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Abstract: In this paper, we study the 2-pebbling property of graphs and a Graham’s con-

jecture. By using some results of the pebbling number of graphs, we show that paths and cycles

have the 2-pebbling property, and we also prove that Graham’s conjecture holds for middle graphs

of paths.
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1 Introduction

Pebbling of graphs was first introduced by Chung [2]. Consider a connected graph
with a fixed number of pebbles distributed on its vertices. A pebbling move consists of
the removal of two pebbles from a vertex and the placement of one of those pebbles on an
adjacent vertex. The pebbling number of a vertex v in a graph G is the smallest number
f(G, v) with the property that from every placement of f(G, v) pebbles on G, it is possible
to move a pebble to v by a sequence of pebbling moves. The pebbling number of a graph G,
denoted by f(G), is the maximum of f(G, v) over all the vertices of G. We say a graph G

satisfies the 2-pebbling property if two pebbles can be moved to any specified vertex when
the total starting number of pebbles is 2f(G)− q +1, where q is the number of vertices with
at least one pebble.

There were some known results on the pebbling number (see [2–10]). If one pebble is
placed on each vertex other than the vertex v, then no pebble can be moved to v. Also,
if u is at a distance d from v, and 2d − 1 pebbles are placed on u, then no pebble can be
moved to v. So it is clear that f(G) ≥ max{|V (G)|, 2D}, where D is the diameter of graph
G. Meanwhile, we also know that f(Kn) = n and f(Pn) = 2n−1 (see [2]), where Kn and Pn

denote the complete graph and the path of order n respectively.
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Throughout this paper, G will denote a simple connected graph with vertex set V (G)
and edge set E(G). Given a distribution of pebbles on the vertices of G, denote by p(H),
p(v), p̃(H) and p̃(v) the number of pebbles on a subgraph H of G, the number of pebbles on
a vertex v of G, the number of pebbles on H and v after some sequence of pebbling moves,
respectively. We then say that a vertex v is occupied if p(v) ≥ 1, otherwise, we call v to
be unoccupied if p(v) = 0. Denote by 〈v1, v2, · · · , vn〉 (respectively, [v1, v2, · · · , vn]) the path
(respectively, cycle) with vertices v1, v2, · · · , vn in this order.

Next, we introduce a definition and give some useful lemmas.
Definition 1.1 [1] The middle graph of a graph G, denoted by M(G), is obtained from

G by inserting a new vertex into each edge of G, and by joining those pairs of these new
vertices by edges, which Lie on adjacent edges of G.

Lemma 1.2 (see [5]) f(M(Pn)) = 2n + n− 2.

Lemma 1.3 (see [7]) For a path 〈v0, v1, · · · , vn〉, if

p(v0) + 2p(v1) + · · ·+ 2ip(vi) + · · ·+ 2n−1p(vn−1) ≥ 2n,

then one pebble can be moved to vn.
Corollary 1.4 For a path 〈v0, v1, · · · , vn〉, suppose that p(v0) ≥ 2n+1−(2+22+· · ·+2r)

and there are r occupied vertices in the set {v1, v2, · · · , vn}, say vi1 , vi2 , · · · , vir
, then at least

two pebbles can be moved to vk(1 ≤ k ≤ n) using one pebble each from vij
with 1 ≤ j ≤ r

and 2n+1 − (2 + 22 + · · ·+ 2r) pebbles from v0.
Proof Obviously, we can move at least two pebbles to vk(1 ≤ k ≤ n−1) or one pebble

to vn using 2n pebbles from v0. Using one pebble each from vij
and 2n − (2 + 22 + · · ·+ 2r)

pebbles from v0, we can move one additional pebble to vn by Lemma 1.3.
Lemma 1.5 (see [10]) Let Pn = 〈v1, v2, · · · , vn〉. Then f(M(Pn)− vn) = 2n−1 + n− 2.
Lemma 1.6 (see [10]) f(M(C2n)) = 2n+1 + 2n− 2.

Lemma 1.7 (see [10]) f(M(C2n+1)) =
⌊

2n+3

3

⌋
+ 2n.

Liu et al. [5] gave the pebbling number of middle graphs of paths (see Lemma 1.2).
Recently, Ye [10] determined the pebbling number of middle graphs of cycles, and showed
that Graham’s conjecture holds for middle graphs of odd cycles. Motivated by these results,
we show that paths and cycles have the 2-pebbling property, and also prove that Graham’s
conjecture holds for middle graphs of paths in this paper.

2 2-Pebbling Property of Graphs

In the section, we first shall show that the middle graphs of paths have the 2-pebbling
property, and then prove that the middle graphs of cycles have the 2-pebbling property.

Theorem 2.1 The middle graphs of paths have the 2-pebbling property.
Proof Let Pn = 〈v1, v2, · · · , vn〉. M(Pn) is obtained from Pn by inserting ui into

vivi+1, and joining uiui+1 for 1 ≤ i ≤ n − 1. Let q be the number of occupied vertices of
M(Pn). Now suppose that 2(2n +n−2)− q +1 pebbles are placed arbitrarily at the vertices
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of M(Pn). Let v be our target vertex. If p(v) = 1, then M(Pn) has 2(2n +n− 2)− q pebbles
other than one pebble on v. Since 2(2n + 2n− 2)− q ≥ 2n + n− 2, using Lemma 1.2 we can
move one additional pebble to v so that p̃(v) = 2. Hence we assume p(v) = 0.

Without loss of generality, we may assume that our target vertex v is not vn (otherwise,
relabeling). If p(vn) ≤ 2n + 2n−1 + n− q − 1, then

p(M(Pn)− vn) ≥ 2(2n + n− 2)− q + 1− (2n + 2n−1 + n− q − 1) = 2n−1 + n− 2.

By Lemma 1.5, we can move one pebble to v. This leaves

2(2n + n− 2)− q + 1− (2n−1 + n− 2) > 2n + n− 2

pebbles on M(Pn). By Lemma 1.2, we can move one additional pebble to v so that p̃(v) = 2.
Next suppose that p(vn) ≥ 2n + 2n−1 + n− q. If q ≤ n− 1, then we can move one pebble to
v using 2n pebbles on vn, and using the remaining 2(2n + n− 2)− q + 1− 2n ≥ 2n + n− 2
pebbles, we can move one additional pebble to v so that p̃(v) = 2. If q ≥ n, and write q as
q = n+ r(r ≥ 0), then there are at least r+1 occupied vertices in the set {u1, u2, · · · , un−1},
say ui1 , ui2 , · · · , uir+1 . We now use 2n− (2+22 + · · ·+2r+1) pebbles from vn and one pebble
each from uij

(j = 1, 2, · · · , r +1) to move two pebbles to ui(1 ≤ i ≤ n− 1) by Corollary 1.4.
This implies that we can move one pebble from some ui(1 ≤ i ≤ n− 1) to v. This leaves

2(2n + n− 2)− q + 1− [2n − (2 + 22 + · · ·+ 2r+1) + (r + 1)] ≥ 2n + n− 2

pebbles on M(Pn). By Lemma 1.2, we can move one additional pebble to v so that p̃(v) = 2.
Theorem 2.2 The middle graphs of even cycles have 2-pebbling property.
Proof Let C2n = [v0, v1, · · · , v2n−1]. M(C2n) is obtained from C2n by inserting ui into

vivj , and joining uiuj where j := (i+1) mod (2n) for 0 ≤ i ≤ 2n−1. Let q be the number
of occupied vertices of M(C2n). Now suppose that 2(2n+1 +2n−2)−q+1 pebbles are placed
arbitrarily at the vertices of M(C2n). Suppose our target vertex is v. If p(v) = 1, then C2n

has 2(2n+1 +2n− 2)− q pebbles other than one pebble on v. Using Lemma 1.6 we can move
one additional pebble to v so that p̃(v) = 2, since 2(2n+1 +2n−2)−q ≥ 2n+1 +2n−2. Hence
we assume p(v) = 0. By symmetry, suppose v is either v0 or u0. Obviously, for q = 4n− 1,
we are done. Next, we consider the left case q ≤ 4n− 2. We divide into two cases by v.

Case 1 v = u0.
Let A = {u0, v1, u1, · · · , un−1, vn} and let B = {vn+1, un+1, vn+2, · · · , v2n−1, u2n−1, v0, u0}.

By Lemma 1.5,
f(G[A]) = f(G[B]) = 2n + n− 1.

If p(un) ≤ 2n+1 + 2n− 1− q, then

p(G[A]) + p(G[B]) ≥ 2(2n+1 + 2n− 2)− q + 1− (2n+1 + 2n− 1− q) = 2n+1 + 2n− 2.

So
p(G[A]) ≥ 2n + n− 1 or p(G[B]) ≥ 2n + n− 1.
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Using 2n + n − 1 pebbles, we can move one pebble to u0. This leaves 2(2n+1 + 2n − 2) −
q + 1− (2n + n− 1) ≥ 2n+1 + 2n− 2 pebbles on M(C2n). By Lemma 1.6, we can move one
additional pebble to u0 so that p̃(u0) = 2. Now suppose p(un) ≥ 2n+1 + 2n − q. Note that
q ≤ 4n− 2 < 2n + 2n. So p(un) > 2n. By Lemma 1.3, using 2n pebbles on un, we can move
one pebble to u0 by the path 〈un, un−1, · · · , u1, u0〉. This leaves 2(2n+1+2n−2)−q+1−2n ≥
2n+1 + 2n− 2 pebbles on M(C2n). By Lemma 1.6, we can move one additional pebble to u0

so that p̃(u0) = 2.
Case 2 v = v0.
Let A′ = {v0, u0, v1, · · · , vn−1, un−1} and let B′ = {v0, u2n−1, v2n−1, · · · , vn+1, un}. By

Lemma 1.5,
f(G[A′]) = f(G[B′]) = 2n + n− 1.

If p(vn) ≤ 2n+1 + 2n− 1− q, then

p(G[A′]) + p(G[B′]) ≥ 2(2n+1 + 2n− 2)− q + 1− (2n+1 + 2n− 1− q) = 2n+1 + 2n− 2.

So
p(G[A′]) ≥ 2n + n− 1 or p(G[B′]) ≥ 2n + n− 1.

Using 2n + n − 1 pebbles, we can move one pebble to v0. This leaves 2(2n+1 + 2n − 2) −
q + 1− (2n + n− 1) ≥ 2n+1 + 2n− 2 pebbles on M(C2n). By Lemma 1.6, we can move one
additional pebble to v0 so that p̃(v0) = 2. Now suppose p(vn) ≥ 2n+1 + 2n− q.

Subcase 2.1 q ≤ 2n−1. We have p(vn) > 2n+1. Using 2n+1 pebbles on vn, we can move
one pebble to v0 by the path 〈vn, un−1, · · · , u1, v0〉. Then this leaves 2n+1+2n−2+2n−1−q ≥
2n+1 + 2n− 2 pebbles on M(C2n). By Lemma 1.6, we can move one additional pebble to v0

so that p̃(v0) = 2.
Subcase 2.2 q ≥ 2n. And write q as q = 2n + 2r if q is even and as q = 2n + 2r + 1

if q is odd, where r ≥ 0. Let q1 be the number of occupied vertices in A′ and let q2 be the
number of occupied vertices in B′. Without loss of generality, we may assume q1 ≥ q2. For
q = 2n + 2r, we have q1 ≥ n + r, and there are at least r + 1 occupied vertices in the set
{u0, u1, · · · , un−1}, say ui1 , ui2 , · · · , uir+1 . Using one pebble each from uij

(1 ≤ j ≤ r + 1)
and 2n+1 − (21 + 22 + · · ·+ 2r+1) pebbles from vn, we see that one pebble can be moved to
v0 at a cost of 2n+1 − (21 + 22 + · · ·+ 2r+1) + (r + 1) pebbles by Lemma 1.3. This leaves

2(2n+1 + 2n− 2)− q + 1− [2n+1 − (21 + 22 + · · ·+ 2r+1) + (r + 1)]
≥ (2n+1 + 2n− 2) + [(2 + 22 + 23 + · · ·+ 2r+1)− (3r + 2)]
≥ 2n+1 + 2n− 2

pebbles on M(C2n). By Lemma 1.6, we are done. The proof of the odd case : q = 2n+2r+1
is similar.

Theorem 2.3 The middle graphs of odd cycles have 2-pebbling property.
Proof Let C2n+1 = [v0, v1, · · · , v2n]. M(C2n+1) is obtained from C2n+1 by inserting

ui into vivj , and joining uiuj where j := (i + 1) mod (2n + 1) for 0 ≤ i ≤ 2n. Let q be
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the number of occupied vertices of M(C2n+1). Now suppose that 2
(⌊

2n+3

3

⌋
+ 2n

)
− q + 1

pebbles are placed arbitrarily at the vertices of M(C2n+1).

Let v be our target vertex. If p(v) = 1, then C2n+1 has 2
(⌊

2n+3

3

⌋
+ 2n

)
− q pebbles

other than one pebble on v. Since 2
(⌊

2n+3

3

⌋
+ 2n

)
− q ≥

⌊
2n+3

3

⌋
+ 2n, by Lemma 1.7,

we can move one additional pebble to v so that p̃(v) = 2. Hence we assume p(v) = 0. By
symmetry, suppose v is either v0 or u0.

Case 1 v = u0.
Let A = {u0, v1, u1, v2, · · · , vn, un} and let B = {u0, v0, u2n, v2n, · · · , vn+2, un+1}. If

p(vn+1) ≤
⌊

2n+3

3

⌋
+

⌊
2n+1

3

⌋
+ 2n− q + 1,

then

p(G[A])+p(G[B]) ≥ 2(
⌊

2n+3

3

⌋
+2n)− q +1− (

⌊
2n+3

3

⌋
+2n+

⌊
2n+1

3

⌋
− q +1) = 2n+1 +2n.

So
p(G[A]) ≥ 2n + n or p(G[B]) ≥ 2n + n.

Without loss of generality, we assume that p(G[A]) ≥ 2n+n. Since p(un)+
n−1∑
i=1

2n−ip(ui) ≥
p(un) + 2b 1

2
(2n + 1− p(un))c ≥ p(un) + (2n − p(un)) = 2n, by Lemma 1.3 we can move one

pebble to u0. This leaves 2
(⌊

2n+3

3

⌋
+ 2n

)
− q + 1 − (2n + n) ≥

⌊
2n+3

3

⌋
+ 2n pebbles on

M(C2n+1). By Lemma 1.7, we can move one additional pebble to u0 so that p̃(u0) = 2.

Now suppose p(vn+1) ≥
⌊

2n+3

3

⌋
+

⌊
2n+1

3

⌋
+ 2n − q + 2. Note that q ≤ 4n + 1. So

p(vn+1) ≥ 2n+1. By Lemma 1.3, using 2n+1 pebbles on vn+1, we can move one pebble to u0

by the path 〈vn+1, un, un−1, · · · , u1, u0〉. If q ≤ 4n− 2, then this leaves

2
(⌊

2n+3

3

⌋
+ 2n

)
− q + 1− 2n+1 ≥

⌊
2n+3

3

⌋
+ 2n

pebbles on M(C2n+1). By Lemma 1.7, we can move one additional pebble to u0 so that
p̃(u0) = 2. If q = 4n − 1, then there are at least 2n − 2 occupied vertices in the set
{u1, u2, · · · , u2n}. We may assume that there are n−1 occupied vertices in {u1, u2, · · · , un}.
Using one pebble each from the occupied vertices, 2n+1− (21 +22 + · · ·+2n−1) pebbles from
vn+1, it is sufficient to move one pebble to u0 by the path 〈vn+1, un, un−1, · · · , u1, u0〉. This
leaves

2
(⌊

2n+3

3

⌋
+ 2n

)
− q + 1− [2n+1 − (21 + 22 + · · ·+ 2n−1) + (n− 1)]

=
⌊

2n+3

3

⌋
+ 2n +

⌊
2n+1

3

⌋
+ (2 + 22 + 23 + · · ·+ 2n−1)− 3n + 3)]

≥
⌊

2n+3

3

⌋
+ 2n
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pebbles on M(C2n+1) and by Lemma 1.7, we are done. When q = 4n, 4n + 1, the proof is
similar.

Case 2 v = v0

Let A′ = {v0, u0, v1, · · · , vn−1, un−1} and let B′ = {v0, u2n, v2n, · · · , vn+2, un+1}. By
Lemma 1.2, f(G[A′]) = f(G[B′]) = 2n + n− 1. If

p(vn) + p(un) + p(vn+1) ≤
⌊

2n+3

3

⌋
+ 2n +

⌊
2n+1

3

⌋
− q + 3,

then

p(G[A′])+p(G[B′]) ≥ 2
(⌊

2n+3

3

⌋
+ 2n

)
−q+1−(

⌊
2n+3

3

⌋
+2n+

⌊
2n+1

3

⌋
−q+3) = 2n+1+2n−2.

So
p(G[A′]) ≥ 2n + n− 1 or p(G[B′]) ≥ 2n + n− 1.

Using 2n + n− 1 pebbles, we can move one pebble to v0. This leaves

2
(⌊

2n+3

3

⌋
+ 2n

)
− q + 1− (2n + n− 1) ≥

⌊
2n+3

3

⌋
+ 2n

pebbles on M(C2n+1). By Lemma 1.7, we can move one additional pebble to v0 so that

p̃(v0) = 2. Now suppose p(vn) + p(un) + p(vn+1) ≥
⌊

2n+3

3

⌋
+ 2n +

⌊
2n+1

3

⌋
− q + 4.

If p(un) ≥ 2n+1, then we can move one pebble to v0 by the path 〈un, un−1, · · · , u0, v0〉
using 2n+1 pebbles on un. This leaves p = 2

(⌊
2n+3

3

⌋
+ 2n

)
− q + 1 − 2n+1 pebbles on

C2n+1. If q ≤ 2n, then p ≥
⌊

2n+3

3

⌋
+ 2n. By Lemma 1.7, we may move one additional

pebble to v0 so that p̃(v0) = 2. When q ≥ 2n + 1, write q as q = 2n + 2r + 2 if q is even and
as q = 2n + 2r + 1 if q is odd, where r ≥ 0. Let q1 be the number of occupied vertices in
A′ and let q2 be the number of occupied vertices in B′. Without loss of generality, we may
assume q1 ≥ q2. We have q1 ≥ n+ r +1, and there are at least r +1 occupied vertices in the
set {u0, u1, · · · , un−1}, say ui1 , ui2 , · · · , uir+1 . Using one pebble each from uij

(1 ≤ j ≤ r + 1)
and 2n+1 − (21 + 22 + · · · + 2r+1) pebbles from un. By Lemma 1.3, we see that one pebble
can be moved to v0 at a cost of 2n+1 − (21 + 22 + · · ·+ 2r+1) + (r + 1) pebbles. This leaves

2
(⌊

2n+3

3

⌋
+ 2n

)
− q + 1− [2n+1 − (21 + 22 + · · ·+ 2r+1) + (r + 1)]

≥
⌊

2n+3

3

⌋
+ 2n +

[⌊
2n+1

3

⌋
+ (2 + 22 + 23 + · · ·+ 2r+1)− 3r − 2

]

≥
⌊

2n+3

3

⌋
+ 2n

pebbles on M(C2n+1) and by Lemma 1.7, we are done. If p(un) = 2n+1 − s(1 ≤ s ≤ 2n+1),
then

p(vn) + p(vn+1) ≥
⌊

2n+3

3

⌋
+ 2n +

⌊
2n+1

3

⌋
− q + 4− 2n+1 + s = 2

⌊
2n+1

3

⌋
+ 2n− q + 4 + s.
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Without loss of generality, we assume p(vn) ≥ p(vn+1). Thus

p(vn) ≥
⌊

2n+1

3

⌋
+ n + 2−

⌊q

2

⌋
+

⌈s

2

⌉
.

For
⌈

s
2

⌉
is odd, we use 2n+1 − 2

⌈
s
2

⌉ − 2 pebbles on un and move 1
2

(⌈
s
2

⌉
+ 1

)
pebbles from

vn to un−1. By Lemma 1.3, we can move one pebble to v0 by the path 〈un, un−1, · · · , u0, v0〉.
This leaves at least

2
(⌊

2n+3

3

⌋
+ 2n

)
− q + 1− (

2n+1 − ⌈
s
2

⌉− 1
)

≥
⌊

2n+3

3

⌋
+ 2n +

⌊
2n+1

3

⌋
− 2n + 2 ≥

⌊
2n+3

3

⌋
+ 2n

pebbles on M(C2n+1). By Lemma 1.7, we can move one additional pebble to v0 so that
p̃(v0) = 2. For

⌈
s
2

⌉
is even, we use 2n+1−2

⌈
s
2

⌉
pebbles on un and move 1

2

(⌈
s
2

⌉)
pebbles from

vn to un−1. By Lemma 1.3, we can move one pebble to v0 by the path 〈un, un−1, · · · , u0, v0〉.
This leaves at least

2
(⌊

2n+3

3

⌋
+ 2n

)
− q + 1− (2n+1 − ⌈

s
2

⌉
)

≥
⌊

2n+3

3

⌋
+ 2n +

⌊
2n+1

3

⌋
− 2n + 2 ≥

⌊
2n+3

3

⌋
+ 2n

pebbles on M(C2n+1). By Lemma 1.7, we can move one additional pebble to v0 so that
p̃(v0) = 2.

Remark Combining Theorems 2.2 and 2.3, we prove that the middle graphs of cycles
have 2-pebbling property.

3 Graham’s Pebbling Conjecture on M(Pn)

Given two graphs G and H, the Cartesian product of them is denoted by G ×H. Its
vertex set

V (G×H) = {(u, v)|u ∈ V (G), v ∈ V (H)},
and (u, v) is adjacent to (u′, v′) if only if u = u′　and vv′ ∈ E(H) or v = v′ and uu′ ∈ E(G).

We can depict G × H pictorially by drawing a copy of H at every vertex of G and
joining each vertex in one copy of H to the corresponding vertex in an adjacent copy of
H. We write u(H) (respectively, v(G)) for the subgraph of vertices whose projection onto
V (G) is the vertex u, (respectively, whose projection onto V (H) is the vertex v). Obviously,
u(H) ∼= H, v(G) ∼= G.

Conjecture 3.1 (Graham) For any two graphs G and H, f(G×H) ≤ f(G)f(H).
Lemma 3.2 (see [7]) Let Pn be a path with n vertices and let G be a graph with the

2-pebbling property. Then f(Pn ×G) ≤ 2n−1f(G).
Theorem 3.3 Let Pn be a path with n vertices and let G be a graph with the

2-pebbling property. Then f(M(Pn)×G) ≤ (2n + n− 2)f(G).
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Proof Let Pn = 〈v1, v2, · · · , vn〉. M(Pn) is obtained from Pn by inserting ui into
vivi+1, and joining uiui+1 for 1 ≤ i ≤ n− 1. Now we assume that (2n + n− 2)f(G) pebbles
have been distributed arbitrarily on the vertices of M(Pn) × G. Let pi = p(vi(G)), where
1 ≤ i ≤ n. Let qi be the number of occupied vertices in vi(G)(1 ≤ i ≤ n). Suppose that v is
our target vertex in M(Pn)×G.

Case 1 v = (vn, x) ∈ vn(G) (or v = (v1, x) ∈ v1(G)) for x ∈ V (G). For simplicity, let

A = 〈u1, u2, · · · , un−1, vn〉. By Lemma 3.2, f(A × G) ≤ 2n−1f(G). If
n−1∑
i=1

pi ≤ (2n + n −
3)f(G), then the A×G can obtain at least

1
2

[(2n + n− 3)f(G)− (n− 1)f(G)] + f(G) = 2n−1f(G)

pebbles by a sequence of pebbling moves and we are done. Next we assume that
n−1∑
i=1

pi ≥
(2n + n − 3)f(G) + 1. Thus p(A × G) < f(G). Let p(A × G) = α0f(G) where 0 ≤ α0 < 1
and let p(vi(G)) = (ji + αi)f(G)(1 ≤ i ≤ n− 1) where ji ≥ 0 and 0 ≤ αi < 1.

Now we claim that
n−1∑
i=1

qi > (n − 2 + α0)f(G). Otherwise, we have
n−1∑
i=1

qi ≤ (n − 2 +

α0)f(G). Hence

p̃(A×G) ≥ 1
2

[(2n + n− 2)f(G)− α0f(G)− (n− 2 + α0)f(G)] + α0f(G) ≥ 2n−1f(G)

and we are done. Let
n−1∑
i=0

αi = s ≤ n − 1. Then
n−1∑
i=1

ji = 2n + n − 2 − s. Note that

αif(G) + qi < 2f(G) for 1 ≤ i ≤ n − 1. We claim that there exist i1, i2, · · · , is such that
ik ≥ 1 and αik

f(G) + qik
> f(G), where k = 1, 2, · · · , s. Otherwise, we have

n−1∑
i=1

(αif(G) + qi) ≤ 2(s− 1)f(G) + [n− 1− (s− 1)]f(G)

= (n− 2)f(G) + sf(G).

But
n−1∑
i=1

(αif(G) + qi) =
n−1∑
i=1

αif(G) +
n−1∑
i=1

qi

> (s− α0)f(G) + (n− 2 + α0)f(G)
= (n− 2)f(G) + sf(G).

It is a contradiction.

Let B = 〈(v1, x), (v2, x), · · · , (vn, x)〉. Note that
n−1∑
i=1

ji = 2n +n−2−s ≥ n−1. Without

loss of generality, we may assume that ji ≥ 1 for 1 ≤ i ≤ n− 1. And we may assume (after
relabeling if necessary) that αif(G) + qi > f(G) for 1 ≤ i ≤ s. Hence by the 2-pebbling
property we can move at least ji + 1 pebbles to the vertex (vi, x) in vi(G)(1 ≤ i ≤ s). In
vi(G)(s ≤ i ≤ n− 1), we can move at least ji pebbles to the vertex (vi, x). Then

p̃(M(B)) ≥
s∑

i=1

(ji + 1) +
n−1∑

i=s+1

ji =
n−1∑
i=1

ji + s ≥ 2n + n− 2
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and we are done by Lemma 1.2.
Case 2 v = (vk, x) ∈ vk(G) (k 6= 1, n) for x ∈ V (G). Obviously, n ≥ 2 and pk < f(G).

For simplicity, let A′ = 〈u1, u2, · · · , un−1〉. By Lemma 3.2, f(A′ × G) ≤ 2n−2f(G). If∑
i 6=k

pi ≤ (2n + n− 3)f(G)− 2pk, then A′ ×G and vk(G) can obtain at least

1
2

[(2n + n− 3)f(G)− 2pk − (n− 1)f(G)] + f(G) + 2pk = 2n−1f(G) + pk

pebbles by a sequence of pebbling moves, i.e., p̃(A′ × G) ≥ 2n−1f(G). Thus we can move
at least two pebbles to the vertex (uk−1, x) of uk−1(G) and one pebble can be moved to
v from (uk−1, x). Next we assume that

∑
i 6=k

pi > (2n + n − 3)f(G) − 2pk. Thus p(A′ ×
G) + pk < f(G) + 2pk, i.e., p(A′ × G) < f(G) + pk. Let p(A′ × G) = α0f(G) and let
p(vi(G)) = (ji + αi)f(G)(1 ≤ i ≤ n), where ji ≥ 0 and 0 ≤ αi < 1. Obviously, 0 ≤ α0 < 2
and jk = 0.

Now we claim that
n∑

i=1

qi > (n−2+α0)f(G). Otherwise, we have
n∑

i=1

qi ≤ (n−2+α0)f(G).

Hence

p̃(A′ ×G) ≥ 1
2

[(2n + n− 2)f(G)− α0f(G)− (n− 2 + α0)f(G)] + α0f(G)

= 2n−1f(G)

and we are done. Let
n∑

i=0

αi = s ≤ n + 1. Then
n∑

i=1

ji = 2n + n − 2 − s. Note that

αif(G) + qi < 2f(G) for 1 ≤ i ≤ n. We claim that there exist i1, i2, · · · , is−1 such that
ik ≥ 1 and αik

f(G) + qik
> f(G), where k = 1, 2, · · · , s− 1. Otherwise, we have

n∑
i=1

(αif(G) + qi) ≤ 2(s− 2)f(G) + [n− (s− 2)]f(G)

= (n− 2)f(G) + sf(G).

But
n∑

i=1

(αif(G) + qi) =
n∑

i=1

αif(G) +
n∑

i=1

qi

> (s− α0)f(G) + (n− 2 + α0)f(G)
= (n− 2)f(G) + sf(G).

It is a contradiction.
Let B′ = 〈(v1, x), (v2, x), · · · , (vn, x)〉. Note that

∑
i 6=k

ji = 2n +n−2−s ≥ n−1. Without

loss of generality, we may assume that ji ≥ 1 for i 6= k. And we may assume (after relabeling
if necessary) that αif(G) + qi > f(G) for 1 ≤ i ≤ s. Hence by the 2-pebbling property we
can move at least ji + 1 pebbles to the vertex (vi, x) of vi(G)(1 ≤ i ≤ s − 1). And we can
move at least ji pebbles to the vertex (vi, x) of vi(G), where i = s, · · · , k − 1, k + 1, · · · , n.
Then

p̃(M(B′)) ≥
s−1∑
i=1

(ji + 1) +
k−1∑
i=s

ji +
n∑

i=k+1

ji =
∑
i 6=k

ji + s− 1 ≥ 2n + n− 3.
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Let C ′ = 〈(v1, x), (u1, x), · · · , (uk−1, x), (vk, x)〉. If p̃((v1, x)) ≥ 2n−1 and d((v1, x), (vk, x)) ≤
n− 1, then one pebble can be moved to (vk, x) by the path C ′.

On the other hand, if p̃((v1, x)) ≤ 2n−1 − 1, then

p̃(M(B′)− (v1, x)) ≥ 2n−1 + n− 2.

By Lemma 1.5, we are done.
Case 3 v = (uk, x) ∈ uk(G) for x ∈ V (G). The proof is similar to the proof of Case 1.
By Theorem 2.1 and Theorem 3.3, we can have the following result.
Corollary 3.4 Let Pn and Pm be two paths. Then

f(M(Pn)×M(Pm)) ≤ f(M(Pn))f(M(Pm)).
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图的中间图 2-pebbling 性质和 Graham 猜想

叶永升 ,史彩霞 ,张 云

(淮北师范大学数学科学学院, 安徽淮北 235000)

摘要: 本文研究了图的2-pebbling性质和Graham猜想. 利用图的pebbling数的一些结果, 我们研究了

路和圈的中间图具有2-pebbling 性质, 从而也证明了路的中间图满足 Graham 猜想.
关键词: Graham 猜想; 中间图; 2-pebbling性质
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