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Abstract: In this paper, we study the 2-pebbling property of graphs and a Graham’s con-
jecture. By using some results of the pebbling number of graphs, we show that paths and cycles
have the 2-pebbling property, and we also prove that Graham’s conjecture holds for middle graphs
of paths.
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1 Introduction

Pebbling of graphs was first introduced by Chung [2]. Consider a connected graph
with a fixed number of pebbles distributed on its vertices. A pebbling move consists of
the removal of two pebbles from a vertex and the placement of one of those pebbles on an
adjacent vertex. The pebbling number of a vertex v in a graph G is the smallest number
f(G,v) with the property that from every placement of f(G,v) pebbles on G, it is possible
to move a pebble to v by a sequence of pebbling moves. The pebbling number of a graph G,
denoted by f(G), is the maximum of f(G,v) over all the vertices of G. We say a graph G
satisfies the 2-pebbling property if two pebbles can be moved to any specified vertex when
the total starting number of pebbles is 2f(G) — ¢+ 1, where ¢ is the number of vertices with
at least one pebble.

There were some known results on the pebbling number (see [2-10]). If one pebble is
placed on each vertex other than the vertex v, then no pebble can be moved to v. Also,
if u is at a distance d from v, and 2¢ — 1 pebbles are placed on u, then no pebble can be
moved to v. So it is clear that f(G) > max{|V(G)|,2P}, where D is the diameter of graph
G. Meanwhile, we also know that f(K,)=n and f(P,) =2""! (see [2]), where K,, and P,
denote the complete graph and the path of order n respectively.
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Throughout this paper, G will denote a simple connected graph with vertex set V(G)
and edge set E(G). Given a distribution of pebbles on the vertices of G, denote by p(H),
p(v), p(H) and p(v) the number of pebbles on a subgraph H of G, the number of pebbles on
a vertex v of GG, the number of pebbles on H and v after some sequence of pebbling moves,
respectively. We then say that a vertex v is occupied if p(v) > 1, otherwise, we call v to
be unoccupied if p(v) = 0. Denote by (vy, v, -+ ,v,) (respectively, [v1,vs, -+ ,v,]) the path
(respectively, cycle) with vertices vy, vs, - , v, in this order.

Next, we introduce a definition and give some useful lemmas.

Definition 1.1 [1] The middle graph of a graph G, denoted by M (G), is obtained from
G by inserting a new vertex into each edge of G, and by joining those pairs of these new
vertices by edges, which Lie on adjacent edges of G.

Lemma 1.2 (see [5]) f(M(P,)) =2"+n — 2.

Lemma 1.3 (see [7]) For a path (vo, vy, -+ ,v,), if

p(vo) +2p(v1) + -+ + 2'p(v;) + -+ + 2" p(v, 1) > 27,

then one pebble can be moved to v,.

Corollary 1.4 For a path (vg, vy, -+, v,), suppose that p(vg) > 2"+ — (24224 - - +27)
and there are r occupied vertices in the set {vy,vo, - ,v,}, say vi,, vy, - -+ ,v;,, then at least
two pebbles can be moved to v, (1 < k < n) using one pebble each from v, with 1 <j <r
and 2"T! — (2422 4 ... + 2") pebbles from vy.

Proof Obviously, we can move at least two pebbles to v, (1 < k < mn—1) or one pebble
to v, using 2" pebbles from vy. Using one pebble each from v;; and 2" — (24224427
pebbles from vy, we can move one additional pebble to v,, by Lemma 1.3.

Lemma 1.5 (see [10]) Let P, = (v1,va, -+ ,v,). Then f(M(P,) —v,) =2""1+n—2.

Lemma 1.6 (see [10]) f(M(Cy,)) = 2" +2n — 2.

2n+3
Lemma 1.7 (see [10]) f(M(Copi1)) = {

3
Liu et al. [5] gave the pebbling number of middle graphs of paths (see Lemma 1.2).

J + 2n.

Recently, Ye [10] determined the pebbling number of middle graphs of cycles, and showed
that Graham’s conjecture holds for middle graphs of odd cycles. Motivated by these results,
we show that paths and cycles have the 2-pebbling property, and also prove that Graham’s
conjecture holds for middle graphs of paths in this paper.

2 2-Pebbling Property of Graphs

In the section, we first shall show that the middle graphs of paths have the 2-pebbling
property, and then prove that the middle graphs of cycles have the 2-pebbling property.

Theorem 2.1 The middle graphs of paths have the 2-pebbling property.

Proof Let P, = (v1,va,---,v,). M(P,) is obtained from P, by inserting u; into
ViVi11, and joining u;u,4q for 1 < i < n — 1. Let ¢ be the number of occupied vertices of
M(P,). Now suppose that 2(2" +n —2) — ¢+ 1 pebbles are placed arbitrarily at the vertices
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of M(P,). Let v be our target vertex. If p(v) = 1, then M (P,,) has 2(2" +n —2) — g pebbles
other than one pebble on v. Since 2(2" 4 2n — 2) — ¢ > 2" + n — 2, using Lemma 1.2 we can
move one additional pebble to v so that p(v) = 2. Hence we assume p(v) = 0.

Without loss of generality, we may assume that our target vertex v is not v,, (otherwise,
relabeling). If p(v,) < 2" +2""' +n — g — 1, then

p(M(P,) —v,) >2(2"+n—2)—q+1—-(2"+2" +n—q—1)=2"""4n-2.
By Lemma 1.5, we can move one pebble to v. This leaves
22" +n—-2)—q+1—-(2"""+n—-2)>2"+n -2

pebbles on M (P,). By Lemma 1.2, we can move one additional pebble to v so that p(v) = 2.
Next suppose that p(v,,) > 2" +2""! +n —q. If ¢ < n — 1, then we can move one pebble to
v using 2" pebbles on v,,, and using the remaining 2(2" +n —2) —q¢+1—2" > 2" +n — 2
pebbles, we can move one additional pebble to v so that p(v) = 2. If ¢ > n, and write ¢ as
g =n+r(r > 0), then there are at least r + 1 occupied vertices in the set {uq,us, -+, up_1},
SAY Uiy, Uiy, -+, Usy - We now use 2" — (2422 + .- + 2711 pebbles from v,, and one pebble
each from u;,(j = 1,2,--- ,7+1) to move two pebbles to u;(1 < i < n—1) by Corollary 1.4.
This implies that we can move one pebble from some u;(1 <i < n — 1) to v. This leaves

22" 4+n—2) —q+1—-[2" =2+ 22+ -+ 2T L P+ D] > 2"+ n—2

pebbles on M (P,). By Lemma 1.2, we can move one additional pebble to v so that p(v) = 2.

Theorem 2.2 The middle graphs of even cycles have 2-pebbling property.

Proof Let Cy, = [vg,v1,-++ ,V2,—1]. M(C3,) is obtained from Cs,, by inserting u; into
v;vj, and joining u;u; where j := (i+1) mod (2n) for 0 <1i < 2n—1. Let ¢ be the number
of occupied vertices of M (Cs,). Now suppose that 2(2"! +2n —2) — g+ 1 pebbles are placed
arbitrarily at the vertices of M (Cs,,). Suppose our target vertex is v. If p(v) = 1, then Cy,
has 2(2"! 4 2n — 2) — ¢ pebbles other than one pebble on v. Using Lemma 1.6 we can move
one additional pebble to v so that p(v) = 2, since 2(2" " +2n—2) —¢q > 2" +2n — 2. Hence
we assume p(v) = 0. By symmetry, suppose v is either vy or ug. Obviously, for ¢ = 4n — 1,
we are done. Next, we consider the left case ¢ < 4n — 2. We divide into two cases by v.

Case 1 v = uyg.

Let A = {ug,v1,u1, - ,Up_1,0,} and let B = {Vp11, Unt1, UVnta,  * y Van—1, U2p—1, Vo, Up }-
By Lemma 1.5,

J(GIA]) = F(GIB]) = 2" +n— 1.

If p(u,) < 2" +2n — 1 — g, then
p(G[A]) + p(G[B]) > 22" +2n —2) —g+1— (2" +2n -1 —q) = 2" +2n — 2.

So
p(G[A]) > 2" 4+n—1 or p(G[B]) > 2" +n— 1.
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Using 2" + n — 1 pebbles, we can move one pebble to ug. This leaves 2(2" ! 4 2n — 2) —
g+1—(2"+n—1)> 2" 4+ 2n — 2 pebbles on M(Cy,). By Lemma 1.6, we can move one
additional pebble to uy so that p(ug) = 2. Now suppose p(u,,) > 2" + 2n — ¢q. Note that
qg<4n—2< 2"+ 2n. So p(u,) > 2". By Lemma 1.3, using 2" pebbles on u,,, we can move
one pebble to ug by the path (u,, u, 1, ,u1,ug). This leaves 2(2"1 +2n—2)—q+1-2" >
27+ 4 2n — 2 pebbles on M (Cy,). By Lemma 1.6, we can move one additional pebble to ug
so that p(ug) = 2.

Case 2 v = vy.

Let A" = {vo,up,v1, - ,Vn—1,Un—1} and let B’ = {vg, u2pn—1,V2n—-1, " ,Unt1,Un}. By
Lemma 1.5,

f(GIA]) = F(G[B]) =2" +n — L.

If p(v,) <2 +2n — 1 — g, then
p(G[A]) +p(G[B]) > 22" +2n—2) —g+1—- (2" +2n—1—q) = 2" +2n — 2.

So
p(GIA']) >2"+n—1 or p(G[B']) >2"+n—1.

Using 2" + n — 1 pebbles, we can move one pebble to vy. This leaves 2(2" ! + 2n — 2) —
g+1—(2"+n—1)> 2"+ 2n — 2 pebbles on M(Cy,). By Lemma 1.6, we can move one
additional pebble to vy so that p(vg) = 2. Now suppose p(v,) > 2" 4+ 2n — q.

Subcase 2.1 ¢ < 2n—1. We have p(v,) > 2"*. Using 2" pebbles on v,,, we can move
one pebble to vy by the path (v, w,_1,- - ,us,ve). Then this leaves 2" 4+-2n—2+4+2n—1—¢q >
271 + 9n — 2 pebbles on M(Cs,). By Lemma 1.6, we can move one additional pebble to vg
so that p(vg) = 2.

Subcase 2.2 ¢ > 2n. And write ¢ as ¢ = 2n + 2r if g is even and as ¢ = 2n + 2r + 1
if ¢ is odd, where r > 0. Let ¢; be the number of occupied vertices in A’ and let ¢ be the
number of occupied vertices in B’. Without loss of generality, we may assume ¢; > ¢o. For
q = 2n + 2r, we have ¢; > n + r, and there are at least » + 1 occupied vertices in the set
{uo, U1, -+, Un_1}, SAY Ui, Uiy, -+ ,u;,,,. Using one pebble each from u; (1 < j <7+ 1)
and 2"t — (2! + 22 + ... 4+ 27F1) pebbles from v, we see that one pebble can be moved to
vo at a cost of 2"t — (21 422 ... +2""1) 4 (r 4 1) pebbles by Lemma 1.3. This leaves

202" 4+ 20 —2) — g+ 1 — 2" — (2 4+ 22 - 4 27 (1)
2rtt+2n—2)+[2+22+ 224+ .- 427) — (3r 4+ 2)]

>
> ontl L on —2

pebbles on M(Cy,). By Lemma 1.6, we are done. The proof of the odd case : ¢ = 2n+2r+1
is similar.

Theorem 2.3 The middle graphs of odd cycles have 2-pebbling property.

Proof Let Co,11 = [vg, 01, ,0an]. M(Coyiq) is obtained from Cs,. 1 by inserting
w; into v;v;, and joining w;u; where j := (i +1) mod (2n+1) for 0 <1 < 2n. Let g be
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2n+3
the number of occupied vertices of M (Cs,41). Now suppose that 2 <{ 3 J + 2n> —q+1

pebbles are placed arbitrarily at the vertices of M (Coy1).
n+3

Let v be our target vertex. If p(v) = 1, then Cy, ;1 has 2 +2n | — g pebbles

2n+3 2n+3

other than one pebble on v. Since 2 + 2n> —q > L J + 2n, by Lemma 1.7,
we can move one additional pebble to v so that p(v) = 2. Hence we assume p(v) = 0. By
symmetry, suppose v is either vy or ug.

Case 1 v = uy.

Let A = {ug,v1,u1,v2, - ,Upn,u,} and let B = {ug, v, Uapn, Van, * s Unio, Unyrf. If
2n+3 2n+1
P(Vng1) < + +2n—q+1,
3 3
then

n+3

p(G[A]) +p(G[B]) > 2({ J +2n) —q+1—( V;SJ +2n+ fn;J —q+1) = 2" 42,

So
p(G[A]) > 2" +n or p(G[B]) > 2" +n.
n—1
Without loss of generality, we assume that p(G[4]) > 2"+n. Since p(u,)+ > 2" "p(u;) >
=1

p(ug) +2[5(2" + 1 = p(uy))] = plun) + (2" — p(u,)) = 2", by Lemma 1.3 we can move one
n+3 n+3

pebble to ug. This leaves 2 <\‘ 3 J +2n> —q+1—-(2"+n) > {

M(C3,41). By Lemma 1.7, we can move one additional pebble to ug so that p(ug) = 2.

2n+3 2n+1
Now suppose p(vp41) > { J + \‘ J + 2n — g + 2. Note that ¢ < 4n + 1. So

J + 2n pebbles on

3 3
p(vny1) > 2" By Lemma 1.3, using 2" pebbles on v, 1, we can move one pebble to ug

by the path (v,41,Up, Up_1,- - ,u1,up). If ¢ < 4n — 2, then this leaves

2n+3 2n+3
2({ 3 J+2n>—q+1—2"+1> {3J +2n

pebbles on M (Cy,+1). By Lemma 1.7, we can move one additional pebble to ug so that

p(ug) = 2. If ¢ = 4n — 1, then there are at least 2n — 2 occupied vertices in the set
{uy,us, -+ ,uz,}. We may assume that there are n — 1 occupied vertices in {uy, ug, -, uy,}.
Using one pebble each from the occupied vertices, 2" 1 — (21 +22 + ... 4+ 2"~1) pebbles from
Unt1, it is sufficient to move one pebble to ug by the path (v, 41, Up, Up—1, -+ ,u1,ug). This

leaves

3
2n+3 2n+1

= 2
3 +2n +

2n+3
>
- 3

2n+3
2({ J+2n —q+1—[2v = (20422 .. 4277 ) 4 (n = 1)]

J+(2+22+23+~-~+2"—1)—3n+3)}

+ 2n
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pebbles on M (Cs,41) and by Lemma 1.7, we are done. When ¢ = 4n,4n + 1, the proof is
similar.

Case 2 v = v

Let A" = {wvg,ug,v1,+ ,Up_1,un_1} and let B’ = {vg, uopn, V2an, "+ ,VUni2,Unr1}. By
Lemma 1.2, f(G[A]) = f(G[B']) =2"+n —1. If

n+3 n+1
plon) + p(a) + plonan) < | 25 |20 | 2 | g

then

p(G[A))+p(G[B']) > 2 QQ?SJ + 2n> —q+1—( fn;gJ +2n+ { nSHJ —q+3) = 2" pon—-2.

So
p(G[A'])>2"+n—1 or p(G[B']) >2"+n—1.

Using 2™ + n — 1 pebbles, we can move one pebble to vy. This leaves

2n+3 2n+3
2<{ 3 J+2n>—q+1—(2”—|—n—1)2{ 3 J+2n

pebbles on M(C5,41). By Lemma 1.7, we can move one additional pebble to vg so that

" n+3 2n+1
p(vo) = 2. Now suppose p(vy,) + p(un) + p(vn41) > +2n+ { J —q+4.
If p(u,) > 2""!, then we can move one pebble to vy by the path (u,,u, 1, -, ug, vo)
2n+3
using 2"*! pebbles on w,. This leaves p = 2 (\‘ 3 J + Qn) — g+ 1 —2""! pebbles on
n+3

Cony1. If ¢ < 2n, then p > + 2n. By Lemma 1.7, we may move one additional

pebble to vy so that p(vg) = 2. When g > 2n + 1, write ¢ as ¢ = 2n + 2r + 2 if ¢ is even and
as ¢ = 2n + 2r + 1 if ¢ is odd, where r > 0. Let ¢; be the number of occupied vertices in
A’ and let go be the number of occupied vertices in B’. Without loss of generality, we may
assume q; > ¢o. We have ¢; > n+r+ 1, and there are at least » + 1 occupied vertices in the
set {wo, U1, -+, Un_1}, SAY Ui, Uiy, -+, U;,,, . Using one pebble each from u; (1 < j <r+41)
and 2"t — (21 422 ... 4+ 27F1) pebbles from u,. By Lemma 1.3, we see that one pebble
can be moved to vy at a cost of 2"t — (28 +22 4 ... 4+ 27F1) 4 (r + 1) pebbles. This leaves

2n+3
2 J+2n —q+1—[2" — (21422 .+ 27+ (r + 1)]
2n+3 n+1
> 3 +2n + { 3 J+(2+22+23+-~-+2’“+1)—3r—2]
2n+3
> +2
> 3 n

pebbles on M (Cy,,1) and by Lemma 1.7, we are done. If p(u,) = 2" — s(1 < s < 27+
then

n+3 n+1 n+1
p(vn)+P(Un+1)>{ 3 J+2n+{ 3 J—Q+4—2”+1+s=2{ 3 J+2n—q+4+s.
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Without loss of generality, we assume p(v,,) > p(v,41). Thus

p(vy,) > {2"3+1J +n+2- L%J + [g—‘ .

For [%1 is odd, we use 2"*+! — 2 [g] — 2 pebbles on u,, and move % ([g] + 1) pebbles from

Uy, t0 U, —1. By Lemma 1.3, we can move one pebble to vy by the path (u,, w,—1,- - ,ug, vo).

This leaves at least

2n+3 i .
2 5| 2 —q+1-(2"" - [5]-1)

2n+3 2n+1 2n+3
\‘ J+2n+ 3 J2n+22\‘ 3 J+2n

Y

3

pebbles on M (Cy,11). By Lemma 1.7, we can move one additional pebble to vy so that

p(vg) = 2. For [£] is even, we use 2"+ —2 [£] pebbles on u, and move % ([£]) pebbles from

Uy, t0 U, —1. By Lemma 1.3, we can move one pebble to vy by the path (u,, w,—1,- - ,ug, vo).
This leaves at least

277,+3

2 +2n) —q+1—-(2" - [2])

2n+3 2n+1 2n+3
> \‘3J—|—2n+ SJ—Zn—FQz{SJ—FZn

pebbles on M (Cy,11). By Lemma 1.7, we can move one additional pebble to vy so that
plvo) = 2.

Remark Combining Theorems 2.2 and 2.3, we prove that the middle graphs of cycles
have 2-pebbling property.

3 Graham’s Pebbling Conjecture on M (P,)

Given two graphs G and H, the Cartesian product of them is denoted by G x H. Its

vertex set

V(G x H)={(u,v)|lue V(G),ve V(H)},

and (u,v) is adjacent to (v',v") if only if u = u' and vv’ € E(H) or v =v" and wu’ € E(G).

We can depict G x H pictorially by drawing a copy of H at every vertex of G and
joining each vertex in one copy of H to the corresponding vertex in an adjacent copy of
H. We write u(H) (respectively, v(G)) for the subgraph of vertices whose projection onto
V(G) is the vertex u, (respectively, whose projection onto V' (H) is the vertex v). Obviously,
u(H)= H,v(G) =G.

Conjecture 3.1 (Graham) For any two graphs G and H, f(G x H) < f(G)f(H).

Lemma 3.2 (see [7]) Let P, be a path with n vertices and let G be a graph with the
2-pebbling property. Then f(P, x G) < 2" f(G).

Theorem 3.3 Let P, be a path with n vertices and let G be a graph with the
2-pebbling property. Then f(M(P,) x G) < (2" +n — 2) f(G).
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Proof Let P, = (v1,vs, - ,v,). M(P,) is obtained from P, by inserting u; into
vVi11, and joining w;u;yq1 for 1 <4 <n — 1. Now we assume that (2" +n — 2) f(G) pebbles
have been distributed arbitrarily on the vertices of M(P,) x G. Let p; = p(v;(G)), where
1 < i <n. Let ¢; be the number of occupied vertices in v;(G)(1 <14 < n). Suppose that v is
our target vertex in M(P,) x G.

Case 1 v = (v, ) € v,(G) (or v = (v1,2) € v1(Q)) for x € V(G) For simplicity, let
A = (uy,ug, - ,uy,_1,v,). By Lemma 3.2, f(A x G) < 2" 1 f(G). If Epz <(2"+n-

3)f(G), then the A x G can obtain at least

S1@" 0= 3)7(G) ~ (1~ D) + F(G) = 2" £(C)

n—1
pebbles by a sequence of pebbling moves and we are done. Next we assume that E p; >

(2" +n —3)f(G) + 1. Thus p(4A x G) < f(G). Let p(A x G) = o f(G) where 0 < 040 <1
and let p(v;(G)) = (j; + 041) (G)(1 <i<n-—1)where j; >0and 0 < ; < 1.

n—1
Now we claim that Z ¢ > (n— 2+ ap)f(G). Otherwise, we have > ¢ < (n — 2+
i=1 i=1
ap) f(G). Hence

PAXG) = S [(2" +1n = 2)f(G) — aof(G) = (n — 2+ ) f(G)] + a f(G) = 2" f(G)

DN | —

n—1
and we are done. Let Zal—s<n—1 Then Z]l—2n+n—2—s Note that

a, f(G) + ¢ < 2f(G) for 1 <i<n-—1. We claim that there exist ¢1,49,--- ,75 such that
i, > 1 and o, f(G) + q;, > f(G), where k = 1,2,--- | s. Otherwise, we have

n—1

; (if(G)+q) <2(s—-1Df(G)+[n—1-(s=D]f(G)
= (n=2)f(G) + sf(G).

N
—

But . . »
;(alf(G) +aq) = ; a; f(G) + > 4
> (s — ) f(G) + (n =2+ ) f(G)
= (n—2)f(G) + sf(G)

It is a contradiction. .
Let B = ((v1, ), (va,x), -+, (vy,x)). Note that Y j; =2"4+n—2—s > n—1. Without

i=1
loss of generality, we may assume that j; > 1 for 1 <i <n — 1. And we may assume (after

relabeling if necessary) that «,; f(G) + ¢; > f(G) for 1 < i < s. Hence by the 2-pebbling
property we can move at least j; + 1 pebbles to the vertex (v, z) in v;(G)(1 < i < s). In
v;(G)(s <i<n—1), we can move at least j; pebbles to the vertex (v;, x). Then

s n—1 n—1
NN G+ > = Gits>2"4n-2
i=1

i=s+1 i=1
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and we are done by Lemma 1.2.
Case 2 v = (v, z) € v(G) (k # 1,n) for x € V(G). Obviously, n > 2 and p, < f(G).
For simplicity, let A’ = (ui,ug, - ,u,_1). By Lemma 3.2, f(A’ x G) < 2" 2f(G). If

>pi < (2" +n—3)f(G) — 2pg, then A’ x G and vi(G) can obtain at least
i#k

S 12" 40 = 3)7(G) ~ 2~ (0~ DF(G)] + F(G) + 2 =2 F(G) + pu

pebbles by a sequence of pebbling moves, i.e., p(A’ x G) > 2"~ 1 f(G). Thus we can move
at least two pebbles to the vertex (ug_1,2) of ur_1(G) and one pebble can be moved to

v from (ug_1,z). Next we assume that > p;, > (2" +n — 3)f(G) — 2px. Thus p(A’ x
i#k
G) + pr < f(G) + 2py, e, p(A' x G) < f(G) + pr. Let p(A' X G) = apf(G) and let
p(vi(G)) = (Ji + ;) f(G)(1 < i < n), where j; > 0 and 0 < ; < 1. Obviously, 0 < ag < 2
and jp = 0.
Now we claim that > ¢; > (n—24ap) f(G). Otherwise, we have > ¢; < (n—2+ay) f(G).

i=1 i=1
Hence

PA'XG) 232" +n=2)f(G) —af(G) = (n =2+ a0) f(G)] + a0 f(G)

"HH(G)

NN =

n n

and we are done. Let Y a; = s < n+ 1. Then > j; = 2"+ n —2 —s. Note that
i=0 i=1

a; f(G)+ q; < 2f(G) for 1 < i < n. We claim that there exist iy,42, - ,is_1 such that

ir, > 1 and «;, f(G) + qi, > f(G), where k =1,2,--- ;s — 1. Otherwise, we have

S (0f (@) +4) <2s=2)f(C)+ [~ (s~ 2U(C)
— (n=2)/(G) +51(G).
But

It is a contradiction.

Let B = ((v1,x), (va,x),- -+, (Un,2)). Note that > j; =2"+n—2—s > n—1. Without
loss of generality, we may assume that j; > 1 for ¢ # kZ%an we may assume (after relabeling
if necessary) that «; f(G) + ¢; > f(G) for 1 < i < s. Hence by the 2-pebbling property we
can move at least j; + 1 pebbles to the vertex (v;,x) of v;(G)(1 <i < s—1). And we can
move at least j; pebbles to the vertex (v;, x) of v;(G), where i = s,--- Jk—1,k+1,--- ,n
Then

s—1 k—1 n
NZD Gi+D)+D ji+ D ji=» jits—1>2"+n-3.
=1 i=s

i=k+1 i#k
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Let C" = <(’U1,.CU), (ubx)a o 7(“1@71737)7 (Uk7$)>' If 5((’(}1,]})) > 2n71 and d((’l}l,l'), (’Uk,l')) <
n — 1, then one pebble can be moved to (v, z) by the path C”.
On the other hand, if p((vi,z)) < 2"~ — 1, then

P(M(B') = (v1,2)) > 2" +n —2.

By Lemma 1.5, we are done.
Case 3 v = (ug, z) € up(G) for x € V(G). The proof is similar to the proof of Case 1.
By Theorem 2.1 and Theorem 3.3, we can have the following result.
Corollary 3.4 Let P, and P,, be two paths. Then

FM(P,) x M(Pr)) < f(M(P,))f(M(Pp)).
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