VEP. Our results are new and
improve some results announced by many others. This paper is organized as follows. In
Section 2, some topological properties of cone metric space are presented. Section 3 is
devoted to nonempty intersection theorem and vector Ekeland’s principle in cone metric
space. In Section 4, an existence result for VEP is proved in the cone metric space by
applying the new Ekeland’s principle.

2 Preliminaries

2.1 Some Topological Concepts and Properties in Cone Metric Space

Definition 2.1 (see [3]) Let Y be a n-dimensional Euclidean space, and θ is the zero
element in Y . C is a subset of Y . C is said to be a cone if and only if:

(i) C is nonempty, closed, and C 6= θ;
(ii) ∀a, b ∈ R, a, b ≥ 0,∀x, y ∈ C ⇒ ax + by ∈ C;
(iii) x ∈ C and −x ∈ C ⇒ x = θ.
Given a cone C, we can define a partial ordering ¹ with respect to C by: x ¹ y if and

only if y − x ∈ C. We shall write x ≺ y to indicate x ¹ y but x 6= y, and x ≺≺ y stands
for y − x ∈ int(C), where int(C) denotes the interior of C. The C is called normal if there
is a real number l > 0 such that ∀x, y ∈ Y, θ ¹ x ¹ y implies ‖x‖ ≤ l‖y‖. The least positive
number satisfying above is called the normal constant of C.

Definition 2.2 (see [3]) Let X be a nonempty set and Y be a n-dimensional Euclidean
space. If the mapping d : X ×X → Y satisfies:

(i) θ ¹ d(x, y) for all x, y ∈ X and d(x, y) = θ ⇔ x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) ¹ d(x, z) + d(y, z) for all x, y, z ∈ X.
Then d is called a cone metric on X, and denote by (X, d) the cone metric space.
Remark 2.1 In the rest of this paper, we always suppose:
(i) C is the cone in n-dimensional Euclidean space Y with int(C) 6= Ø, and ¹ is the

partial ordering with respect to C.
(ii) (X, d) is a cone metric space defined as in Definition 2.2 and (X, ρ) is the metric

space.
Definition 2.3 Let (X, d) be a cone metric space. E is a nonempty subset of (X, d).

E is said to be a bounded subset of (X, d) if and only if there exists a real number M > 0
such that ‖d(x, y)‖ ≤ M for all x, y ∈ E. (X, d) is called bounded cone metric space if and
only if it is bounded itself.

Definition 2.4 Let (X, d) be a cone metric space. E is a nonempty subset of (X, d).
The diameter of E (denoted by diam(E) ) is defined as:

diam(E) =

{
sup{‖d(x, y)‖ : x, y ∈ E}, if E is bounded,

∞, if E is unbounded.
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Definition 2.5 Let (X, d) be a cone metric space. x ∈ X, c ∈ C and θ ≺≺ c. We shall
denote the set {y ∈ X : d(x, y) ≺≺ c} by B(x, c), and call B(x, c) the neighborhood of x.

Definition 2.6 Let (X, d) be a cone metric space, A ⊂ X, x0 ∈ X and c ≺≺ C. if,
for every θ ≺≺ c, A

⋂
(B(x0, c)/x0) 6= ∅, then x0 is called the accumulation point of A. aA

denotes the set that’s consisted of all the accumulation points of A. The set A∪aA is called
the closure of A and denoted by A−. A is closed with respect to d if and only if A− = A.

2.2 Convergences of Sequences in Cone Metric Space

Definition 2.7 (see [3]) Let (X, d) be a cone metric space. Let {xn} be a sequence in
(X, d) and x ∈ (X, d). Then {xn} is said to be:

(i) convergent to x, if, for every c ∈ Y with θ ≺≺ c, there exists a real number N > 0
such that d(xn, x) ≺≺ c for all n > N . In this case, we say x is the limit of xn and denote
this by: xn → x, (n →∞).

(ii) a Cauchy sequence, if, for every θ ≺≺ c, there exists a real number N > 0 such that
d(xn, xm) ≺≺ c, for all n,m > N .

Definition 2.8 (see [3]) A cone metric space (X, d) is said to be:
(i) complete, if every Cauchy sequence in (X, d) is convergent in (X, d);
(ii) sequentially compact, if every convergent sequence {xn} has convergent subsequence

in (X, d).

2.3 Semicontinuity of Vector-Valued Functions in Cone Metric Space

First, let’s recall some concepts and lemmas about semicontinuity in metric space (X, ρ).
Definition 2.9 (see [1]) Let (X, ρ) be a complete metric space and Y be the n-

dimensional Euclidean space ordered by the cone C ⊂ Y . The vector-valued function
h : (X, ρ) → Y is said to be:

(i) quasi lower semicontinuous at x0 ∈ (X, ρ). If, for each b ∈ Y such that b /∈ h(x0)+C,
there exists a neighborhood U ⊂ (X, ρ) of x0 such that b /∈ h(x)+C for all x ∈ U . h is quasi
lower semicontinuous on (X, ρ) if it is quasi lower semicontinuous at each point of (X, ρ).

(ii) upper semicontinuous at x0 ∈ (X, ρ). If, for each x0 ∈ (X, ρ) and each neighborhood
V of h(x0), there exists a neighborhood U of x0 such that h(x) ∈ V − C for all x ∈ U .

Lemma 2.1 (see [1]) Let (X, ρ) be a complete metric space, and Y is the n-dimensional
Euclidean space ordered by cone C ⊂ Y . h : (X, ρ) → Y is quasi lower semicontinuous on
(X, ρ) if and only if L(h, b) = {x ∈ (X, ρ) : h(x) ∈ b− C} is closed for all b ∈ Y .

Next, we extend the concepts of quasi lower semicontinuous and upper semicontinuous
from metric space to cone metric space.

Definition 2.10 Let (X, d) is complete cone metric space where the cone is normal,
and Y is the n-dimensional Euclidean space ordered by cone C ⊂ Y . The vector-valued
function h : (X, d) → Y is said to be:

(i) quasi lower semicontinuous at x0, if, for each ∀b ∈ Y such that b /∈ h(x0) + C,
there exists a neighborhood U of x0 such that b /∈ h(x) + C for all x ∈ U . h is quasi lower
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semicontinuous on (X, d) if it is quasi lower semicontinuous at each point of (X, d).
(ii) upper semicontinuous at x0 ∈ (X, d). If, for each x0 ∈ (X, d) and each neighborhood

V of h(x0), there exists a neighborhood U of x0 such that h(x) ∈ V − C for all x ∈ U .
Lemma 2.2 (see [4]) Let (X, d) is complete cone metric space where the cone is normal,

if we denote

τd = {U : ∀x ∈ U, there exist Kc(x) such that x ∈ Kc(x) ⊂ U}

and
τD = {Kε(x) : x ∈ X, ε > 0},

where D(x, y) = ‖d(x, y)‖ and Kε(x) = {y ∈ X : D(y, x) < ε},Kc(x) = {y ∈ X : d(x, y) ≺≺
c, c ∈ C and c ÂÂ θ}. Then

(a) Both τd and τD are the topology on (X, d), and τd = τD;
(b) Kc(x) ∈ τd for all x ∈ X.
Applying Lemma 2.2, one can extend the Lemma 2.1 from metric space to cone metric

space.
Lemma 2.3 (see [1]) Let (X, d) be a complete cone metric space, and Y is the n-

dimensional Euclidean space ordered by cone C ⊂ Y . h : (X, d) → Y is quasi lower
semicontinuous on (X, d) if and only if L(h, b) = {x ∈ (X, d) : h(x) ∈ b−C} is closed for all
b ∈ Y .

3 Main Results

In this section, we prove a nonempty intersection theorem in cone metric space (X, d),
which can be used to extend the Ekeland’s principle from metric space to cone metric space.

Lemma 3.1 Let (X, d) be complete cone metric space, where the cone is normal.
E1, E2, · · · , Ei, · · · are the subsets of (X, d) such that E1 ⊃ E2 ⊃ · · · ⊃ Ei ⊃ · · · and
diam(Ei) → 0, (n →∞). Then, there exists a unique element in ∩i∈N+E−

i .
Proof Suppose E1, E2, · · · , Ei, · · · are the subsets of (X, d) such that E1 ⊃ E2 ⊃ · · · ⊃

Ei ⊃ · · · and diam(Ei) → 0, (i → ∞). Let xi ∈ E−
i for i ∈ N+, and we shall prove that

{xi}i∈N+ is a Cauchy sequence. In fact, since diam(Ei) → 0, (i →∞). For any ε > 0, there
exists a real number N > 0 such that diam(Ek) < ε when k > N . For the above given
N > 0, we have

‖d(xi, xj)‖ ≤ sup
xi,xj∈Emin{i,j}

‖d(xi, xj)‖ = diam(Emin{i,j}) < ε, for i, j > N,

which implies
‖d(xi, xj)‖ → 0, (i, j →∞).

From the continuity of norm, we get d(xi, xj) → θ, (i, j →∞). That is, {xi}i∈N+ is a Cauchy
sequence.

Since (X, d) is compete, there exists x ∈ (X, d) such that {xi}i∈N+ is convergent to x.
Observing that xi, xi+1, · · · ∈ E−

i for each i ∈ N+, we obtain x ∈ E−
i . Hence x ∈ ∩i∈N+E−

i .
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Suppose y ∈ ∩i∈N+E−
i , then ‖d(x, y)‖ ≤ diam(Ei) → 0, (i → ∞), which indicates

d(x, y) = θ. That is, x = y. Applying the Lemma 3.1, we introduce a new vector version of
Ekeland’s principle in cone metric as follows.

Theorem 3.1 Let (X, d) be complete cone metric space, and Y is the n-dimensional
Euclidean space ordered by a normal cone C, whose normal constant is l. Let e∗ : Y → R

be a linear functional and f : X ×X → Y . Suppose the following conditions are satisfied:
(i) f(t, t) = θ for all t ∈ (X, d);
(ii) e∗(f(x, ·)) is lower bounded for all x ∈ (X, d);
(iii) f(z, y) + f(y, x) ∈ f(z, x) + C for all x, y, z ∈ (X, d);
(iv) f(x, ·) is quasi lower semicontinuous for all x ∈ (X, d);
(v) e∗(d(x, z)) ≥ ‖d(x, z)‖ for all x, z ∈ (X, d), and e∗(y) ≥ 0 for any y ∈ C.

Then, for every ε > 0 and every x0 ∈ X, there exists x̄ ∈ (X, d) such that
(a) f(x0, x̄) + εd(x0, x̄) ∈ −C;
(b) f(x̄, x) + εd(x̄, x) /∈ −C, ∀x 6= x̄, x ∈ (X, d).
Proof Without loss of generality , we consider the case ε = 1 . Let

F (x) = {y ∈ (X, d) : f(x, y) + d(x, y) ∈ −C}

for each x ∈ (X, d). From the conditions (i), (iv) and Lemma 2.3, we have F (x) is nonempty
and closed for every x ∈ (X, d).

Next, we divide the rest of proof into three steps.
Step 1 Show that if y ∈ F (x), then F (y) ⊂ F (x).
Assume y ∈ F (x), then

f(x, y) + d(x, y) ∈ −C, (3.1)

and taking z ∈ F (y), we can get

f(y, z) + d(y, z) ∈ −C. (3.2)

By (3.1), (3.2), (iii) and the triangle inequality of the cone metric space, we get z ∈ F (x).
Hence F (y) ⊂ F (x).

Step 2 Estimate the diam(F (x)).
Based on condition (ii), we can define real-valued function v(x) = infz∈F (x)e

∗(f(x, z)).
If z ∈ F (x), then there exists a k ∈ C such that d(x, z) = −f(x, z)− k. Since e∗ is a linear
functional satisfying condition (v), we have

e∗(d(x, z)) = e∗(−f(x, z)− k) = −e∗(f(x, z))− e∗(k) ≤ −e∗(f(x, z)) (3.3)

and

‖d(x, z)‖ ≤ e∗(d(x, z)) ≤ −e∗(f(x, z)) ≤ −infz∈F (x)e
∗(f(x, z)) = −v(x). (3.4)
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Generally, for every x1, x2 ∈ F (x), since d(x1, x2) ¹ d(x1, x) + d(x, x2) and together with
(3.4), we get

‖d(x1, x2)‖ ≤ l‖d(x1, x) + d(x, x2)‖ ≤ l‖d(x1, x)‖+ l‖d(x, x2)‖ ≤ −2lv(x),

which implies

diam(F (x)) ≤ −2lv(x) (3.5)

Step 3 Prove diam(F (xn)) → 0, (n →∞).
Starting from x0, construct a sequence xn which satisfies xn+1 ∈ F (xn) and

e∗(f(xn, xn+1)) ≤ v(xn) +
1

2n+1
. (3.6)

It follows from condition (iii) that

e∗(f(z, y)) + e∗(f(y, x)) ≥ e∗(f(z, x)). (3.7)

Applying the inequality (3.7) and the definition of v(x), we obtain

v(xn+1) ≥ infy∈F (xn)e
∗(f(xn+1, y))

≥ (infy∈F (xn)e
∗(f(xn, y)))− e∗(f(xn, xn+1))

= v(xn)− e∗(f(xn, xn+1)).

From the above inequality chain and (3.6), we get

−v(xn) ≤ −e∗(f(xn, xn+1)) +
1

2n+1
≤ v(xn+1)− v(xn) +

1
2n+1

,

which indicates diam(F (xn)) ≤ −2lv(xn) ≤ 2l · 2−n, that is, diam(F (xn)) → 0, (n →∞).
Since the set F (xn) is closed and F (xn+1) ⊂ F (xn) , from the Lemma 3.1, there exists

unique element x̄ ∈ X such that ∩∞n=0F (xn) = {x̄}. Since x̄ ∈ F (x0) ,we get (a). Moreover,
if x 6= x̄ , then x /∈ F (x̄) ,and we have (b).

Remark 3.1 Actually, the linear functional e∗ that satisfied the condition (v) in
Theorem 3.1 may exists. Let’s give a example as follows:

Let X = Y = Rn and C = {(y1, y2, · · · , yn) ∈ Y : yi ≥ 0, i = 1, 2, · · · , n}. Define
d : X × X → Y such that d(x, z) = (|x1 − z1|, |x2 − z2|, · · · , |xn − zn|) for any x, z ∈ X,
where x = (x1, x2, · · · , xn) and z = (z1, z2, · · · , zn). Obviously, (X, d) is a cone metric space.
Define a linear functional e∗ : Y → R such that e∗(y) = y1 + y2+, · · · ,+yn for any y ∈ Y ,
where y = (y1, y2, · · · , yn). From this definition of d, we get e∗(y) ≥ 0 for any y ∈ C. Noting
that

|x1 − z1|+ |x2 − z2|+, · · · ,+|xn − zn| ≥
√
|x1 − z1|2 + |x2 − z2|2+, · · · ,+|xn − zn|2,

we have e∗(d(x, z)) ≥ ‖d(x, z)‖ for any x, z ∈ (X, d).
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Next, we consider the vector equilibrium problem (VEP) as follows: let (X, d) be a cone
metric space and f : (X, d)× (X, d) → Y . The VEP that we consider in this paper is to find
x̄ ∈ (X, d) such that

f(x̄, y) /∈ int(C), ∀y ∈ (X, d). (3.8)

Remark 3.2 The difference between VEP (3.8) and VEP (1.1) is: In VEP (1.1), the
authors study the problems in metric space; However, the space that we consider in VEP
(3.8) is cone metric space which is more general than VEP (1.1).

Using Theorem 3.1, we are in a position to state and prove the existence of solution for
VIP (3.8) in cone metric space.

Theorem 3.2 Let (X, d) be a sequentially compact complete cone metric space whose
cone is normal. Suppose that the function f : (X, d) × (X, d) → Y and e∗ : Y → R satisfy
the following conditions:

(i) f(t, t) = θ for all t ∈ (X, d);
(ii) e∗(f(x, ·)) is lower bounded for all x ∈ (X, d);
(iii) f(z, y) + f(y, x) ∈ f(z, x) + C for all x, y, z ∈ (X, d);
(iv) f(x, ·) is quasi lower semicontinuous for all x ∈ (X, d) and f(·, y) is upper semi-

continuous for all y ∈ (X, d);
(v) e∗(d(x, z)) ≥ ‖d(x, z)‖ for all x, z ∈ (X, d), and e∗(y) ≥ 0 for any y ∈ C.

Then, the set of solutions of VEP (3.8) is nonempty.
Proof It follows from the conditions (i–v) that the Theorem 3.1 holds. Taking ε = 1

n
,

from Theorem 3.1 (b), we can find a sequence {xn} such that

f(xn, y) +
1
n

d(xn, y) /∈ −C, ∀y 6= xn.

Since (X, d) is sequentially compact, without loss of generality, we can assume xn converges
to x̄ ∈ (X, d). Assume there exists some ȳ ∈ X such thatf(x̄, ȳ) ∈ −int(C). Take a
neighborhood V of f(x̄, ȳ) such that V ⊂ −int(C). According to condition (iv), there
exists a real number N > 0 such that f(xn, ȳ) ∈ V − C when n ≥ N . Furthermore,
1
n
d(xn, ȳ) + V ⊂ −int(C) if n is big enough. So

f(xn, ȳ) +
1
n

d(xn, ȳ) ∈ V − C +
1
n

d(xn, ȳ) ⊂ −int(C)

which is a contradiction. Hence f(x̄, y) /∈ −int(C) for all y ∈ X.
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锥度量空间中基于Ekeland变分原理的向量均衡问题的解的存在性
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摘要: 本文研究了向量均衡问题. 利用在锥度量空间中给出的Ekeland变分原理, 我们推导了向量均衡

问题解的存在性定理. 本文的结论是新的并推广了相关文献中的结论.
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