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1 Introduction

Let u : (M™,g) — (N™, h) be a smooth map between Riemannian manifolds (M™, g)
and (N", h). Recently, Kawai and Nakauchi [1] introduced a functional related to the pull-

back metric u*h as follows:
1 * 2
o) = = [ Jluhl2do, (1.1)
4
(see [2—4]), where u*h is the symmetric 2-tensor defined by
(u™h)(X,Y) = h(du(X), du(Y))

for any vector fields X, Y on M and ||[u*h||, its norm as [[u*h|]* = > [h(du(e;), du(e;))]?
ij=1

with respect to a local orthonormal frame (ey,--- ,e,,) on (M, g). The map u is stationary

for @ if it is a critical point of ®(u) with respect to any compact supported variation of u

and w is stationary stable if the second variation for the functional ®(u) is non-negative.

They showed that the non-existence of nonconstant stable stationary map for @, either from

S™ (m >5) to any manifold, or from any compact Riemannian manifold to S™ ( n > 5).
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On the other hand, Lichnerowicz in [5] (also see [6]) introduced the f-harmonic maps,
generalizing harmonic maps. Let f : (M, g) — (0,+00) be a smooth function. A smooth
map u : M — N is said to be an f-harmonic map if it is a critical point of the following

f-energy
dul[?
= [ A,
M

with respect to any compactly supported variation of u, where ||du|| is the Hilbert-Schmidt

norm of the differential of wu:
||du||* = trace,u*h = Z h(du(e;), du(e;)).
i=1

The Euler-Lagrange equation gives the f-harmonic map equation (see [7-9])
7r(u) = fr(u) + du(gradf) = ftrace,(Vdu) + du(gradf). (1.2)

Ara [10] introduced the F-harmonic maps, generalizing harmonic maps. Let F' : [0,00) —
[0,00) be a C? function such that F'(0) = 0 and F’(¢t) > 0 for ¢ € [0,00). A smooth map
u: M — N is said to be an F-harmonic map if it is a critical point of the following F-energy

functional Er given by

Erw = [ pAG

with respect to any compactly supported variation of u. The Euler-Lagrange equation gives

the F-harmonic map equation

Te(u) = F'(Ldg” )T<u)+du(gradp'(7”d;” ))
= F/(M)traceg(Vdu)—l—du(gradF/(M)). (1.3)

There were many results for F-harmonic maps such as [11-13]. From (1.2) and (1.3), we
know that any F-harmonic map is a special f-harmonic map.

Recently, Dong and Ou in [14] introduced the stress energy tensor Sy associated with
E-energy as following:

[l dul?

Sy = F1M5 g = h(du(), du())),

Via the stress-energy tensor Sy of E;, monotonicity formula and Liouville-type results were
investigated in [14].

In this paper, we generalize and unify the concept of critical point of the functional ®.
For this, we define the functional ®; by

*h 2
[

(1.4)

g

Py(u) = y f(x)



488 Journal of Mathematics Vol. 35

which is @ if f = 1. We call u an f-stationary map for ®;(u), if L& (u;)|;—o = 0 for any
compactly supported variation u; : M — N with ug = u. We derive the first variation
formula of ®; and we introduce the f-stress energy tensor Sg, associated to ®;. Then we
use the f-stress energy tensor to obtain the monotonicity formula and vanishing theorems for
f-stationary map under some conditions on f. The monotonicity formulas can also be used
to investigate the constant Dirichlet boundary value problem. We also obtain the unique
constant solution of the constant Dirichlet boundary value problem on some starlike domain

for f-stationary map.

2 The First Variation Formula for ®(u)

Let V and MV always denote the Levi-Civita connections of M and N respectively.
Let V be the induced connection on u~ TN defined by %XW =N Vaux)W, where X is a
tangent vector of M and W is a section of u 'T'N. We choose a local orthonormal frame
field {e;} on M. We define the f-tension field 74, (u) of u by

7o, (u) = —0(fo,) = fdive, + o, (gradf), (2.1)

where o, = ), h(du(.), du(e;))du(e;), which was defined in [1].
Under the notation above we have the following:

Lemma 2.1 (The first variation formula) Let u: M — N be a C*? map. Then
d
§<I>f(ut)|t:0 = —/Mh(rq)f(u),\/)dvg, (2.2)
where V = %uthzo.
Proof Let ¥ : (—¢,e) x M — N be any smooth deformation of u such that

0 d
U(t,x) = u(z), dq’(a)h:o = @Uth:o =V, (2.3)

where ¢ is a positive constant. Let u;(x) = ¥(¢,2) and then ug(z) = u(z). Now we compute

d 0 uh 2
dtq’f(ut”t 0o = /f || ! H |t odvg

= fat Zh (duy(e;), dut(ej))2]|t:0dvg
- / th 2 d¥(e;),d¥(e;))h(d¥(e;), d¥(e;))|t=odvy
_ /M fzh(%eid\lf(gt),Uu(eimt—odvg

= [ I @) e0) ~ V). T e o,

where we use that

Voyord®(e;) — 6eid‘1’(a) = d\I!([E, e]) =0
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for the forth equality.

Let X; be a compactly supported vector field on M such that g(X¢,Y) = h(d¥(£), 04, (Y))
for any vector field Y on M. Then

GO o = [ 73 k(X e = MV Teslen)cady

a ~
/M fzi:[g(VEiXt,ei) +9(Xe, Veser) = h(d¥ (), Ve,ou(e)]e=odvg

/M fldiv(Xy) — Z h(dlll(%), %emau(ei) —0u(Ve,€))]]i=0dvgy

= /M[div(th) — h(d@(%), fdiv(ey,) + ou(gradf))]|i=odv,

—Ammmmw%

where we use the Green’s theorem for the last equation. This proves Lemma 2.1.

The first variation formula allows us to define the notion of f-stationary for the func-
tional ®.

Definition 2.2 A smooth map wu is called f-stationary map for the functional ®; if it

is a solution of the Euler-Lagrange equation 7¢,(u) = 0.

3 f-Stress Energy Tensor

Following Baird [15], for a smooth map u : (M, g) — (N, h), we associate a symmetric

2-tensor Sy, to the functional ®; called the f-stress energy tensor

[lu*hl|*
4

Sa, (X, Y) = f] 9(X,Y) = h(ow(X), du(Y))], (3.1)

where X,Y are vector fields on M.

Proposition 3.1 Let u: (M, g) — (N,h) be a smooth map and Sg, be the associated
f-stress energy tensor, then for all x € M and for each vector X € T, M,

[lu*h][*

(divSis, ) (X) = —h(7a,,du(X)) + -~ df(X). (3.2)

Proof Let V and V'V always denote the Levi-Civita connections of M and N respec-
tively. Let V be the induced connection on u~'TN defined by v xW =N Vaux)W, where
X is a tangent vector of M and W is a section of u='T'N. We choose a local orthonormal
frame field {e;} on M with V,.e;|, = 0 at a point x € M.
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Let X be a vector field on M. At x, we compute

(divSe,)(X) = > (Ve,Sa,)(e:, X)

i

= Z{eiS{)f (ei7X) - S@f (VeieiaX) - S<I>f (ei; VC7X)}

= e e X)) — el hlonen, du(x)

A (e, 9.2 + hiouten) duv., X))
= x5 o, (gradp). au(x))

~f Z eih(ou(e;), du(X)) + f Z h(ou(e:), du(Ve, X)
_ ey

— h(o(gradf), du(X)) — f Z_ h(Ve,0u(e), du(X))

—thau e:), Ve, du(X)) + £ Y h(ou(e), du(Ve, X)

- X(f%) ~ (o (gradf). du(X))

— fh(dive,, du(X thau e:), (Ve du)(X))

P h||2

= X(f=——F—) —h(re (u)7du(X))_fzh(JU(ei)7(veidu)(X))

u*h||? =
- %df()c) + £ M@ xdu(en) dule;)h(dued, dufe,)

4,3

—h(7e, (u), du(X)) — f Z h(ou(e:), (Ve du)(X))

_ \Iu*hII2 df(X) = h(ra, (u), du(X))

+th (Vxdu)(e;),ou(e;)) th ou(€;), (Ve du)(X)).

Since (Vxdu)(e;) = (Ve,du)(X), we obtain

[luh[* h||2

(divSe, )(X) = —h(7e,, du(X)) + df (X).

This proves this proposition.

From the above proposition, we know that if u : M — N is an f-stationary map, then

HU*hII2

(divSe, )(X) = df (X). (3-3)

Recall that for two 2-tensors Ty, Ty € I'(T*M ® T*M), their inner product defined as
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follows:
(T1,Ty) =Y T(ei,e;)Talei, e5), (3.4)
ij
where {e;} is an orthonormal basis with respect to g. For a vector field X € I'(T'M), we
denote by 6y is dual one form i.e. 0x(Y) = g(X,Y’). The covariant derivative of fx gives a
2-tensor field VO x:
(VOx)(Y,Z) = (Vz0x)(Y) = g(VzX,Y). (3.5)

If X = V¢ is the gradient of some function ¢ on M, then 0x = d¢ and VOx = Hesso.
Lemma 3.2 (see [11, 15]) Let T be a symmetric (0, 2)-type tensor field and let X be a
vector field, then

div(ixT) = (divT)(X) + (T, Vox) = (divT)(X) + %(T, Lxg). (3.6)

Let D be any bounded domain of M with C! boundary. By using the Stokes’ theorem,

we immediately have the following integral formula:

/8 T w)ds, = /D (7, %Lxg> + div(T)(X)]dv,, (3.7)

where v is the unit outward normal vector field along dD.
By (3.3) and (3.7), we have

_ 1 [|u*h|f?
/{m Se,(X,v)dsy = /D[<Sq>f, §LXg> + Tdf(X)]dvg. (3.8)

4 Monotonicity Formulas and Vanishing Theorems

Let (M, gg) be a complete Riemannian manifold with a pole xg. Denote by r(z) the
go-distance function relative to the pole xy, that is r(x) = disty, (z,z0). Set B(r) = {z €
M™ : r(x) < r}. It is known that % is always an eigenvector of Hess,, (r?) associated to
eigenvalue 2. Denote by Apax (resp. Amin which appeared in [12] ) the maximum (resp.
minimal) eigenvalues of Hessy, (r?) — 2dr ® dr at each point of M — {zo}. Let (N™, h) be a
Riemannian manifold.

From now on, we suppose that u : (M™,g) — (N,h) is an f-stationary map, where
g = ¢%g0, 0 < ¢ € C°(M). Clearly the vector field v = w‘lg is an outer normal vector
field along OB(r) C (M, g). Assume that o satisfies the following conditions:

(1) 222 > 0,

(p2) there is a constant Cy > 0 such that

01 -1
(m—4)r 2282 L M 2y o+ 1 — 2max{2, Anac} > Co.
or 2
Remark If p(r) = r?, conditions (1) and (¢2) turn into the following:

-1
2(m = 4) + " A+ 1 = 2max{(2, A} = Co.
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Now we set pu = supr|%| < +00.
M

Theorem 4.1 Suppose u : (M, ¢%gy) — (N, h) is an f-stationary map, where 0 < ¢ €
C®(M). If Cop — p > 0 and ¢ satisfies (¢1), (¢2), then

u*h||? u*h||?
[, [,
B(p1) < B(p2)

4.1)
Co— = Co— (
P71 0—H p20 K
*h, 2
for any 0 < p; < pp. In particular, if fMdvg = o(R“ "), then u is constant.

4
B(R)
Proof We take D = B(R) and X = r& = 1V°? in (3.8), where V° denotes the

covariant derivative determined by gg. By a direct computation, we have

1 1 Op 1 dlog ¢ 1
ZLva==Lv(0%a) = ro—— ~0?Lxqgo = —’L
5Llxg=7 x(¥7g0) 95,90 T 3¢ Lxgo =159+ 3¢ Lxgo,
and thus
1 Olog ¢ 1,
<S‘i’f’§LXg> = <S‘I’fvr or g> +<S<I>fv§(P LX90>
dlo 1
= 1T (S0, 9) + 597 (Se, Hessy, (). (42)

Let {e;}™, be an orthonormal basis with respect to go and e,, = %. We may assume
that Hess,, (r?) becomes a diagonal matrix w.r.t. {e;}. Then {€; = ¢~'e;} is an orthonnor-

mal basis with respect to g.

1 1 - ~ ~ P2~
§w2<5¢f,Hessgo(r2)> = 5902 Z Se, (€, €;)Hess, (€, €;)

i,j=1

Lo plubllP o2~ X0 S\ o~ s~
= 5902{2 fTHessgo(ei,ei) — Z fhiou(e:), du(ej))Hessy (ei,e;)}
i=1

ij=1

— lfw Y Hessrz(e- e;) — 1fih( (&) du(év-))Hessrz(e e;)
- 2 4 - go \bir Ci 2 - Oul€i), % go \Fir &1
1, |[u*h|? 1 - - -
> _ . i . . .
> S lm = D +2] 2maX{Z,)\mdx}fZIh(ou(ez),du(el))
1, ||u*h|? 1 .
= AR )+ 2] L a2, A B
1 * 2
> l0m = DA+ 2 — Amax{2, A} f%, (4.3)
and
w*h|? - ~ - -~
(Soy0) = mf D p S b (@), du(@))o(En )
ij=1
u*h||? . u*h||?
= g i > (- ay T (4.4
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From (4.2), (4.3), (4.4), (¢1) and (p2), we have

1 01 -1 *h||? h|?
(Se;, 5Lxg) = Ir ;g@(m—‘l)ﬂ‘mTAmin“—Qmax{%%nax}]f‘luzl >, fHu L
ie.,

1 u*h 2
(Sa,. 3 Exa) > Coy 1T (4.5
On the other hand, by the coarea formula and |Vr|, = ¢!, we have
[|u*hl]?
S, (Xw)ds, = [ (PPN, w) — fhlou(X), du(v)lds,
OB(r) OB(r)
[|u*h]? / “1p, (9 9
= f—pdsy — fro™ h(ouw(5-), du(4-))ds
/83(r) 4 I dB(r) or or g
|[wh|? / -1 8 ~ )2
= r f———pds, — fro h( du ), du(e;))*ds
/HB(T) 4 ! OB(r) Z !
* [Ju” hH
[|u*h]]? / f
< 7"/ f———d — | { ds, }dt
dB(r) 4 dB(t) |V7"\ !
d u*hl|?
From (3.8), (4.5) and (4.6), we have
u*hl|? u*hl|? d u*h 2
oo PHE g [P D o [,
B(r) B(r) " JB(r)
SO
u*h||? u*hl||? d u*h 2
oo [ MR [ R R
B(r) B(r) T B(r)
ie.,
/ f||U*h||2
G > 0. (4.7)
Therefore
* 2 * 2
[ R, [ R,
By 4 <B4
P B ps "

for any 0 < p; < po. This proves this theorem.

From the proof of Theorem 4.1, we immediately get the following:
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Theorem 4.2 Suppose u : (M, p?gy) — (N, h) is an f-stationary map, where 0 < ¢ €
C>(M). It g—’: > 0 and ¢ satisfies (1), (¢2), then

u*h||? u*h||?
[, [,
B(p1) < B(p2)

C() - CU
P1 P2

, : [|u*hl]?
for any 0 < p; < po. In particular, if f
B(R)
Lemma 4.3 [11, 16] Let (M™, g) be a complete Riemannian manifold with a pole xy.
Denote by K, the radial curvature of M.

(i) if —a? < K, < —3? with a > 3 > 0, then

dvy, = o(R%), then u is constant.

Bcoth(Br)[g — dr @ dr] < Hess(r) < acoth(ar)[g — dr @ dr];

(ii) if —ayme < K < gpoyee withe >0, A >0 and 0 < B < 2, then

1— B/2 A/26
i[g —dr @ dr] < Hess(r) <

[g — dr ®dr];
,

(iii) if — 1+2§K§ 2Wltha>0andb2 [ 1], then

141 —4b? 1 \/1 4a?
+27b[g dr @ dr] < Hess(r) < Ty tia ———— g —dr®dr].
,

Lemma 4.4 Let (M™,g) be a complete Rlemannlan manifold with a pole xy. Denote
by K, the radial curvature of M.
(i) if —a? < K, < —(? with a >8>0 and (m — 1)3 — 4a > 0, then

4
[(m - 1)>\m1n +2— 4max{2 Amax}] > 2(m _ §)7
(if) if — ey < Kr < e withe >0, 4> 0 and 0 < B < 2¢, then

[(m — 1) Amin + 2 — 4max{2, Apax }] > 2[1+ (m —1)(1 — ;i) — 4e?/?e;

(iii) if —1%5 < K, < 125 with a > 0 and 5 € [0, 1], then

1+ 2
[(m — 1) Amin + 2 — 4 max{2, Apnax }]
L+ VI 1+ V1+4a? ]
2 2
Proof If K, satisfies (i), then by Lemma 4.3, we have on B(r) — {x}, for every r > 0,

> 2[4 (m—1)

[(m — 1)Amin + 2 — 4 max{2, Apax }]
(m — 1)208r coth(f8r) + 2 — 4 x 2ar coth(ar)

h
= 2[1 4+ Brcoth(Br)(m —1— Zlﬂazzzhég:;ﬂ
4o

B

Vv

> 2[l4+1x(m—1)——)]

= 2[m - 4505]7
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where the second inequality is because the increasing function Srcoth(8r) — 1 as r — 0,

coth(ar)
and coth(8r)

cases (ii) and (iii) on B(r).

< 1, for 0 < f < «a. Similarly, from Lemma 4.3, the above inequality holds for

Theorem 4.5 Let (M, g) be an m-dimensional complete manifold with a pole xq.
Assume that the radial curvature K, of M satisfies one of the following three conditions:
(i) if—a2<K < -pB? Witha>ﬂ>0and( —1)8 —4a > 0;

22)_4614/25 >0
£
(i) if —12% < K, < &5 with a > 0, 0> € [0,1] and 1 + (m — 1)

4(1+¢12+4¢T) < 0.

= (1)t )

If u:(M,g) — (N,h) is an f-stationary map and A — u > 0, then

u*hl|? u*hl|?
[
B(p1) B(p2)

- < — (4.9)
P py "
for any 0 < p; < pa, where
m— %O‘, if K, satisfies (i),
A= L4+ (m—1)(1—£) —4e4/%, if K, satisfies (ii), (4.10)
1+ (m — 1)t g IevIHde® o if ¢ gatisfies (iii)
: : Wbl A :
In particular, if f dvy = o(R"™"), then u is constant.
B(R)

Proof From the proof of Theorem 4.1 for ¢ = 1 and Lemma 4.4, we have
*h 2
[ ez,
d J) 4
dr rA-n
Therefore we get the monotonicity formula

u*h||? u*h||?
[, [ ez,
B(p1) < B(p2)

A—p — A—p
P1 P2

for any 0 < p; < po.
Theorem 4.6 Let M, K, and A be as in Theorem 4.5. If w : (M,g) — (N,h) is an
f-stationary map and g—’: > 0, then

w*hl|? u*hl|?
[y, [,
B(p1) < B(p2)

P - P

(4.11)

w*hl|?
f” |

for any 0 < p; < po. In particular, if
s 4

dv, = o(R"), then u is constant.
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Proof From Theorem 4.2 and ¢ = 1, we know that formula (4.11) is true.

We say the functional ®;(u) of u is slowly divergent if there exists a positive function
oo

dr
Y (r) with —— = 400 (Ry > 0), such that
( ) Ry T¢(T) ( 0 )

fllu*hllz
lim 4

— = d . 4.12
B | D)) 0 < (4.12)

Theorem 4.7 Suppose u : (M, p%gy) — (N, h) is an f-stationary map. If Cy — u > 0,
¢ satisfies (¢1), (¢2) and @¢(u) of u is slowly divergent, then w is constant.
Proof From the proof of Theorem 4.1, we have

u*h||? u*hl|?
-w [ M <n | M, (4.13)
B(R) dB(R)
Now Suppose that u is a nonconstant map, so there exists Ry > 0 such that for R > Ry,
*F, 2
P PR (4.14)
B(R) 4

where ¢, is a positive constant. From (4.13) and (4.14), we have

*h 2 C, —
OB(R)

4 R
for R > R,.

[[u*hl]?
lim f74dv =

R—oo [ pgy ¥(r(2)) !

> dR / [lu*h||?
— f wds
/0 V(R) Jopry~ 4 !

> dR / [|u*h||?
> ——— / pds
/RO V(R) Jop(r) 4 !

* dR
- ‘”(C"_“)/Ro Ro(®) >

which contradicts (4.12), therefore u is constant.

From the proof of Theorem 4.7, we immediately get the following.

Theorem 4.8 Suppose u : (M, p?gy) — (N, h) is an f-stationary map. If % >0, ¢
satisfies (1), (¢2) and ®(u) of u is slowly divergent, then u is constant.

Theorem 4.9 Let M, K, and A be as in Theorem 4.5. If u : (M, g) — (N,h) is an
f-stationary map, A — > 0 and ®y(u) of u is slowly divergent, then w is constant.

Theorem 4.10 Let M, K, and A be as in Theorem 4.5. If u : (M, g) — (N, h) is an

f-stationary map, g—f > 0 and ®;(u) of u is slowly divergent, then u is constant.

5 Constant Dirichlet Boundary-Value Problems

To investigate the constant Dirichlet boundary value problems for f-stationary map, we
begin with
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Definition 5.1 (see [11]) A bounded domain D C M with C' boundary 9D is called

starlike if there exists an interior point g € D such that

0

9( o

V) >0, (5.1)

where v is the unit outer normal to (9D and the vector field 57— is the unit vector field such
that for any x € (D — {x0}) U 9D, T is the unit vector tangent to the unique geodesic
joining ¢ and pointing away form xg. ’

It is obvious that any convex domain is starlike.

Theorem 5.2 Suppose u : (M, p?*gy) — (N, h) is an f-stationary map and D C M is
a bounded starlike domain with C* boundary with the pole 2y € D. Assume that Co—p > 0
on D and ¢ satisfies (gpl) (p2). fu|lspp = P € N, then u must be constant in D.

Proof Take X =rZ, where r = r,,. From the proof of Theorem 4.1, we have

[[w*hl[*

(Sa,, %LX9> > (Co—p)f R (5.2)

where Cj is a positive constant. Since u|gp = P, du(n) = 0 for any tangent vector n of 9D.
We can derive the following on 9D:

S@f(X’ V)

0
rS‘i’f(Ev V)

- r[f”“f" o 0) — Fhou( ), du(v))]
_ IHE ey
= g2 S gy
< —37“9(5,1/)]”% <0. (5.3)
From (3.8), (5.2) and (5.3), we have
lche
0< Co — dv, <0, 5.4
</ G (5.4)

which implies that u(D) = P.

From the proof of Theorem 5.2, we immediately get the following.

Theorem 5.3 Suppose u : (M, p2gy) — (N, h) is an f-stationary map and D C M is a
bounded starlike domain with C! boundary with the pole xy € D. Assume that % > 0 on
D and ¢ satisfies (1), (¢2). If ul|gpp = P € N, then u must be constant in D.

Theorem 5.4 Let M, K, and A be as in Theorem 4.5. Suppose u : (M, g) — (N,h) is
an f-stationary map, D C M is a bounded starlike domain with C' boundary with the pole
xo € Dand A — > 0. If ulspp = P € N, then u must be constant in D.

Theorem 5.5 Let M, K, and A be as in Theorem 4.5. Suppose u : (M, g) — (N, h) is
an f-stationary map, D C M is a bounded starlike domain with C' boundary with the pole
zg € D and % > 0. If ulpp = P € N, then u must be constant in D.
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