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DIVIDEND PROBLEMS IN THE CLASSICAL
COMPOUND POISSON RISK MODEL WITH MIXED
EXPONENTIALLY DISTRIBUTED CLAIM SIZE
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Abstract: This paper studies the dividend problems in the classical compound Poisson risk
model with some mixed exponentially distributed claim size. By using stochastic control theory,
under the unbounded dividend intensity assumption, the explicit expression for the value function
is obtained and the corresponding optimal dividend strategy is given, which generalize the results
of [4].
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1 Introduction

Consider the classical compound Poisson risk model

N(t)
X(t)=a+ct—S{t)=x+ct—» Zit>0, (1.1)

i=1
where X (0) = = > 0 is the initial surplus, ¢ > 0 is the premium rate, and {S(¢); ¢ > 0}
represents the aggregate claims process. More specifically, { N (¢); t > 0} is a Poisson process
with intensity A > 0, which denotes the number of claims up to time ¢, i.e., the interclaim
times {7;; i > 1} form a sequence of independent and identically distributed (i.i.d) positive
random variables (r.v.s) and have a common exponential distribution with expectation %
The claim sizes {Z;; ¢ > 1} form a sequence of i.i.d mixed exponentially distributed r.v.s
with a common density function fz(z) = (1 — 6)Be™"* + k0Be "%(0 < 6 < 1), we consider

for simplicity k = 2.

The dividend problem for an insurance risk model was first proposed by Finetti [1] who
proposed to look for the expected discounted sum of dividend payments until the time of
ruin. Since then the risk model in the presence of dividend payments became a more and

more popular topic in risk theory. Two recent survey papers are [2] and [3].
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For classical compound Poisson risk model, the problem of looking for a strategy which
maxizmizes the cumulative expected discounted dividend payments was first studied by
Gerber [4]. Under the exponentially distributed assumption, the explicit expression for
the value function is given and the optimal dividend strategy is proved to be a barrier
strategy. Azcue and Muler [5] studied the optimal dividend problem in the compound
Poisson model again by using viscosity solution method. Thonhauser and Albrecher [6]
considered the model with time value of ruin and proved that the optimal dividend strategy
is also a barrier strategy. Zhang and Liu [7] studied the optimal dividend payment and capital
injection problem for the classical compound Poisson risk model with both proportional and
fixed costs. Yao et al. [8] considered the combined optimal dividend, capital injection and
reinsurance strategies for the classical compound Poisson risk model. Other interesting works
can be found in Yang and Hua [9] and Wu and Wang [10]. In this paper, assuming that
the surplus process is described by the classical compound Poisson risk model and the claim
sizes are mixed exponentially distributed, we prove that the optimal dividend strategy is a
barrier strategy. In addition, the explicit expression for the expected discounted dividend
payments until ruin is obtained.

This paper is organized as follows. In Section 2, the model we discussed is introduced.

In Section 3, the HJB equation for the value function is given and solved explicitly.

2 The Model
Let L(t) be the accumulated dividends paid up to time ¢. So the controlled process
{UE(t); t > 0} is defined by

*)
Ub(t)y =z +ct— Y Zi—L(t), t > 0. (2.1)
=1

Let 7 = inf{t > 0, U*(¢) < 0} be the ruin time. A dividend process L = {L(t); t > 0}
is called admissible if it is an adapted caglad (previsible, L(t—) = L(¢)) and non-decreasing
process, the paying dividends cannot cause ruin, i.e., L(t) — L(t—) < U*(t—) and L(0—) = 0.
In addition, no dividend is paid after ruin, i.e., dL(s) =0 for s > 7.

Assume that the dividend intensity is unbounded and dividends are discounted at a
constant force of interest §. In this paper, we aim to identify the dividend payment strategy

L ={L(t); t > 0} which maximizes the expected discounted dividend payments until ruin

V(z,L) = E[/ et dL(t)|U*(0) = x} (2.2)

0

i.e., we are looking for the value function
V(l‘) = SupLV('IaL)a (23>

where the supremum is taken over all admissible strategies.
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3 The Value Function and the Optimal Dividend Strategy

In this section, some basic properties of the value function are given and the correspond-
ing HJB equation is derived and solved.

The next proposition was stated in Lemma 2.37 of Schmidli [11].

Proposition 3.1 The function V(z) is increasing and locally Lipschitz continuous over
[0, oc], and therefore absolutely continuous. For any z > 0, we have z + &5 < V(2) <z +§
and for any y > x, we have V(y) — V(z) > y — x.

The next proposition gives the HJB equation which was proved in Theorem 2.39 of
Schmidli [11].

Proposition 3.2 The function V(x) satisfies the HJB equation

max{l — V’(x),.AV(x)} =0, (3.1)

where AV (z) = cV'(z) — (A +0)V(z) + )\/ V(z—2)fz(2)dz.
0
Assume that (3.1) has a concave differentiable solution. The crucial point where the
first derivative of the value function becomes smaller than one is denoted by xq. For = > x,
we have 1 — V/(z) = 0, which immediately gives V,(z) = x + B; for some constant B;. For

x < xg, we have to solve
V'(x) = A+ 0)V(z)+ A /I V(z—2)fz(2)dz = 0. (3.2)
0

Plugging fz(z) = (1 — 0)Be~P* + 208e~27* into (3.2), changing the integration variable, we
get

x

V'(2) = (A+8)V(z)+ (1 —-0)\Ge P" /

V(z)eﬁzdz—l-%/\ﬂezﬁw/ V(2)e*P*dz = 0. (3.3)
0 0

Applying the operator ((f—z + ﬁ) to (3.3), we have

V" (x) 4+ (Be— A=)V (x) + BON — 8V (z) — 20732 e 2" /f V(2)e**dz = 0. (3.4)

0

Applying the operator (% + 26) to (3.4), we have
V" (x) + (3Bc— X — ) V" (z) + B(2Bc + O\ — 2\ — 386)V'(x) — 2626V (z) =0.  (3.5)
It is well known that the solution of (3.5) is of the form
V(z) = Aje™® 4 Age™" + Age™” (3.6)

for some constants A;, Az, As, where r1, 79, 73 (r; > 0 > 75 > r3) are three real roots of

the characteristic equation in &:

c€ 4 (3Bc — A — 6)&* + B(2Bc+ OX — 2\ — 35)€ — 23%5 = 0. (3.7)
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Remark 3.3 It is easy to see that

A+4
7"1+7"2+7“3:T—3ﬂ;
2326

rireTs = )
c

20c+ 0\ — 2\ — 30
7”17“2-1-7“27’3-1-7“37“1:5( e - )

Let
hi(€) = €3 + (38c — A — 0)&% + B(2Bc + 0N — 2) — 38)E — 2526,

then 7y, ro, r3 are three real zeros of hy(§). Because hy(—23) < 0, hy(—f5) > 0 and h,(0) < 0,
we have —(0 < r; < 0 and —20 < rz3 < —(.
Plugging (3.6) into (3.3) and (3.4), then let = tend to 0 from the left, we have

[C?“l — A= 5]141 + [CTQ — A= 5]142 + [CT3 — A= 5]143 =0 (38)
and

[er} — (A +6)r1 + (L+0)AB] A1 + [er; — (A4 0)r2 + (1 + 0)A3] Ay
+ [ery = (A+8)rs + (1+0)AB8] 45 = 0. (3.9)

Equations (3.8) and (3.9) imply that
Ay = ARy, A3 = A1 Rs, (3.10)

where
_Ru R
R2 - R23’ R3 — R237
Ry = [ers — A = d[er] — A+ 0)r1 + (L +0)AB] — [er1 — A = 8][ers — (A +0)rs + (1 + 0)A\3),
Ris =[cri — A —0][ers — (A +68)ry + (1 + 0)NG] — [era — A — d][er? — (A +6)r1 + (1 + 0)\g],

Roz = [cra — A = 6][ers — (A +0)rs + (L + 0)AB] — [ers — A = 6][er; — (A + 8)r2 + (1 + 0)A4).
We need to find a differentiable solution, so the differentiability of V'(x) over x = x, gives
that By = —xo + Vi(zg) and V/(z0) = 1, hence we have

1
T1€"1%0 + Roroe™®0 + Rarze’sxg

A =

Therefore we get the form of V' (z) that

9(x) 2 < 7
V()= 9'(@0)’ o (3.11)
x—xo+ V(xg), x> my,

where g(t) = "' + Rpe™' + Rze™!.



No. 3 Dividend problems in the classical compound Poisson risk model with ... 563

In order to determine V (z), we are still short of an additional condition to determine
xo. Noting that {A;, As, A3} are the functions of the barrier xg, it is easy to see that the
optimal barrier xy can be determined by minimizing ¢’(t) = rie™! + Roroe™! + Rarse™!, i.e.,

if zy > 0, then x( supplies the equation
g//(t) 2 T1t+R 7,2 rzt_l_R T2 rat __ O (312)

In the following we show that the equation ¢”(¢) = 0 has a unique root if zy > 0.
Lemma 3.4 R3; >0, Rio > 0 and R»3 < 0, and therefore Ry < 0 and Rz < 0.

Proof Because

Ray =c®ryrs(ry —r3) + (1 + 0)\B(rs — 1)
+ (A+9) [C(Ts —r)(rs+r)+A+9)(r — 7“3)]
=(r1 —r3)[rirs — c(A + 0)(r1 +73) — c(1+OAB + (A + 6)°]

_0(7’17[2/3 5+ (A+0)r2 + BB +6) — (1+6))\]r2] (3.13)
[% "+ 308er2 4+ B[2Be + 0N — 2X — 30]r + B3N +8) — (1 + 9)A]r2]
=c (7“1 - rj)(rz + B)(ra + 2),
Ry = [2 26+ (A +8)r2 4+ B[3(A+0) —(1+9))\]r3] (3.14)
("“2 - ?“1)(7“3 + B)(rs + 26),
Ras — [25 5+ A+ 0)r2 + BB3(A+6) — (1+6))\]r1] (3.15)

202(7"3 —ra)(r1 + B)(r1 + 20),

we have R3; > 0, Ri2 > 0 and Rs3 < 0, and therefore Ry < 0 and Rz < 0.
Lemma 3.5 ¢"”'(t) > 0 for any t > 0.
Proof As

g"(t) = rie™ + Rorde™ + Rarie’s!,
we know that ¢"”’(t) > 0 for any ¢t > 0 by Lemma 3.4.
Lemma 3.6 If
(A +9)* > (1 +0)A\Bc,
then the equation ¢”(¢) = 0 has no positive root.
If
(A +4)? < (1+0)\Be,

then the equation ¢”(t) = 0 has a unique positive root.
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Proof By (3.13), (3.14) and (3.15), we have

g"(0) =r] + Rors + Ryri

1
:Ri(Rggrf + R317’§ + ngrg)
23

Rcz3 [7’1(7“3—7‘2>[2525+(/\+5)7’1 +OBA+0) = (1+0)A rl”
)
)

~ [(/\ + 8)[rira(ra — r1)(ra + r1) + rirs(ry — r3) (e +73) + rars(rs — r2) (r3 + 12)]

+ [raln = 75) [26%5 + (A 6072 + BIBON+8) = (1+O)I

|
o [ralra = o) [28%0 + (A 6)r + B3N+ 8) — (14 )]s

BB 8) — (1 +ON(ry — 12)(rs — 13) (15 — rl)]

= “ [+ 8) [raratrs - rl)(—w 1)
3¢ —C/\ AU 1 —CA s

BB 8) — (1 + DN (1 — 1) (s — 73) (15 — rl)]

+ T17"3(T'1 — 7’3)(*

— 7’1)}

1
=——[(A+0)* = (1+0)ABc](r1 — 7o) (rg — 73) (13 — 71).
23
If (A+6)* > (1 + 0)\Be¢, we have ¢”(0) > 0, we know that the equation g”(t) = 0 has no
positive root by Lemma 3.5. If (A + )% < (1 + 8)\Bc, we have ¢”(0) < 0, which together
with the fact tlim g"(t) = oo, implies that the equation ¢”(¢) = 0 has a unique root.
Lemma 3.7 If (A +§)2 > (1 + 0)\3c, then for any z > 0, we have

1 c c Ac A0 A
— _ - 7ﬂw —2Bx <«
I(z) =\ 0)(ﬁ )\+6> “e(m )\+6>e —rt 5t 50
(3.16)
Proof It is easy to see that I(0) = 0 and
! _ _ _ ﬁC —Bx __ _ 2ﬁC —2px
I'(z) = =X(1-6)(1 )\—I—(S)e AG(1 )\+5)e J.
If Bc > A+ 6, we have
1 c c Ac A0 A
< _ - _ _ ~_Z
I(z) <A1 9)(5 A+5)( 6:c)+>\9(25 A+5)(1 %) =00+ 5+ 55 5
ABe
g —_ < .
[(1+0)/\+6 (A+5)]x_0

If Bc < 222 we have I'(z) < 0, hence

I(z) < I(0) = 0.
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If ’\TH < fBe < A+ 6, setting t = e~77 we have

') = () = 26( 2fe ~1)e-aa-)(1- pe )i -6

A+4 A+9
For any 0 <t <1, we have J(t) < max{J(0),J(1)}. Since J(0) = —6 < 0 and
283c Be ABc
_ Z1) a1 — _ 5= - <
() a0 ) o [0 ] <o

we get I'(z) < 0 for any « > 0, hence we have I(z) < I(0) = 0.
Theorem 3.8 If
(A+0)* > (1+6)A3c,

then V(z) = x + 1%5 is a solution to (3.1). If
(A+8)% < (1 +6)ABe,

then V(x) defined by (3.11) is a twice continuously differentiable concave solution to (3.1),
where xg is the unique root of the equation (3.12).
Proof Let’s first consider the case (A + §)? > (1 + 0)A\Bc. It is obvious that V(z) =

T+ solves 1 — V'(x) = 0. Thus we have to show that

c
A+0
V'(x) = A6V () +(1—0)\Be P /1 V(2)eP*dz+20ABe2P" /’3 V(2)e**dz < 0. (3.17)
0 0
Plugging V(z) = x + %5 into the left of (3.17), by Lemma 3.7, we have
I(x) =cV'(z) — A+ 6V (x) + (1 — O)ABe™ " /m V(z)e?*dz
0

+ 20/\562&”/ V(2)e*dz < 0.
0

If (A +6)% < (1 + 0)AGe. The facts 1(0) = 0 and I'(0) = [(1 +0)22 — (A + 5)] >0
imply that there exists some x; > 0 such that I(x1) > 0, so the second part in the maximum
of (3.1) is positive, hence V(x) = x + 355 does not solve (3.1).

As V'(z) = g,/;i?) < 0 for & < xg, V"(xo—) = V"(x0+) = g;/((?o;) =0, V(zg—) =1
and V" (z) = 0 for z > xy, we know that (3.11) is a twice continuously differentiable concave
solution to (3.1).

In the end, by Theorem 3.8, we give a verification theorem which tells that the function

V(z) defined by (3.11) is the value function. We omit its proof because it is quite similar to
Proposition 5 of Thonhauser and Albrecher [6].

Theorem 3.9 For every admissible dividend strategy L, V(z) > V(z, L), where the
function V(x) is defined by (3.11). Let Lo be the barrier strategy given by the barrier z,
then V(z) = V(x, Ly).
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